向量代数与空间解析几何

合集下载

高等数学下册第八章 向量代数与空间解析几何

高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程

高等数学-第8章空间解析几何与向量代数

高等数学-第8章空间解析几何与向量代数

b a b≤+,向量与数的乘法a ,方向与、向量与数量乘法的性质(运算律和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。

当遇到与起点有关的向量时(例如,谈到某一质点的运动速向量A B ''在轴上的投影,记为投影AB 。

向量在轴上的投影性质:性质1(投影定理)=cos AB ϕ与向量AB 的夹角。

)=Prj 1a +Prj 2a 。

性质可推广到有限个向量的情形。

:向量a 在坐标轴上的投影向量向量a 在三条坐标轴上的投影由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a 量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y a a a λλλ=由此可见,对向量进行加、2x a a a =+acos a b cos a b (,)a b =为向量之间的夹角并且0θπ≤≤。

2a =,因此我们可以把a a ∙简记为x y z z 由向量的坐标还可以计算两个向量之间的夹角, cos ab θ所以2cos xa b a ba θ∙==+两个向量垂直的充分必要条件是sin a b θ,它的方向是垂直于。

a b ⨯=sin a b b 为两边的平行四边形的面积。

如果向量a ={,,a a a },{,}b b =则a b ⨯=..........x y zi j a a b b b 两向量平行的充分必要条件为也就是说两向量共线,其对应坐标成比例。

决;在求向量,特别是求垂直向量问题时常用向量积。

注意向量的平行、垂直关系及角度。

利。

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

高等数学期末复习-向量代数与空间解析几何

高等数学期末复习-向量代数与空间解析几何

r a
与三个坐标面
xoy,
yoz,
zox
的夹角分别为1, 2,
3 (
0

1, 2,
3

2
),则
cos2 1 cos2 2 cos2 3
;
解: cos2 1 cos2 2 cos2 3 2 ,所以填 2。(内容要求 2)
r 4、向量 a

(1,
1,
).
(A) a b a b
(B) a b a b
(C) a b a b
(D) a b a b
解: a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2 ,( cos =0)
a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2
{2, 4,
}
,且
r a
/
r /b
,则


(
);
10
(A)
(B) 10
(C) 6
(D) 6
3
3
解:因为
ar
/
r /b
,所以
1
2

3
,所以选 C。(内容要求 8)
24
r
r
r
r
16、设向量 a {2, 1, 10} , b {4, 2,1},则向量 a 与向量 b 的关系是(
5)
11、已知 a 1, b
2
,且 a 与 b 的夹角为
,则
a
b
(
).
4
(A) 5

