浙江省湖州市长兴县2019-2020学年七年级上学期期末数学试题(word无答案)
2019-2020学年度第一学期浙教版七年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版七年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下列几种说法正确的是()A. 一定是负数B. 一个有理数的绝对值一定是正数C. 倒数是本身的数为1D. 0的相反数是02.根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为()A. 2.89×104B. 2.89×105C. 2.89×106D. 2.89×1073.25的算术平方根是()A. 5B. ﹣5C. ±5D.4.“x的与y的和”用代数式可以表示为A. B. C. D.5.化简的结果是()A. B. C. D.6.已知x=3y+5,且x2-7xy+9y2=24,则x2y-3xy2的值为( )A. 0B. 1C. 5D. 127.如图,AB∥CD,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )A. 145°B. 155°C. 110°D. 35°8.下列判断错误的是()A. 若,则B. 若,则C. 若,则D. 若,则9.如图,已知线段EF=3,线段MN=4,线段AB=11,用圆规在线段AB上截取AC=EF,BD=MN,P是线段CD 的中点,则AP的长度为()A. 4B. 5C. 5.5D. 610.圆柱形水杯和杯中水面的高度如图8-1,放入3个同样的小玻璃球后水面高度如图8-2.若使水杯中有水溢出,则至少需放入小球( )A. 9个B. 10个C. 12个D. 16个二、填空题(共6题;共24分)11.如图,数轴上点A、B、C分别表示有理数a、b、c,若a、b、c三个数的乘积为正数,这三个数的和与其中一个数相等,则b________0.12.大于且小于的所有整数是__.13.单项式-2x2y的系数是________。
2020-2021学年湖州市长兴县七年级上学期期末数学试卷(附解析)

2020-2021学年湖州市长兴县七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.若a与2互为相反数,则|a+2|等于()A. 2B. −2C. 0D. −12.人体中红细胞的直径约为0.000007m,将0.000007m用科学记数法表示数的结果是A. 0.77×10−5mB. 0.77×10−6mC. 7.7×10−5mD. 7.7×10−6m3.如图,OC是平角∠AOB的平分线,OD、OE分别是∠AOC和∠BOC的平分线,图中和∠COD互补的角有()个.A. 1B. 2C. 3D. 04.代数式−xy的系数为()A. −2B. 1C. 0D. −15.有理数大小关系判断错误的是()A. 0>−5B. 1>−100C. −(−1)>−|−1|D. −0.1>−0.016.方程3x−12−2x+13=1去分母正确的是()A. 2(3x−1)−3(2x+1)=6B. 3(3x−1)−2(2x+1)=1C. 9x−3−4x+2=6D. 3(3x−1)−2(2x+1)=67.在算式(+5)−()=−7中,括号里应填()A. 2B. −2C. 12D. −128.已知a<b,那么下列式子中一定成立的是()A. |a|<|b|B. −a<−bC. ma<mbD. a+5<b+59.已知一个数的2倍与7的和是25.若设这个数为,则下面所列方程正确的是().A. B. C. D.10.用代数式表示:a与3差的2倍.下列表示正确的是()A. 2a−3B. 2a+3C. 2(a−3)D. 2(a+3)二、填空题(本大题共6小题,共12.0分)11.如果某学生向右走10步记作+10,那么向左走5步,应记作______.12.我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口说出答案39,邻座的乘客忙问计算的奥妙.(1)下面是探究59319的过程,请补充完整:3是两位数;①由103=1000,1003=1000000,可以确定√59319②由59319的个位上的数是9,可以确定59319的个位上的数是9;3的十位上的数③如果划去59319后面的三位319得到数59,而33=27,43=64,可以确定√593193=39.