边坡稳定性计算方法.doc
岩质边坡稳定性分析计算

岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。
本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。
一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。
这些因素对边坡的稳定性有着重要影响。
1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。
坡度越大,边坡的稳定性越差。
2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。
一般来说,岩性较强的边坡稳定性较好。
3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。
结构面的发育程度和倾角越大,边坡的稳定性越差。
4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。
地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。
5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。
6.地下水:地下水的存在对边坡的稳定性具有重要影响。
当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。
二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。
1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。
这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。
2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。
这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。
有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。
三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。
边坡稳定性计算方法

一、边坡宁静性估计要领之阳早格格创做正在边坡宁静估计要领中,常常采与完全的极限仄稳要领去举止领会.根据边坡分歧破裂里形状而有分歧的领会模式.边坡得稳的破裂里形状按土量战成果分歧而分歧,细粒土或者砂性土的破裂里多呈直线形;细粒土或者粘性土的破裂里多为圆弧形;滑坡的滑动里为不准则的合线或者圆弧状.那里将主要介绍边坡宁静性领会的基根源基本理以及正在某些鸿沟条件下边坡宁静的估计表里战要领.(一)直线破裂里法所谓直线破裂里是指边坡损害时其破裂里近似仄里,正在断里近似直线.为了简化估计那类边坡宁静性领会采与直线破裂里法.能产死直线破裂里的土类包罗:均量砂性土坡;透火的砂、砾、碎石土;主要由内摩揩角统造强度的挖土.图 9 - 1 为一砂性边坡示企图,坡下 H ,坡角β,土的容沉为γ,抗剪度指标为c、φ .如果倾角α的仄里AC 里为土坡损害时的滑动里,则可领会该滑动体的宁静性.沿边坡少度目标截与一个单位少度动做仄里问题领会.已知滑体ABC沉 W,滑里的倾角为α,隐图9-1 砂性边坡受力示企图然,滑里 AC上由滑体的沉量W= γ(Δ ABC)爆收的下滑力T战由土的抗剪强度爆收的抗滑力Tˊ分别为:T=W · sina战则此时边坡的宁静程度或者仄安系数可用抗滑力与下滑力去表示,即为了包管土坡的宁静性,仄安系数F s 值普遍不小于 1.25 ,特殊情况下可允许减小到 1.15 .对付于C=0 的砂性土坡或者是指边坡,其仄安系数表白式则形成从上式不妨瞅出,当α =β时,F s 值最小,证明边坡表面一层土最简单滑动,那时当 F s =1时,β=φ,标明边坡处于极限仄稳状态.此时β角称为戚止角,也称安眠角. 别的,山区逆层滑坡或者坡积层沿着基岩里滑动局里普遍也属于仄里滑动典型.那类滑坡滑动里的深度与少度之比往往很小.当深少比小于 0.1时,不妨把它当做一个无限边坡举止领会.