地下水溶质运移解析法算法模板
溶质运移理论水动力弥散数的计算方法

13
二、二维水动力弥散-瞬时投放示踪剂
实际中,仅用3组数组求出的参数具有一定随机 性甚至失去物理意义,故需要一些列C-t数据。可先 去掉不符合物理意义的数值,再将其余参数算术平均 值即可视作待求参数的近似值。如下表:
14
二、二维水动力弥散-瞬时投放示踪剂
2.直线图解法
(5-23)
15
一、二维水动力弥散-瞬时投放示踪剂
若观测孔位于x轴上,(5-23)可简化成
有 改写式子 令
可通过求u来求DL
(5-27)
则
(5-30)
综合(5-27)(5-30)
16
二、二维水动力弥散-瞬时投放示踪剂
通过证明可得出下式(过程略):
(5-32)
取
(5-32)写成
参数计算的具体步骤 1.从实测的C-t数据序列中找出Cm、tm值,当观测数据 较少时,可先作出C-t曲线后,从曲线上查出Cm、tm值 2.计算两组X、Y,绘在直角坐标系中,两轴比例一致, 17 再量取R
27
二、二维水动力弥散-瞬时投放示踪剂
28
二、二维水动力弥散-瞬时投放示踪剂
参数计算步骤:
(2)若流向不确定 计算方法改变,用(x1,y1)(x2,y2)两个观测孔
解得
29
二、二维水动力弥散-瞬时投放示踪剂
4.弥散晕面积求参法
前面已证
弥散晕为椭圆,圆心为(ut,0),以孔隙平均流速 向前移动,长轴a和短轴b之比 (4-68) 以浓度C为等值线的椭圆面积为
6
一、一维水动力弥散-连续注入示踪剂
1 2 故 DL x0.1587 x0.8413 8t
若固定x,在不同时刻测定 浓度C,如图,有
7
【MODFLOW】第二讲 地下水流-热-质(或污染物、示踪剂)迁移数学模型

Dxx
C x
y
Dyy
C y
x
C
ux
y
C uy
I
基本方程
3.含水层中地热迁移规律控制方程
热对流扩散机理
c
T t
x
xx
T x
y
yy
T y
x
cw
wT
ux
y
cwwT uy
f
Fourier定律
基本方程 18
二、溶质运移数学模型:绪论
随着经济的快速发展,地下水被污染的程度日益严 重,并引起了人们的广泛关注,目前仍然存在很多问 题题,迫切需要解决:
在Dupuit 假定下,忽略垂向水流,可以导出潜水二维 流微分方程。考虑一底面边长为dx, dy的潜水含水层柱 体,计算侧向静流入量和垂向补给量,分别有:
X方向流入-流出
(vx (H
Z )y) |x
(vx (H
Z )y) |xx
(vx (H Z )y) x
|
x
y方向流入-流出
(vy (H
Z )x) |y
由于微观多孔介质中流 速分布的不均一而引起 的示踪剂(水质点)浓 度在地下水含水层中不 均匀分布的现象。
23
二、溶质运移数学模型
1、水动力弥散理论:机械弥散原因
1. 同一空隙中不同部位的流速分布不均匀 2. 不同空隙的流速大小不同 3. 固体骨架导致流速分布的不均匀
(1)
(2)
(3)
地下水质点运动速度的差异是产生水动力弥散的根本原因
x方向流出
( v ) | x (xx, y,z,t) yzt
9
一、地下水运动基本方程
3、三维流基本微分方程(续1)
地下水污染物迁移转化模型及数值解_Parts 3

有限差分与有限元数值解法的 主要差异: 主要差异: (1)网格刨分灵活性方面 (2)质量守恒方面
地下水污染控制与修复——王明玉
地下水模拟建模过程与方法
地下水污染控制与修复——王明玉
Introduction to Modeling Approaches
地下水污染控制与修复——王明玉
地下水污染控制与修复——王明玉
PRIMARY ISSUES OF CONCERN AT LARGE AND COMPLEX SITES
Data availability – How many sampling points are there? For how long? Data spatial distribution – Where are they located relative to the plume / source? Data quality / data management – Where is the data housed? Who uses it? Characterization and conceptualization of Site Conditions - How can they be represented conceptually?
地下水污染控制与修复——王明玉
National Academy of Sciences:
Thus, when models form the basis for decision-making, uncertainty will be an inescapable component of environmental management and regulation. A key consideration in any modeling process is whether the model has undergone sufficient development and testing to address the problem being analyzed in a sufficiently meaningful manner.
第三章 地下水中溶质迁移扩散理论