是______ ,由此求得√593193=______ .(11)已知103823也是一个整数的立方,请你用类似的方法求√10382313.如图,已知∠1=50°,∠2=65°,CD平分∠ECF,则CD//FG.请说明理由.解:∵∠1=50°,∴∠ECF=180°−∠1=______°,(______)∵CD平分∠ECF,∴∠DCB=______ ∠ECB=______ °,(______)∵∠2=65°,∴∠DCB=∠2,∴CD//FG(______).a2b的系数是______ .14.单项式−1315.已知x=3是方程3x−5=x+a的解,则a的值为______.16.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=140°,则∠AOC=______ °;∠BOC=______ °.三、计算题(本大题共2小题,共14.0分)3+|√3−2|.17.计算:√9+√−12518.计算:(1)(23−14−16)×24;(2)−12−|2−5|÷(−3)×(1−13)四、解答题(本大题共6小题,共44.0分)19.如图,已知四点A、B、C、D(1)画直线AB、CD相交于点E(2)画射线AC(3)连接BD(4)画线段BC、AD的交点O20.计算:(1)−14+|(−2)3−10|−(−3)÷(−1)2020;(2)先化简,再求值:−2x2−12[2y2−2(x2−y2)+6],其中|3x−12|+(y2+1)2=0.21.如图,点B是线段AC上一点,且AC=10,BC=4.(1)求线段AB的长;(2)如果点O是线段AC的中点,求线段OB的长.22.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.23.列一元一次方程解应用题:社会是一个重要的学校和课堂,生活是一种重要的课程和教材,实践是一种重要的学习方式和途径.参加社会生活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学生在农场进行社会实践活动时,采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?24.三峡广场的甲、乙两家商店分别以相同的单价购进一批同种商品.经预测,甲店如果在进价的基础上提高60%的售价卖出,平均每天将卖出25件,30天能获利润22500元.为尽快回收资金,甲店决定将每件商品降价t%卖出,结果平均每天比降价前多卖出50件,这样30天仍获利润22500元.(1)求该商品的购进单价和甲店的预定售价;(2)求t值;(3)如果乙店也以甲店的预定售价卖出,平均每天将卖出20件,若每件降价5元销售,平均每天卖出去的件数将增加2件.最后乙店决定降价m元进行销售,试用含m的代数式表示乙店一个月(30天)所获得的利润;并判断当m=20时,甲、乙哪家商店一个月所获得的利润更多.参考答案及解析1.答案:C解析:解:因为a与2互为相反数,可得:a=−2,所以|a+2|=0,故选C根据只有符号不同的两个数互为相反数,再根据绝对值解答即可.此题考查绝对值问题,关键是根据只有符号不同的两个数互为相反数得出a的值.2.答案:D解析:本题主要考查的是科学计数法.科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n<0,n=−6.解:0.0000077=7.7×10−6m.故选D.3.答案:B解析:解:∵OC是平角∠AOB的平分线,∴∠AOC=∠BOC=90°,∵OD、OE分别是∠AOC和∠BOC的平分线,∠AOC=45°,∴∠AOD=∠DOC=12∠COE=∠EOB=45°,∴∠AOE=135°,∠BOD=135°,∴∠AOE+∠DOC=180°,∠COD+BOD=180°,∴∠AOE,∠BOD都与∠DOC互补,∴图中和∠COD互补的角有2个.故选:B.由OC是平角∠AOB的平分线求∠AOC=∠BOC=90°,OD、OE分别是∠AOC和∠BOC的平分线求45°的角,结合互补的定义找出∠COD互补的角.本题考查了补角、角平分线的定义,掌握两个定义的熟练应用,两角的和为180°是解决本题关键.4.答案:D解析:解:代数式−xy的系数为−1.故选:D.利用单项式的系数定义求解即可.本题主要考查了单项式,解题的关键是熟记单项式中的数字因数叫做单项式的系数.5.答案:D解析:解:∵0>−5,∴选项A不符合题意;∵1>−100,∴选项B不符合题意;∵−(−1)>−|−1|,∴选项C不符合题意;∵−0.1<−0.01,∴选项D符合题意.