实验七 常规蛋白质聚丙烯酰胺凝胶电泳

合集下载

蛋白质的聚丙烯酰胺凝胶电泳

蛋白质的聚丙烯酰胺凝胶电泳

⑾ 从电泳装置上卸下玻璃板,用刮勺撬开玻璃板。紧靠最左边 一孔(第一槽)凝胶下部切去一角以标注凝胶的方位。 3.用考马斯亮蓝对SDS聚丙烯酰胺凝胶进行染色 经SDS聚丙烯酰胺凝胶电泳分离的蛋白质样品可用考马斯亮蓝R250 染色。染色1~2小时或过夜。 4. 换脱色液脱色,需3~10小时,其间更换多次脱色液至背景清 楚。 此方法检测灵敏度为0.2~1.0 νg。脱色后,可将凝胶浸于水中,长 期封装在塑料袋内而不降低染色强度。为永久性记录,可对凝胶进行拍 照,或将凝胶干燥成胶片。
mR未= dpr未/ dBPB 然后,从标准曲线上就可求出此未知蛋白的分子量。 取出脱色后的凝胶平放在两块透明投影胶片中间,赶尽气泡,在复 印机上复印。在复印的凝胶图上用直尺分别量出各条蛋白带迁移的距离 dpr和dBPB(以蛋白带的上沿或中心为准),计算相对迁移率,根据方程 式: lgMw = K1-bmR 用各标准蛋白分子量的对数(纵坐标)和相对迁移率mR(横坐标) 画出标准曲线,由标准曲线再求出其他各条待测和未知蛋白带的分子 量,如有可能计算其误差。
和双丙烯酰胺绝对浓度的函数。用5~15%的丙烯酰胺所灌制凝胶的线 性分离范围如下表: SDS聚丙烯酰胺凝胶的有效分离范围 *丙烯酰胺浓度(%) 线性分离范围(kD) 15 12~43 10 16~68 7.5 36~94 5.0 57~212 *双丙烯酰胺~丙烯酰胺摩尔比为 1:29。
三、实验材料和试剂
1. 1. 试剂 (1)丙烯酰胺和N, N’-亚甲双丙烯酰胺。以温热(利于溶解双 丙烯酰胺)的去离子水配制含有29%(w/v)丙烯酰胺和1%(w/v)N, N’-亚甲双丙烯酰胺的贮存液,丙烯酰胺和双丙烯酰胺在贮存过程中缓 慢转变为丙烯酸和双丙烯酸,这一脱氨基反应是光催化或碱催化的,故 应核实溶液的pH值不超过7.0。这一溶液置棕色瓶中贮存于室温,每隔 几个月须重新配制。 小心:丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附 于皮肤。 (2) 十二烷基硫酸钠(SDS)。SDS可用去离子水配成10% (w/v)贮存液保存于室温。 (3)用于制备分离胶和积层胶的Tris缓冲液。 (4)TEMED(N,N,N’,N’-四甲基乙二胺)。TEMED通过催化过 硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。 (5)过硫酸铵。 过硫酸铵提供驱动丙烯酰胺和双丙烯酰胺聚 合所必需的自由基。须新鲜配制。 (6)1.5M Tris,pH8.8(分离胶缓冲液) (7)1M Tris,pH6.8(浓缩胶缓冲液) (8)Tris-甘氨酸电泳缓冲液。 25mM Tris 250mM 甘氨酸 (pH 8.3)