C 2C 2C 2C n Dx 2 D y 2 Dz 2 t x y z C C C Vx Vy Vz S 2016/12/9 x y z
5
定解条件
某空间区域R及时间区间(0,T),考虑
的地下水动力弥散问题在这个时空区域 上确定;
2
2016/12/9
29
平面二维弥散方程解析解
2016/12/9
本章共75页-30
平面二维弥散方程解析解
2016/12/9
本章共75页-31
剖面二维弥散方程解析解
延伸长度较大的贮污库的渗漏属于这种模型。
库长为2L,r0相对较小
含水层厚度m相对较大 假定Vx和Vz固定不变
2016/12/9
2C 1 C 1 C 2 r r r K t x C (r 0, t 0) 0 C (r 0, t 0) C 0 C (r , t 0) 0
21
径向一维弥散方程解析解
稳定源:
数学模型和定解条件为:
2 C C q C D 2 n t r 2 rM r C (r 0, t 0) 0 C (r 0, t 0) C 0 C (r , t 0) 0
弥散带长度近似计算:
Dt Ld B n
C 1 C 0
2016/12/9
17
平面一维弥散方程解析解
暂时源:当污水只是暂时的(tp)侵入,其余 条件同稳定源,模型和条件可简化为:
2C C C n D 2 V x t x C ( x 0, t 0) 0 C ( x 0,0 t t p ) C0 C ( x 0 , t t ) 0 p C ( x , t 0) 0
地下水渗流基本方程及数学模型总结

常可忽略。
(二)含水层的状态方程
含水层弹性存储的概念: 弹性储存:当地下水水头(水压)降低(或升高)时, 含水层、弱透水层释放(或储存)地下水的性质。 含水层弹性存储的物理意义:
(承压含水层)弹性储存与(潜水)重力储存不同;
第一步:化简方程左端项: 当渗流满足达西定律,且取坐标与各向异性主轴方向一致,有:
H v x K xx x
H v y K yy y
H v z K zz z
( v x ) H H H ( K xx ) [ K xx (K xx )] x x x x x x x
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流的基本微 分方程的推导 二、地下水运动微分方程的各种形式 三、地下水运动数学模型的建立及求解
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流基本微分方程的推导 为反映含水层地下水运动的普遍规律,研究选定在各向 异性多孔介质中建立地下三维不稳定流动连续性方程。 水均衡的基本思想,对某一研究对象:
描述地下水运动的数学模型及解算方法二地下水运动微分方程的各种形式zzyyxxzzyyxx使潜水面边界处理的简单化直接近似地在微分方程中处理dsdh此时1潜水面比较平缓等水头面呈铅直水流基本水平可忽略渗流速度的垂直分量v2隔水底板水平铅垂剖面上各点的水头都相等各点的水力坡度和渗流速度都相等sin可以近似地用tg代替此即著名的dupuit假设
m d( )
m
1 d d ( )
第五节 溶质运移问题的简单解析解