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.答案:D解析:解:3x−12−2x+13=1,方程两边同时乘以6得:3(3x−1)−2(2x+1)=6,去括号得:9x−3−4x−2=6,故选:D.根据等式的性质,方程两边同时乘以6,去括号,选出正确的选项即可.本题考查了解一元一次方程,正确掌握等式的性质是解题的关键.7.答案:C解析:括号里的数=(+5)−(−7)=5+7=12.8.答案:D解析:解:A、由a<b不一定能推出|a|<|b|,故A不正确;B、不等式的两边都乘以−1,不等号的方向改变,故B不正确;C、不等式的两边都乘以m,m可正可负可为0,所以不等号的方向不确定,故C不正确;D、不等式的两边都加5,不等号的方向不变,故D正确;故选:D.根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.答案:D解析:本题考查应用一元一次方程解决实际问题,关键是找到等量关系.根据等量关系列方程可得.故选D.10.答案:C解析:解:a与3差的2倍.表示为:2(a−3),故选:C.根据差与倍数关系得出代数式解答即可.此题考查列代数式问题,关键是根据和与倍数关系得出代数式.11.答案:−5解析:解:把向右走10步记作+10,那么向左走5步应记作−5,故答案为:−5.“正”和“负”是表示互为相反意义的量,向右走记作正数,那么向由的反方向,向左走应记为负数.本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.12.答案:3473的解析:解:(1)如果划去59319后面的三位319得到数59,而33=27,43=64,可以确定√593193=39.十位上的数是3,由此求得√59319故答案为:3;(2)∵103=1000,1003=1000000,而1000<103823<1000000,3<100,∴10<√103823因此结果为两位数;只有7的立方的个位数字是3,因此结果的个位数字是7;3的十位数字如果划去103823后面的三位823得到数103,而43=64,53=125,可以确定√103823为4,3=47;于是可得√103823故答案为:47.(1)根据题意,提供的思路和方法,进行推理验证得出答案;(2)根据(1)的方法、步骤,类推出相应的结果即可.考查实数的意义,立方根的意义以及尾数的特征等知识,阅读理解提供的解题方法是类推的前提.13.答案:130;平角的定义;1;65;角平分线定义;同位角相等,两直线平行2解析:本题考查了平行线的判定,角的平分线,主要是对同学们逻辑推理能力的训练,熟练掌握平行线的判定方法是解题的关键.根据角平分线的定义以及平行线的判定方法解答即可.解:∵∠1=50°,∴∠ECF=180°−∠1=130°(平角的定义),∵CD平分∠ECF,∠ECB=65°(角平分线定义),∴∠DCB=12∵∠2=65°,∴∠DCB=∠2,∴CD//FG(同位角相等,两直线平行).;65;角平分线定义;同位角相等,两直线平行.故答案为:130;平角的定义;1214.答案:−13解析:解:单项式−13a2b的系数是:−13.故答案是:−13.根据单项式系数的定义来求解,单项式中数字因数叫做单项式的系数.本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.15.答案:1解析:解:把x=3代入方程得:9−5=3+a,解得:a=1,故答案为:1把x=3代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.答案:50;40解析:本题考查了余角与补角的定义,解答本题既要熟悉三角板的角的特征,又要会灵活进行角的运算.根据三角板角的特征解题.解:∵∠AOD=140°,∴∠AOC=∠AOD−∠COD=140°−90°=50°,则∠BOC=90°−50°=40°.故答案为50;40.17.答案:解:原式=3−5+2−√3=−√3.解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用算术平方根以及绝对值的性质、立方根的性质分别化简得出答案.18.答案:解:(1)(23−14−16)×24=16−6−4=6;(2)−12−|2−5|÷(−3)×(1−1 3 )=−1−3×(−13)×23=−1+2 3=−13.