图 9-2表示一无限边坡示企图,滑动里位子正在坡里下H深度处.与一单位少度的滑动土条举止领会,效率正在滑动里上的剪应力为,正在极限仄稳状态时,损害里上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为宁静系数.通过宁静果数不妨决定α战φ关系.当c=0 时,即无粘性土.α =φ,与前述领会相共.二圆弧条法根据洪量的瞅测标明,粘性土自然山坡、人为挖筑或者启掘的边坡正在损害时,破裂里的形状多呈近似的圆弧状.粘性土的抗剪强度包罗摩揩强度战粘散强度二个组成部分.由于粘散力的存留,粘性土边坡不会像无粘性土坡一般沿坡里表面滑动.根据土体极限仄稳表里,不妨导出均量粘那坡的滑动里为对付数螺线直里,形状近似于圆柱里.果此,正在工程安排中常假定滑动里为圆弧里.建坐正在那一假定上宁静领会要领称为圆弧滑动法战圆弧条分法.1. 圆弧滑动法1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法领会边坡的宁静性,以去该法正在各国得到广大应用,称为瑞典圆弧法.图 9 - 3 表示一均量的粘性土坡. AC 为大概的滑动里,O为圆心,R 为半径.假定边坡损害时,滑体ABC正在自沉W 效率下,沿AC绕O 面完全转化.滑动里 AC 上的力系有:督促边坡滑动的滑能源矩 M s =W · d ;抵挡边坡滑动的抗滑力矩,它该当包罗由粘散力爆收的抗滑力矩M r =c ·AC · R ,别的还应有由摩揩力所爆收的抗滑力矩,那里假定φ= 0 .边坡沿AC的仄安系数F s 用效率正在 AC里上的抗滑力矩战下滑力矩之比表示,果此有那便是完全圆弧滑动估计边坡宁静的公式,它只适用于φ= 0 的情况.图9-3 边坡完全滑动 2. 瑞典条分法前述圆弧滑动法中不思量滑里上摩揩力的效率,那是由于摩揩力正在滑里的分歧位子其目标战大小皆正在改变.为了将圆弧滑动法应用于φ> 0 的粘性土,正在圆弧法领会粘性土坡宁静性的前提上,瑞典教者 Fellenius 提出了圆弧条领会法,也称瑞典条分法.条会法便是将滑动土体横背分成若搞土条,把土条当成刚刚塑体,分别供效率于各土条上的力对付圆心的滑能源矩战抗滑力矩,而后按式( 9-5 )供土坡的宁静仄安系数.采与分条法估计边坡的仄安系数F ,如图 9 - 4 所示,将滑动土体分成若搞土条.土条的宽度越小,估计细度越下,为了预防估计过于烦琐,并能谦足安排央供,普遍与宽为 2 ~ 6m 并应采用滑体形状变戚战土层分界面动做分条的界限.于任性第 i条上的效率力如下.图9-4 瑞典条分法(1)土条的自.其中γ 为土的容得,为土条的断里里积.将沿其断里积的形心效率至圆弧滑里上并领会成笔直滑里的法背分力战切于滑里的切背分力,由图 9 - 4 ( b )可知:隐然,是推动土体下滑的力.但是如果第 i 条们于滑弧圆心铅垂线的载侧(坡足一边),则起抗滑效率.对付于起抗滑效率的切背分力采与标记 T ′表示.果效率线能过滑弧圆心 O 面力矩为整,对付边坡不起滑动效率,但是决断着滑里上抗剪强度的大小.(2)滑里上的抗滑力 S ,目标与滑动目标好异.根据库仑公式应有S=N i tanφ+cl i .式中l i 为第i条的滑弧少.(3)土条的二个正里存留着条块间的效率力.效率正在 i条块的力,除沉力中,条块正里 ac战bd 效率有法背力P i 、 P i+1 ,切背力H i 、H i+1 .如果思量那些条间力,则由静力仄稳圆程可知那是一个超静定问题.要使问题得解,由二个大概的道路:一是扬弃刚刚体仄稳的观念,把土当搞变形骸,通过对付土坡举止应力变形领会,不妨估计出滑动里上的应力分散,果此不妨不必用条分法而是用有限元要领.另一道路是仍以条分法为前提,但是对付条块间的效率力做一些不妨交受的简化假定.Fellenius 假定不计条间力的效率,便是将土条二侧的条件力的合力近似天瞅成大小相等、目标好异、效率正在共效率里上.本量上,每一土条二侧的条间力是不仄衡的,但是体味标明,土条宽度不大时,正在土坡宁静领会中,忽略条间力的效率对付估计截止的效率不隐著.将效率正在各段滑弧上的力对付滑动圆心与矩,并分别将抗滑效率、下滑效率的力矩相加得出用正在所有滑弧上的抗滑力矩以及滑能源矩的总战,即将抗滑力矩与下滑力矩之比定义为土坡的宁静仄安系数,即那便是瑞典条分法宁静领会的估计公式.该法应用的时间很少,散集了歉富的工程体味,普遍得到的仄安系数偏偏矮,即偏偏于仄安,故暂时仍旧是工程上时常使用的要领.