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的相对分子质量解析

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的相对分子质量解析
对以上标准蛋白质相对迁移率的测定,以相对迁移 率的对数对标准蛋白质的相对分子质量作图,可得标准 曲线,由标准曲线求出待测蛋白质的相对分子质量。
【实验步骤及操作方法】
1.安装垂直板电泳槽 将密封胶条放在平直玻璃板上,将凹形
玻璃板与 平直玻璃板重叠。 用手将两块玻璃板夹住,放入电泳槽内。 用蒸馏水检漏
2.电泳缓冲液(Tris-甘氨酸缓冲液,pH=8.3):取 Tris6.0g,甘氨酸28.8g,SDS1.0g,用去离子水 溶解后定容至1L。
3.样品溶解液(用于溶解标准蛋白质及样品蛋白 质):取SDS0.1g,巯基乙醇0.1mL,甘油 1.0mL,溴酚蓝28.8g,0.2mol/L磷酸缓冲液 0.5mL,加重蒸馏水至10mL。
【试剂配制】
4. 染 色 液 : 0.25g 考 马 斯 亮 蓝 R-250 , 加 入 454mL50%甲醇溶液和46mL冰乙酸。
5.脱色液:75mL冰乙酸,875mL水与50mL甲醇 6.10% 过 硫 酸 钠 、 10%SDS 、 1% 四 甲 基 乙 二 胺
(TEMED)
【实验材料及预处理】
蛋白质相对分子质量的测定 SDS-聚丙烯酰胺凝胶电泳法
【实验目的】
• 理解电泳法测定蛋白质分子量的原理。 • 掌握SDS-聚丙烯酰胺凝胶电泳法的基本操
作 • 学会绘制标准曲线。
【实验原理】
聚丙烯酰胺凝胶由丙烯酰胺(Acr)和N,N-甲叉双 丙烯酰胺(Bis)聚合而成,是一种具有交叉网状结构的 凝胶,可以产生分子筛效应,其孔径大小可以通过配置 药品的浓度来控制,常用作电泳的载体。
因此,我们可以测定标准蛋白质的迁移率,通过标 准蛋白质相对迁移率的对数对相对分子量作图,得到标 准曲线,根据标准曲线计算出未知蛋白质的相对分子质 量。

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量

02 实验材料
所需的试剂和溶液
丙烯酰胺(AA):用于制备凝胶,是聚合反应 的单体。
甲叉双丙烯酰胺(MBA):交联剂,增加凝胶 的交联度。
N,N,N',N'-四甲基乙二胺(TEMED):催化剂, 加速交联聚合反应。
所需的试剂和溶液
过硫酸铵(APS)
引发剂,产生自由基,引发聚合反应。
SDS
十二烷基硫酸钠,用于变性蛋白质并促使其 带负电荷。
发展新型分离技术
随着生物技术的不断发展,可以发展新型的蛋白质分离技术, 如二维电泳、毛细管电泳等,以提高蛋白质分离的分辨率和准
确性。
应用多维度分析
在后续实验中,可以将SDS-PAGE与其他蛋白质分析技术相结 合,如质谱技术、免疫学检测等,进行多维度分析,更全面地
了解蛋白质的性质和功能。
THANKS FOR WATCHING
白质带负电荷,从而在电场中向正极移动。
聚丙烯酰胺凝胶作为支持介质,能够根据蛋白质分子量的不同
03
对其进行分离。
蛋白质的分子量测定
通过比较标准蛋白的迁移率和已知分 子量的标准蛋白,可以大致测定出待 测蛋白质的分子量。
蛋白质的迁移率与其分子量的对数成 反比,因此可以通过计算待测蛋白与 标准蛋白的相对迁移率来推算其分子 量。
甘氨酸
作为分子量标准品。
Tris-HCl缓冲液
维持电泳过程中的pH值稳定。
所需的仪器和设备
电源
为电泳提供电力。
凝胶板
放置凝胶的框架。
垂直电泳槽
提供电泳所需的基 本结构。
移液器
精确添加试剂和溶 液。
紫外透射仪
检测蛋白质条带。
实验前的准备事项
清洗电泳槽和相关器具,确保无残留物。 准备好所需的试剂和溶液,并确保其在有效期内。