向量代数与空间解析几何

向量代数与空间解析几何

向量代数与空间解析几何向量代数是几何学的一个分支,它学习的是由点和向量组成的空间结构,以及它们之间的关系。

若要解释几何学的基本概念,就必须要用到向量代数的技术和工具。

量代数与空间解析几何之间的关系非常密切。

空间解析几何是一种特殊的平面几何,它将空间中的点看作是实数组成的,并且结构由一个数学方程来表示。

这是向量代数在几何学中最重要的用途。

研究空间解析几何时,我们必须掌握向量代数的所有技巧,以表达空间模型的结构及其向量元素之间的关系。

向量代数在空间解析几何中的最基本的概念是向量。

向量是一种特殊的数字,它由一组实数组成,可以表示一条直线的方向和大小。

空间解析几何中的所有结构都可以用向量表示。

我们可以将向量加起来,用它们表示方向和大小的变化,从而求得更复杂的结构,比如多边形。

此外,向量代数也可以用于表示空间解析几何中的相关概念,比如平行和垂直。

如果两个向量平行,则它们会构成一个特殊的结构,而垂直的向量则会构成一个特殊的空间结构。

向量代数可以用来表示这些概念,也可以用于解决空间解析几何中的问题。

向量代数还可以用于表达空间解析几何中的变换,这可以通过矩阵来实现。

比如,如果希望移动一个空间结构中的某些向量,那么可以使用一个称为移动矩阵的向量代数工具,它可以把这些向量移动到新的位置。

同样,也可以使用变换矩阵来旋转这些向量,它可以把空间中的向量旋转到不同的方向。

这些都是依赖于向量代数的空间解析几何中的重要概念。

总而言之,向量代数与空间解析几何的关系是非常密切的。

空间解析几何学习的是空间中的点和向量,以及它们之间的关系,而这些关系是依赖于向量代数的技术和工具来表示的。

正是由于向量代数可以表达空间解析几何中的概念和关系,我们才能够更好地理解几何学的基本概念,并有效地解决空间解析几何中的问题。

11.1 空间解析几何与向量代数

11.1 空间解析几何与向量代数
O
z
O
C
l
y
z
O
y
y
x
目录
x
上页 下页 返回 结束
一般地,在三维空间
z
O
方程F(x, y) = 0 表示柱面, 母线 平行于 z 轴;
准线 xOy 面上的曲线 l1.
x l1
y
zl
O
2
方程G( y, z) = 0 表示柱面,
母线 平行于 x 轴; 准线 yOz 面上的曲线 l2.
y
x
z
l3 O
方程H(z, x) = 0 表示 柱面,
下页
返回
结束
三、曲面方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 引例: 轨迹方程. 解:设轨迹上的动点为 M(x, y, z), 则 AM = BM , 即
(x −1)2 + ( y − 2)2 + (z − 3)2 = (x − 2)2 + ( y +1)2 + (z − 4)2 化简得 2x − 6y + 2z − 7 = 0 说明: 说明 动点轨迹为线段 AB 的垂直平分面. 显然在此平面上的点的坐标都满足此方程,
yOz面
• 坐标原点 • 坐标轴 • 坐标面


Ⅱ Ⅰ
• 卦限(八个) Ⅶ
OxOy面
y
y轴(纵轴) Ⅵ
x
x轴(横轴) Ⅷ Ⅴ
目录 上页 下页
返回
结束
在直角坐标系下
→ → 点 M ← 有序数组 (x, y, z) ← 向径 r (称为点 M 的坐标 坐标) 坐标 特殊点的坐标 :
1−−1
由勾股定理得

高等数学第八章空间解析几何与向量代数

高等数学第八章空间解析几何与向量代数

|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a

b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式

a
axi

向量代数和空间解析几何

向量代数和空间解析几何

向量代数和空间解析几何向量代数和空间解析几何是数学中非常重要的概念,既可以处理经典几何问题,又可以用于表达数学模型。

它们在科学技术、计算机图形学、矩阵计算等方面都有着广泛的应用。

向量代数是计算机科学家和数学家在处理空间问题时最常使用的方法。

它利用向量来描述空间中的点、直线和平面。

向量代数可以用来计算空间的大小、形状、方向、坐标变换等概念。

向量代数涉及的内容主要有线性代数系统、矩阵运算、向量空间等。

它在科技计算机图形学、建模和科学仿真中被广泛使用。

空间解析几何是在几何学中一类研究空间几何结构的重要分支学科。

它被广泛应用于工程、机械、制图学等方面,是解决建筑、室内装潢、雕塑、建筑园林设计、制图学等问题的基础学科。

主要内容有平面几何和立体几何,包括平面的直线、圆弧、多边形等,立体的点、直线、面等概念。

空间解析几何主要用来解决解空间几何图形的问题,是几何学中一类重要的问题。

向量代数和空间解析几何之间有着千丝万缕的联系,它们都是分析和处理空间几何图形的重要工具。

向量代数主要用来解决空间的大小、形状、方向等问题,而空间解析几何则主要用于处理空间中的点、直线和平面等结构。

它们的结合可以清楚的表示空间的量化和定义,是建立数学模型的基础和工具。

向量代数和空间解析几何在科技、计算机图形学、建模和科学仿真方面都有着广泛的应用。

它们可以帮助我们更准确地表示和分析空间问题,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

综上所述,向量代数和空间解析几何是数学中重要的概念,可以在科学技术、计算机图形学、矩阵计算等方面得到广泛应用,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

它们的结合可以更为清楚地表示和分析空间几何图形,为建立数学模型提供基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章.向量代数与空间解析几何
本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。

向量。

向量可以说是几何的最为基本的概念。

因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。

由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。

我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。

基于向量的这种直观图象,可以定义向量的基本属性。

首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。

注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。

在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。

空间直角坐标系以及向量代数。

在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。

能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。

我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。

那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。

显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。

因此这样决定的一个向量的坐标也就是唯一的。

本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。

基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。

进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位
长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。

按照坐标三元组的写法,就是
=(1,0,0);
i r j r k r
i r。

相关文档
最新文档