第五节 溶质运移问题的简单解析解由第二节的对流弥散方程可知,溶质运移问题比地下水运动问题更复杂,更难求得解析解。
只有当含水层为均质各向同性,而且计算区域几何形状简单时,才有可能求得解析解。
下面介绍几种简单的解析解。
一. 一维问题简单的解析解实验室中的土柱试验就是一个简单的一维问题。
一个土柱中装满砂,用水饱和并且让水以固定的速度向下流动。
水中的示踪剂浓度为0。
试验开始时土柱上部换装示踪剂浓度为C 0的溶液,一直保持到试验结束。
如果不考虑吸附、化学反应和放射性衰变,取流向为x 轴,则对流弥散方程(6-91)简化为x c u xc D t c x L ∂∂-∂∂=∂∂22 (6-184) 初始条件00)0,(≥=x x c边界条件⎩⎨⎧≥=∞≥=00),(0),0(0t t c t c t c 该问题的解为(Ogata 和Banks ,1961):⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=)2()exp(22),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-185) 式中 )(e r f c—余误差函数; )e x p (—指数。
在天然情况下,一维运动往往出现在有一段平直的被污染的河流或渠道,河水渗漏补给地下水,地下水以固定速度u 作一维流动,如图6—25图6—25渠道渗漏作为一个线源引起的地下水污染Sauty (1980)求得该情况下的解为⎥⎥⎦⎥⎢⎢⎣⎢+--=)2()exp()2(2),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-186) (6—185)式和(6—186)式在第二项前面符号不同。
当Peclet 数Lx D xu Pe = 相当大时,上二式第二项比第一项小得多,故近似有)2(2),(0t D t u x erfc c t x c L x -=(6-187) 公式(6—187)适用10≥Pe 的情况。
溶质运移理论-(一)水动力弥散的基本概念与弥散方程-精选文档

Fick定律
8
五、流体参数
流体的密度
d m d m dm 1 dV dV dV 1 1
N N N
多相分流体速度
N N
组分流速
1 N
C C x ,y , z , 0 0 x ,y , z
初始条件确指原始状态;初始时刻可以任意选定,只要已知那一时 刻研究区各点的浓度即可。初始条件的如何选取,应该根据研究问 题的需要、资料状况及计算与模拟方法等因素确定。例如:t=0时向
某区域注入含示踪剂的水,若在此之前研究区D不含该示踪剂,则C
~
R 1 d
b
n
K d
只是用 R d 去除以水动力弥散系数 D 和流速u,由于Rd 1 ,因 ~ 1 此吸附作用产生的后果,相对于 D 和 u 均减小 R ,起到减缓
d
弥散的作用。所以把 R d 称为:减缓因子。
26
七、源汇项:抽水与注水
如果含水层当中有抽水或注水井,含水层中示踪剂
七、源汇项:吸附与解吸
在一定条件下,溶液中某些溶质在多孔介质的固相表 面产生吸附、解吸或者离子交换等物理化学作用。如果这 些溶质属于我们的研究对象,则这些作用的结果应该综合 到源汇项中,如果固相表面吸附示踪剂,视为汇,否则, 称为解吸,视为源,而离子交换即可视为汇也可视为源。
水
吸附
解吸 (源)
离子交换 (源、汇)
多相流体可混溶流体石油污染物在水体或含水层中的运移不可混溶流体不同性质溶体之间无明显的突变界不同性质溶体之间有明显的突变界惰性示踪剂理想示踪剂两种或不与地下水发生化学反应不与多孔介质发生反应天然示踪剂天然水中的环境同位素人工示踪剂离子化合物有机染料放射性同位素水动力弥散现象多孔介质中当存在两种或两种以上可混溶的流体时在流体运动作用下期间发生过渡带并使浓度区域平均化的现象水动力弥散分子扩散机械弥散由浓度高的方向向浓度底的方向运动趋于均一由于微观多孔介质中流速分布的不均一而引起的示踪剂水质点浓度在地下水含水层中不均匀分布的现象
地下水数值模拟02_地下水运动的数学模型

2
H 0
n 2
——隔水边界
第三类边界条件 H aH b n
例:弱透水边界
K H Hn H 0 n m1 / K1
溶质运移问题的边界条件
第一类边界条件
c(x,
y, z,t) 1
c1(x,
y, z,t)
——给定浓度边界
第二类边界条件 c
Di, j x j ni 2 f2 (xi , t)
u(x, y, z,t) t0 0(x, y, z)
• 2、边界条件
第一类边界条件 u(x, y, z,t) 1 1(x, y, z,t)
第二类边界条件
u n
2
1(x, y, z,t)
第三类边界条件
u
u n
3
3x,
y, z,t
水流问题的边界条件
Reynolds数小于1~10
• 有些情况下,用液体压强表示更为方便
– 例如:油水两相流动
vx
K
H x
vy
K
H y
vz
K
H z
K g k
H z p
g
k p
vx
x
v y
k
p y
vz
k
K ( d
)
dhc
C
t
x
K( )
x
y
K
(
)
y
z
K (