解析:(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.答案:解:(1)如图,直线AB、CD为所作;(2)如图,射线AC为所作;(3)如图,BD为所作;(4)如图,线段BC、AD为所作.解析:利用直线、射线、线段的定义,把题中的几何语言画为几何图形.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直线、射线、线段的定义.20.答案:解:(1)−14+|(−2)3−10|−(−3)÷(−1)2020=−1+|−8−10|−(−3)÷(−1)=−1+18+3=20;(2)−2x2−12[2y2−2(x2−y2)+6]=−2x2−y2+(x2−y2)−3 =−x2−2y2−3,当|3x−12|+(y2+1)2=0时,3x−12=0,y2+1=0,即x=4,y=−2,原式=−42−2×(−2)2−3=−16−8−3=−27.解析:(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用整式的加减运算法则化简,再把已知数据代入得出答案.此题主要考查了整式的加减以及实数运算,正确合并同类项是解题关键.21.答案:解:(1)∵AC=10,BC=4,∴AB=AC−BC=10−4=6;(2)∵AC=10,点O是线段AC的中点,∴OC=12AC=12×10=5,∵BC=4,∴OB=OC−BC=5−4=1.解析:本题考查的是两点间的距离,熟线段之间的和、差及倍数关系式解答此题的关键.(1)直接根据AB=AC−BC进行解答即可;(2)先根据中点的定义求出OC的长,再由OB=OC−BC即可得出结论.22.答案:解:由角的和差,得∠EOF=∠COE−∠COF=90°−28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF−∠COF=62°−28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.解析:根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.本题考查了对顶角、邻补角,利用了角的和差,角平分线的性质,对顶角的性质.23.答案:解:(1)设采摘的黄瓜x千克,则茄子为(80−x)千克,2x+2.4(80−x)=180,解得:x=30,80−30=50(千克),答:采摘的黄瓜30千克,则茄子50千克;(2)(3−2)×30+(4−2.4)×50=30+80=110(元),答:采摘的黄瓜和茄子可赚110元.解析:(1)根据题意可以列出相应的方程,从而可以求得采摘的黄瓜和茄子各多少千克;(2)根据(1)中的结果和(2)中的结果可以解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.24.答案:解:设商品的购进单价为x元,则预定售价为(1+60%)x元,由题意可得:25×30[(1+60%)x−x]=22500,解得:x=50,(1+60%)x=80(元),∴该商品的购进单价为50元,甲店的预定售价为80元;(2)由题意可得:[80×(1−t%)−50]×(25+50)×30=22500,解得:t=25,∴t的值为25;(3)设乙店一个月所获利润为w,)×30,由题意可得:w=(80−m−50)×(20+2×m5∴w=−12m2−240m+18000,∴乙店一个月(30天)所获得的利润为:−12m2−240m+18000;当m=20时,w=8400<22500,∴甲商店一个月所获得的利润更多.解析:(1)设商品的购进单价为x元,则预定售价为(1+60%)x元,然后根据单件商品的利润×数量=总利润,列方程求解;(2)根据单件商品的利润×数量=总利润,列方程求解;(3)设乙店一个月所获利润为w,根据单件商品的利润×数量=总利润.列出等量关系求解,然后将m= 20代入求值,从而作出比较.本题考查一元一次方程的应用,理解题意,找准等量关系,准确计算是解题关键.。
2019-2020年初一上册数学期末试卷及答案.docx