(三)毕肖普法从前述瑞典条分法不妨瞅出,该要领的假定不利害常透彻的,它是将不仄衡的问题按极限仄稳的要领去思量而且已能思量灵验应力下的强度问题.随着土力教教科的不竭死少,很多教者全力于条分法的矫正.一是着沉探索最伤害滑位子的逆序,二是对付基原假定做些建改战补充.但是直到毕肖普( A.N.Bishop )于 1955 年担出了仄安系数新定义,条分法那五要领才爆收了量的飞跃.毕肖普将边坡宁静仄安系数定义为滑动里上土的抗剪强度τ f 与本量爆收的剪应力τ之比,即(9-7)那一仄安系数定义的核心正在于一是不妨充分思量灵验应力下的抗剪经常;二是充分思量了土坡宁静领会中土的抗剪强度部散收挥的本量情况.那一观念不公使其物理意思越收透彻,而且使用范畴更广大,为以去非圆弧滑动领会及土条分界里上条间力的百般思量办法提供了有得条件.由图 9 - 5 所示圆弧滑动体内与出土条i举止领会,则土条的受力如下:1.土条沉W i 引起的切背反力T i 战法背反力N i ,分别效率正在该分条核心处2.土条的侧百分别效率有法背力P i 、Pi+1 战切背力H i 、H i+1 .由土条的横背静力仄稳条件有∑ F z ,即图9-5 毕肖普法条块效率力领会(9-8)当土条已损害时,滑弧上土的抗剪强度只收挥了一部分,毕肖普假定其什与滑里上的切背力相仄稳,那里思量仄安系数的定义,且ΔH i =H i+1 -H i 即(9-9)将( 9 - 9 )式代科( 9 - 8 )式则有令(9-10)则(9-11)思量所有滑动土体的极限仄稳条件,些时条间力P i 战 H i 成对付出现,大小相等、目标好异,相互对消.果此惟有沉力W i 战切背力T i 对付圆心爆收力矩,由力矩仄稳知(9-12)将( 9 - 11 )式代进( 9 - 9 )式再代进( 9 - 12 )式,且d i =Rsinθ i ,别的,土条宽度不大时, b i =l i cosθ i ,经整治简化可止毕肖普边坡宁静仄安系数的一致公式(9-13)式中ΔH i 仍是已知量.毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)如果思量滑里上孔隙火压力 u 的效率并采与灵验应力强度指标,则上式可改写为(9-15)从式中不妨瞅出,参数m θi 包罗有仄安系数 F s ,果此不克不迭交供出仄安系数,而需采与试算法迭代供解F s 值.为了便于迭代估计,已体例成m θ~θ关系直线,如图 9 - 6 所示.试算时,可先假定 F s = 1.0 ,由图 9 - 6 查出各θ i 所对付应的值.代进( 9 - 14 )式中,供得边坡的仄安系数 F s ′.若 F s ′与F s 之好大于确定的缺面,用F s ′查m θi ,再次估计出仄安系数 F s 值,如是反复迭代估计,直至前后二次估计出仄安系数F s ′值,如是反复迭代估计,直至前后二次估计的仄安系数非常交近,谦足确定细度的央供为止.常常迭代经常支敛的,普遍只消 3 ~ 4 次即可谦足细度.与瑞典条分法相比,简化毕肖普法是正在不思量条块间切背力的前提下,谦足力多边形关合条件,便是道,隐含着条块间有火仄力的效率,虽然正在公式中火仄效率力并已出现.所以它的特性是:(1)谦足完全力矩仄稳条件;(2)谦足各条块力的多边形关合条件,但是不谦足条块的力矩仄稳条件;(4)假设条块间效率力惟有法背力不切背力;(4)谦足极限仄稳条件.毕肖普法由于思量了条块间火仄力的效率,得到的仄安系数较瑞典条分法略下一些.。
(整理)边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
第三讲边坡稳定性计算全过程

第三讲边坡稳定性计算全过程边坡是指地面或岩石的斜坡,由于地质、工程结构或人为因素等原因,边坡可能会发生滑坡、坍塌等不稳定现象,因此边坡稳定性计算是工程设计中的重要环节。
本文将介绍边坡稳定性计算的全过程。
边坡稳定性计算过程主要包括选取边坡几何参数、确定边坡承载力和应力状态、计算安全系数和稳定性分析。
首先,需要选取合适的边坡几何参数,包括边坡的高度、坡度、坡面角等。
这些参数对边坡的稳定性有着重要的影响,需要根据具体情况进行选取。
接下来,需要确定边坡的承载力和应力状态。
边坡的承载力是指边坡能够承受的最大荷载,其取决于边坡材料的强度特性。
根据土壤或岩石的强度参数,可以计算边坡的承载力。