生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

聚丙烯酰胺凝胶电泳法分离血清蛋白质【目得】1 . 掌握圆盘电泳分离血清蛋白得操作技术。

2 。

熟悉聚丙烯酰胺凝胶电泳得原理、【原理】带电粒子在电场中向着与其自身电荷方向相反得电极移动,称为电泳。

聚丙烯酰胺凝胶电泳( PAGE)就就是以聚丙烯酰胺凝胶作为电泳介质得电泳。

在电泳时,蛋白质在介质中得移动速率与其分子得大小,形状与所带得电荷量有关。

聚丙烯酰胺凝胶就是一种人工合成得凝胶,就是由丙烯酰胺( Acr )单体与少量交联剂 N,N-亚甲基双丙烯酰胺( Bis )在催化剂过硫酸铵( Ap) 与加速剂四甲基乙二胺( TEMED ) 得作用下发生聚合反应而制得得(其化学结构式见第2篇第 1 章)。

聚丙烯酰胺凝胶具有网状结构,其网眼得孔径大小可用改变凝胶液中单体得浓度或单体与交联剂得比例来加以控制、根据血清蛋白分子量得大小,学生实验一般选用 7 %聚丙烯酰胺凝胶分离血清蛋白质。

不连续聚丙烯酰胺凝胶电泳利用浓缩效应、分子筛效应与电荷效应得三重作用分离物质(见第 2 篇第1章), 使样品分离效果好, 分辨率较高。

一般醋酸纤维薄膜电泳只能把血清蛋白质分离出 5 ~ 7 条带,而聚丙烯酰胺凝胶电泳却能分离出十几条到几十条来(图 3—4 ),就是目前较好得支持介质, 应用十分广泛。

图 3-4 血清蛋白聚丙烯酰胺凝胶电泳图谱根据凝胶支持物得形状不同,分为垂直板电泳与盘状电泳两种,二者原理相同。

本实验采用得盘状电泳就是在直立得玻璃管中,以孔径大小不同得聚丙烯酰胺凝胶作为支持物,采用电泳基质得不连续体系,使样品在不连续得两相间积聚浓缩(浓缩效应)成厚度为 10 -2cm 得起始区带,然后再利用分子筛效应与电荷效应得双重作用在分离胶中进行电泳分离。

【器材】1 .电泳仪直流稳压电源,电压400 ~500V ,电流 50mA 。

2 .垂直管型圆盘电泳装置目前这类装置得种类很多,可根据不同得实验要求选择其中得一种。

这类装置均由两个基本得部分组成,一部分为载胶玻璃管,须选用内径均匀( 5 ~ 6mm ) , 外径7 ~8mm ,长80 ~100mm 得玻璃管作为材料,也可以使用更细得玻璃管。

生物化学实验-SDS—聚丙烯酰胺凝胶电泳测定蛋白质的分子量

生物化学实验-SDS—聚丙烯酰胺凝胶电泳测定蛋白质的分子量
SDS—聚丙烯酰胺凝胶电泳测 定蛋白质的分子量
实验原理
电泳:是带电颗粒在电场作用下,作定向运动即 向着与其电荷相反的电极移动的现象。 电泳法分离、检测蛋白质混合样品,主要是根据 各蛋白质组分的分子大小和形状以及所带净电荷 多少等因素所造成的电泳迁移率的差别。 区带电泳是样品物质在一惰性支持物上上进行电 泳的过程。因电泳后,样品不同组分形成带状区 间,故称区带电泳。
在聚丙烯酰胺凝胶系统中,加入一定量的SDS时,蛋白质分子 的电泳迁移率主要取决于它的分子量大小,而其他因素对电泳 迁移率的影响几乎可以忽略不计。当蛋白质的分子量在 15,000~200,000之间时,电泳迁移率与分子量的对数呈直线关 系,符合下列方程式:
lg MW=-b·mR+K MW为蛋白质分子量,mR为相对迁移率,b为斜率,k为截 距。在条件一定时,b和K均为常数。 若将已知分子量的标准蛋白质的迁移率对分子量的对数作图, 可获得一条标准曲线。未知蛋白质的相同条件下进行电泳,根 据它的电泳迁移率即可在标准曲线上求得分子量。
实验步骤
凝胶的制备 蛋白质样品的处理 加样:用微量注射器依次在各个样品槽内加样,各加
10~15μl(含蛋白质10~15μg),稀溶液可加20~30μl
电泳凝胶配方:
30.8%Acr-Bis
1.5mol/l Tris(pH8.9)
0.5mol/l Tris(pH6.7) ddH2O水
10%SDS
10%过硫酸铵AP
3、样品处理与加样 ⑴样品制备
取蔗糖酶样品(样品Ⅰ、Ⅱ、Ⅲ、Ⅳ)各50μl,分别放入1.5ml离心管中, 12000r/min离心10分钟,上清即为电泳样品。 ⑵样品处理
将离心后的上清各取20ul,加入等体积“2×蛋白质样品溶解液”,100℃保温 3分钟,取出冷却后,12000r/min离心2min,取上清直接加样。 ⑶加样