应力状态是指边坡内部的应力分布情况,可以通过有限元分析或理论计算进行确定。
然后,需要进行边坡的安全系数计算。
安全系数是评价边坡稳定性的重要指标,是边坡承载力与作用在边坡上的力的比值。
通常,安全系数大于1时,表示边坡稳定;安全系数小于1时,表示边坡不稳定。
安全系数的计算可以使用理论方法、有限元分析或实测数据等多种方法。
最后,进行边坡稳定性分析。
边坡稳定性分析是根据边坡参数、承载力和应力状态,通过计算安全系数来评估边坡的稳定性。
在分析过程中,通常需要考虑边坡的剪切强度、抗滑稳定性、土体的重力等因素,并进行相应的计算。
边坡稳定性分析可以通过手算、计算软件或有限元分析等方法进行。
总结起来,边坡稳定性计算的全过程包括选取边坡几何参数、确定边坡承载力和应力状态、计算安全系数和稳定性分析。
在实际工程中,为了确保边坡的稳定性,需要进行细致的计算过程,并根据计算结果进行相应的工程设计和措施的采取。
边坡岩体稳定性分析的计算方法

边坡岩体稳定性分析的计算方法边坡岩体稳定性分析是地质工程设计工作中十分重要的一部分,是评价和研究边坡岩体稳定性的重要方法之一。
随着地质工程的发展,计算机技术的发展和应用,计算边坡岩体稳定性的方法也在不断发展和完善。
本文介绍了边坡岩体稳定性分析的计算方法,以及计算边坡岩体稳定性的重要步骤和要素。
二、边坡岩体稳定性的计算方法1.计算要求计算边坡岩体稳定性的要求是首先进行岩体的力学性质分析,确定岩体的抗剪强度和抗压强度,以及岩体的尺寸、形状、排列结构和构造;随后确定边坡的几何形状参数和水文地质因素,以及重力作用体系的参数;最后,按照边坡分析方法进行计算,确定边坡岩体的稳定系数。
2.计算过程(1)岩体力学性质分析。
首先分析岩体的抗剪强度和抗压强度,其次施加水平和垂直运动,确定岩体的变形特性;(2)边坡几何形状分析。
确定边坡的几何形状参数,包括坡度、坡面宽度、坡面长度等,同时确定水文地质因素,如雨水、渗水、地下水等;(3)重力作用体系分析。
确定边坡岩体的重力作用体系,包括自重、滑移压力、地下水压力、渗水压力等;(4)运用边坡分析方法计算边坡岩体的稳定性。
可以采用等效滑动面法、艾里克斯准则、薛定谔方程等方法,计算边坡岩体的稳定性。
三、边坡岩体稳定性分析的要素1.岩体力学特性岩体的抗剪强度和抗压强度是影响边坡岩体稳定性的主要因素之一。
岩体的抗剪强度可以通过抗拉强度、抗折强度等相关试验来测定,而抗压强度可以通过抗压强度试验、岩石试验等来确定。
2.边坡几何参数边坡几何参数是指边坡的坡度、坡面宽度、坡面长度等参数,这些参数是影响边坡岩体稳定性的重要因素。
一般来说,边坡坡度越陡,边坡稳定性越低;坡面宽度、坡面长度越小,边坡稳定性越低。
3.水文地质条件水文地质条件是指边坡周围的雨水、渗水、地下水等情况,这些条件也是影响边坡岩体稳定性的重要因素。
一般来说,边坡周围有大量雨水、地下水时,边坡稳定性就会变差。
4.重力作用体系重力作用体系是指边坡岩体受到的重力、滑移压力、地下水压力、渗水压力等因素的综合作用,这也是影响边坡岩体稳定性的重要因素。
边坡稳定性分析

边坡稳定性分析
1、边坡稳定性分析之前,应根据岩土工程地质条件对边坡的可能破坏方式及相应破坏方向、破坏范围、影响范围等作出判断。
判断边坡的可能破坏方式时应同时考虑到受岩土体强度控制的破坏和受结构面控制的破坏。
2、边坡抗滑移稳定性计算可采用刚体极限平衡法。
对结构复杂的岩质边坡,可结合采用极射赤平投影法和实体比例投影法;当边坡破坏机制复杂时,可采用数值极限分析法。
3、计算沿结构面滑动的稳定性时,应根据结构面形态采用平面或折线形滑面。
计算土质边坡、极软岩边坡、破碎或极破碎岩质边坡的稳定性时,可采用圆弧形滑面。
4、采用刚体极限平衡法计算边坡抗滑稳定性时,可根据滑面形态按本规范附录A选择具体计算方法。
5、边坡稳定性计算时,对基本烈度为7度及7度以上地区的永久性边坡应进行地震工况下边坡稳定性校核。
6、塌滑区内无重要建(构)筑物的边坡采用刚体极限平衡法和静力数值计算法计算稳定性时,滑体、条块或单元的地震作用可简化为一个作用于滑体、条块或单元重心处、指向坡外(滑动方向)的水平静力,其值应按下列公式计算:
Q e=αw G (5.2.6-1)
Q ei=αw G i (5.2.6-2)
式中:Q e、Q ei——滑体、第i计算条块或单元单位宽度地震力(kN/m);
G、G i——滑体、第i计算条块或单元单位宽度自重[含坡顶建(构)筑物作用](k N/m);