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量

SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量

实验七SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量实验数据:标准蛋白质条带第一条第二条第三条第四条第五条溴酚蓝前沿距离/cm 4.70距离/cm 0.50 0.95 1.60 2.10 3.95 相对迁移率mr 0.11 0.20 0.34 0.45 0.84 分子量Mr 97400 66200 43000 31000 14400LgMr 4.99 4.82 4.63 4.49 4.16样品 1 2 3溴酚蓝前沿/cm 4.90 4.80 4.60样品迁移距离/cm 4.20 1.20 1.70相对迁移率mr 0.86 0.25 0.37标准曲线:y=5.05-1.10x结果:样品 1 2 3Mr 12706 59566 43954mr 4.104 4.775 4.643一. 实验目的和要求1 学习SDS-PAGE测定蛋白质分子量的原理。

2 掌握垂直板电泳的操作方法。

3 运用SDS-PAGE测定蛋白质分子量及染色鉴定。

二 .实验原理带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。

区带电泳是在半固相或胶状介质上加一个点或一薄层样品溶液,然后加电场,分子在支持介质上或支持介质中迁移。

支持介质的作用主要是为了防止机械干扰和由于温度变化以及大分子溶液的高密度而产生的对流。

区带电泳使用不同的支持介质,早期有滤纸、玻璃珠、淀粉粒、纤维素粉、海砂、海绵、聚氯乙烯树脂;以后有淀粉凝胶、琼脂凝胶、醋酸纤维素膜,现在则多用聚丙烯酰胺(PAGE)和琼脂糖凝胶。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠), SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。

sds聚丙烯酰胺凝胶电泳实验报告

sds聚丙烯酰胺凝胶电泳实验报告

sds聚丙烯酰胺凝胶电泳实验报告sds聚丙烯酰胺凝胶电泳实验报告引言:sds聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和分析技术,通过电场作用下,将样品中的蛋白质按照分子量大小进行分离,从而得到蛋白质的电泳图谱。

本实验旨在通过sds聚丙烯酰胺凝胶电泳技术,对一组未知蛋白质样品进行分析,并探讨其分子量及可能的功能。

实验方法:1. 准备样品:将待测蛋白质样品加入含有sds和还原剂的样品缓冲液中,使其完全溶解,并在100℃水浴中加热5分钟,使蛋白质完全变性。

2. 制备凝胶:按照实验要求,配制聚丙烯酰胺凝胶的缓冲液和凝胶溶液,并将其倒入凝胶模具中,形成凝胶。

3. 装载样品:将待测样品加入凝胶槽中,并连接电源,设定适当的电压和时间。

4. 电泳:开启电源,进行电泳,直至样品跑到凝胶末端。

5. 染色:取出凝胶,进行染色处理,以便观察蛋白质带的形成。

实验结果:通过sds聚丙烯酰胺凝胶电泳,我们成功地将待测蛋白质样品分离出不同的带,得到了一张清晰的电泳图谱。

根据电泳图谱,我们可以看到不同蛋白质在凝胶上形成了不同的带,这些带的位置和强度可以反映蛋白质的分子量和相对含量。

讨论:通过对电泳图谱的分析,我们可以初步判断待测样品中蛋白质的分子量范围及可能的功能。

一般来说,蛋白质的分子量与其迁移距离成反比,即分子量越大,迁移距离越短。

因此,我们可以根据电泳图谱上带的位置,推测蛋白质的分子量。

此外,通过比较待测样品和已知分子量标记物的电泳图谱,我们还可以进一步确定待测样品中蛋白质的分子量。

分子量标记物是一组已知分子量的蛋白质,通过与其进行对比,我们可以更加准确地确定待测样品中蛋白质的分子量范围。

除了分子量,蛋白质的带的强度也可以提供一些信息。

带的强度反映了蛋白质在样品中的相对含量,即带越强,蛋白质的相对含量越高。

通过比较不同带的强度,我们可以初步了解待测样品中不同蛋白质的相对含量。

结论:通过sds聚丙烯酰胺凝胶电泳实验,我们成功地分离和分析了一组未知蛋白质样品。

生化实验七 SDS一聚丙烯酰胺凝胶电泳法测定蛋白质的分子量

生化实验七 SDS一聚丙烯酰胺凝胶电泳法测定蛋白质的分子量

实验七 SDS —聚丙烯酰胺凝胶电泳法测定蛋白质的分子量一、 实验原理了解SDS-聚丙烯酰胺凝胶电泳的原理,学会用这种方法测定蛋白质的相对分子量 二、实验原理带电的颗粒(蛋白质)在电场的作用下,移动的速度是根据此公式,在同一电场强度(v /d)和电极缓冲液(η)条件下,带电的各种蛋白质成分,移动的速度决定于各蛋白质的带电量(q)和自身分子的大小(6πr)。

若使各蛋白质成分的带电量(q)相近似时,则各蛋白质成分移动的速度就只决定于各蛋白质成分自身分子的大小(6πr)。

1967年Shapiro 等人发现,在聚丙烯酰胺凝胶中加入阴离子去污剂十二烷基硫酸钠(sodium dodecylsulfate ,SDS),不影响凝胶的形成,而蛋白质的电泳迁移率则主要取决于它的自身分子量的大小。

加入SDS 之所以能获得如此的效应,是因为SDS 能打开蛋白质分子间的氢键和疏水键,使蛋白质变性成为松散的线状。

同时大多数蛋白质的每个氨基酸都能与固定量的SDS 相结合[溶液中的SDS 总量,至少要比蛋白质的量高3倍以上,大多数蛋白质与SDS 按1:1.4(W /W)的比例结合],形成SDS 一蛋白质复合物。

其结果: (1)由于SDS 解离后带有很强的负电荷,致使SDS 一蛋白质复合物都带上了相同密度的负电荷,其电量大大超过了蛋白质分子原有的电荷量,基本掩盖了不同种类蛋白质间原有的电荷差异。

(2)SDS 与蛋白质结合后,改变了蛋白质原有构象,使所有蛋白质水溶液中的形状都近似椭圆柱形。

不同SDS 一蛋白质复合物的短轴直径都一样,约为18nm ,而长轴则与蛋白质分子的大小成正比。

这样SDS 一蛋白质复合物在凝胶电泳中的迁移率,就不再受蛋白质原有电荷及其形状的影响了,而只取决于椭圆柱长度,即蛋白质分子的大小。

需要注意的是:为使SDS 与蛋白质能充分的按比例结合,必须将蛋白质间的二硫键完全打开。

因此,在用SDS 处理蛋白质样品时,必须同时用巯基乙醇处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档