αw——边坡综合水平地震系数,由所在地区地震基本烈度按表5.2.6确定。
表5.2.6 水平地震系数
7、当边坡可能存在多个滑动面时,对各个可能的滑动面均应进行稳定性计算。
平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20023、《建筑施工计算手册》江正荣编著一、基本参数边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12边坡高度H(m) 11.862 边坡斜面倾角α(°)40坡顶均布荷载q(kPa) 0.2二、边坡稳定性计算计算简图滑动面参数滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m)1 35 5.672 35 5.63 35 5.67土条面积计算:R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/mT1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/mR2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/mT2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/mR3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865kN/mT3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/mK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1)第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为:ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφiK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25满足要求!。
边坡稳定计算

平面滑动法边坡稳定性设计计算书依据《建筑边坡工程技术规范》(GB 50330-2002)一. 参数信息松散性的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。
失稳土体的滑动面近似直线形态,整个路堤成直线形态下滑。
(如图)边坡土体类型为 :填土;边坡工程安全等级:三级边坡(1.25);边坡土体重度为 :18.00kN/m3;边坡土体内聚力为:10.00kPa;边坡土体内摩擦角:18.00°;边坡高度为:5.40m;边坡斜面倾角为:45.00°;边坡顶部均布荷载:12.00kN/m2。
二. 平面滑动法计算边坡稳定性由示意图按静力平衡可得此时边坡稳定性安全系数公式为:式中:ω——滑动面的倾角;f ——等于 tgφ,摩擦系数;φ——边坡土体内摩擦角;L ——滑动面的长度;N ——滑动面的法向分力;T ——滑动面的切向分力;c ——滑动面上的粘结力(或土的内聚力);Q ——滑动体的重力(包括坡顶均布荷载)。
滑动面位置不同,K 值亦随之而变,边坡稳定与否的判断依据,应是稳定系数的最小值 K min,相应的最危险滑动面的倾角为ω0(如图所示)。
由于滑动体的重力(包括均布荷载)可以由下式求得:式中:γ——边坡土体的容重(kN/m3);B ——滑动土体块顶部宽度(m);H ——边坡计算高度(m);q ——边坡顶部均布荷载(kN/m2);α——边坡斜面倾角(°)。
所以,边坡稳定性安全系数计算公式为:欲求 K min值,根据 dK/dω=0,可求得最危险滑动面的倾角ω的值为:式中:将参数代入可得:a = 2×10.00 / (18.00×5.40 + 2×12.00) = 0.17;ctgω = 1.00 + (0.17/(0.33+0.17))1/2×1.41 = 1.82.则边坡稳定性最不利滑动面倾角为:ω = 28.78°.由此时的滑动面倾角可得到边坡稳定的稳定系数公式,K min = (2×0.17+0.33)×1.00 + 2×(0.17×(0.33+0.17))1/2×1.41 = 1.459. 此边坡稳定系数 K min≥ 1.25,满足边坡稳定性要求!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。
为了简化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪度指标为 c 、φ。
如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W ·sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当F s =1 时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于0.1 时,可以把它当作一个无限边坡进行分析。
图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s = c/ γH称为稳定系数。
通过稳定因数可以确定α和φ关系。
当c=0 时,即无粘性土。
α=φ,与前述分析相同。
二圆弧条法根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。
粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。
由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。
根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。
因此,在工程设计中常假定滑动面为圆弧面。
建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。
1. 圆弧滑动法1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。
图9 - 3 表示一均质的粘性土坡。
AC 为可能的滑动面,O 为圆心,R 为半径。
假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。
滑动面AC上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩,这里假定φ=0 。
边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力矩之比表示,因此有这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。
图9-3 边坡整体滑动 2. 瑞典条分法前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。
为了将圆弧滑动法应用于φ>0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。
条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式(9-5 )求土坡的稳定安全系数。
采用分条法计算边坡的安全系数 F ,如图9 - 4 所示,将滑动土体分成若干土条。
土条的宽度越小,计算精度越高,为了避免计算过于繁琐,并能满足设计要求,一般取宽为 2 ~6m 并应选择滑体外形变休和土层分界点作为分条的界限。
于任意第i 条上的作用力如下。
图9-4 瑞典条分法(1) 土条的自。
其中γ为土的容得,为土条的断面面积。
将沿其断面积的形心作用至圆弧滑面上并分解成垂直滑面的法向分力和切于滑面的切向分力,由图9 - 4 ( b )可知:显然,是推动土体下滑的力。
但如果第i 条们于滑弧圆心铅垂线的载侧(坡脚一边),则起抗滑作用。
对于起抗滑作用的切向分力采用符号T ′表示。
因作用线能过滑弧圆心O 点力矩为零,对边坡不起滑动作用,但决定着滑面上抗剪强度的大小。
(2) 滑面上的抗滑力S ,方向与滑动方向相反。
根据库仑公式应有S=N i tan φ+cl i 。
式中l i 为第i 条的滑弧长。
(3) 土条的两个侧面存在着条块间的作用力。
作用在i 条块的力,除重力外,条块侧面ac 和bd 作用有法向力P i 、P i+1 ,切向力Hi 、H i+1 。
如果考虑这些条间力,则由静力平衡方程可知这是一个超静定问题。
要使问题得解,由两个可能的途径:一是抛弃刚体平衡的概念,把土当做变形体,通过对土坡进行应力变形分析,可以计算出滑动面上的应力分布,因此可以不必用条分法而是用有限元方法。
另一途径是仍以条分法为基础,但对条块间的作用力作一些可以接受的简化假定。
Fellenius 假定不计条间力的影响,就是将土条两侧的条件力的合力近似地看成大小相等、方向相反、作用在同作用面上。
实际上,每一土条两侧的条间力是不平衡的,但经验表明,土条宽度不大时,在土坡稳定分析中,忽略条间力的作用对计算结果的影响不显著。
将作用在各段滑弧上的力对滑动圆心取矩,并分别将抗滑作用、下滑作用的力矩相加得出用在整个滑弧上的抗滑力矩以及滑动力矩的总和,即将抗滑力矩与下滑力矩之比定义为土坡的稳定安全系数,即这就是瑞典条分法稳定分析的计算公式。
该法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,故目前仍然是工程上常用的方法。
(三)毕肖普法从前述瑞典条分法可以看出,该方法的假定不是非常精确的,它是将不平衡的问题按极限平衡的方法来考虑并且未能考虑有效应力下的强度问题。
随着土力学学科的不断发展,不少学者致力于条分法的改进。
一是着重探索最危险滑位置的规律,二是对基本假定作些修改和补充。
但直到毕肖普( A.N.Bishop )于1955 年担出了安全系数新定义,条分法这五方法才发生了质的飞跃。
毕肖普将边坡稳定安全系数定义为滑动面上土的抗剪强度τf 与实际产生的剪应力τ之比,即(9-7 )这一安全系数定义的核心在于一是能够充分考虑有效应力下的抗剪总是;二是充分考虑了土坡稳定分析中土的抗剪强度部分发挥的实际情况。
这一概念不公使其物理意义更加明确,而且使用范围更广泛,为以后非圆弧滑动分析及土条分界面上条间力的各种考虑方式提供了有得条件。
由图9 -5 所示圆弧滑动体内取出土条i 进行分析,则土条的受力如下:1. 土条重W i 引起的切向反力T i 和法向反力N i ,分别作用在该分条中心处2. 土条的侧百分别作用有法向力P i 、P i+1 和切向力H i 、H i+1 。
由土图向静力平衡条件有∑F z ,即9肖普(9-8 )作用力分析当土条未破坏时,滑弧上土的抗剪强度只发挥了一部分,毕肖普假定其什与滑面上的切向力相平衡,这里考虑安全系数的定义,且ΔH i = H i+1 - H i 即(9-9 )将(9 -9 )式代科(9 -8 )式则有令(9-10 )则(9-11)考虑整个滑动土体的极限平衡条件,些时条间力P i 和H i 成对出现,大小相等、方向相反,相互抵消。
因此只有重力W i 和切向力T i对圆心产生力矩,由力矩平衡知(9-12)将(9 -11 )式代入(9 -9 )式再代入(9 -12 )式,且 d i =Rsin θi ,此外,土条宽度不大时, b i =l i cos θi ,经整理简化可行毕肖普边坡稳定安全系数的普遍公式(9-13)式中ΔH i 仍是未知量。
毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)如果考虑滑面上孔隙水压力u 的影响并采用有效应力强度指标,则上式可改写为(9-15)从式中可以看出,参数m θi 包含有安全系数 F s ,因此不能接求出安全系数,而需采用试算法迭代求解 F s 值。
为了便于迭代计算,已编制成m θ~θ关系曲线,如图9 - 6 所示。
试算时,可先假定 F s = 1.0 ,由图9 - 6 查出各θi所对应的值。
代入(9 -14 )式中,求得边坡的安全系数 Fs 。
′若 F s ′与 F s 之差大于规定的误差,用 F s ′查m θi,再次计算出安全系数 F s 值,如是反复迭代计算,直至前后两次计算出安全系数 F s ′值,如是反复迭代计算,直至前后两次计算的安全系数非常接近,满足规定精度的要求为止。
通常迭代总是收敛的,一般只要 3 ~ 4 次即可满足精度。
与瑞典条分法相比,简化毕肖普法是在不考虑条块间切向力的前提下,满足力多边形闭合条件,就是说,隐含着条块间有水平力的作用,虽然在公式中水平作用力并未出现。
所以它的特点是:(1)满足整体力矩平衡条件;(2)满足各条块力的多边形闭合条件,但不满足条块的力矩平衡条件;(4)假设条块间作用力只有法向力没有切向力;(4)满足极限平衡条件。
毕肖普法由于考虑了条块间水平力的作用,得到的安全系数较瑞典条分法略高一些。