2019-2020 年初一上册数学期末试卷及答案一、选择题(共8 个小题,每小题 3 分,共 24 分)下列各题均有四个选项,其中只有一个..是符合题意的.1.- 5 的绝对值是11A .5B.- 5C.5D.-52.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放 1 460 000 000吨,赢得国际社会广泛赞誉. 将 1 460 000 000用科学记数法表示为A .146 ×107B. 1.46 ×107C. 1.46 ×109D. 1.46 ×10103.下面四个立体图形,从正面、左面、上面观察都不可能...看到长方形的是A B C D4.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是A .垂线段最短B .两点确定一条直线C.两点之间,直线最短 D .两点之间,线段最短5.已知代数式5a m 1b6和1ab2 n是同类项,则m n 的值是2A.1B.-1C.-2D.-36.如图所示,将一块直角三角板的直角顶点O 放在直尺的一边 CD 上,如果∠ AOC= 28°,那么∠ BOD 等于w W w .A BA .72°B .62°C DC. 52° D .28°O7.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利 8元 . 设每个双肩背书包的进价是 x元,根据题意列一元一次方程,正确的是A .150% x 80% x 8B.50%x 80%x8C.150% x 80% 8 D .150% x x88.按下面的程序算:输入x计算3x 1的值是输出结果251否当入 x100 ,出果是299;当入 x50 ,出果是466;如果入 x 的是正整数,出果是257,那么足条件的x 的最多有A.1 个B.2 个C.3个D.4 个二、填空(共7 个小,每小 2 分,共 14 分)9.- 2 的倒数是.10.比大小:11.23A CD B11.如,点 C 是段 AB 的中点, AB =6cm,如果点 D 是段 AB 上一点,且 BD =1cm,那么CD=cm.12.已知 2 是关于 x 的方程 2x-a =1 的解, a =.13.22013.如果(a+2)+ 1 b =0,那么( a+b) =14.已知代数式 x 2 y 的是-2,代数式 3 x2y 的是.15.如,两条直相交只有 1 个交点,三条直相交最多有 3 个交点,四条直相交最多有 6 个交点,五条直相交最多有10 个交点,六条直相交最多有个交点,二十条直相交最多有个交点.⋯1 个交点 3 个交点 6 个交点10 个交点三、解答(共 4 个小,每小 4 分,共 16 分)16. 算:91121.17.计算:15124.1224618.计算:13312.3219. 计算:3322 2 .23四、解答题(共 3 个小题,每小题 5 分,共 15 分)20.解方程: 6x+1=4 x 5 .21.解方程:2x33x 11.22.解方程:x+22x 1=1.32五、解答题(共 4 个小题,第 23 题 5 分,第 24题 6分,第25题 5分,第26题8分,共24 分)23.已知 a1,求代数式 a26a 2 1 3a a2的值.B E3C24. 已知 OC 是∠ AOB 内部的一条射线,∠AOC= 30°,O图 1A OE 是∠ COB 的平分线.(1)如图 1,当∠ COE =40°时,求∠ AOB 的度数;(2)当 OE⊥ OA 时,请在图 2 中画出射线 OE, OB,并直接写出∠ AOB 的度数.CO A图 225.列方程解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的 2倍少 4毫克,如果 11片银杏树叶一年的平均滞尘量与 20片国槐树叶一年的平均滞尘量相同,那么一片国槐树叶一年的平均滞尘量是多少毫克?26.已知数轴上三点M, O,N 对应的数分别为-3,0, 1,点 P 为数轴上任意一点,其对的数x .(1)如果点P 到点 M ,点 N 的距离相等,那么x 的 是 ______________ ;(2)数 上是否存在点P ,使点 P 到点 M ,点 N 的距离之和是5?若存在, 直接写出 x 的 ;若不存在, 明理由.(3)如果点 P 以每分 3 个 位 度的速度从点O 向左运 , 点 M 和点 N 分 以每分 1 个 位 度和每分4 个 位 度的速度也向左运 ,且三点同 出 ,那么几分 点P 到点 M ,点 N 的距离相等?分 准及参考答案一、 (本 共24 分,每小 3 分)号 1 2 3 4 5 6 7 8 答案ACCDBBAC二、填空 (本 共21 分,每小3 分)号 9 1011 12 13 1415答案1 < 23- 1 515 1902三、解答 (共 4 小 ,每小4 分, 分16 分)=18 9⋯⋯3 分16.解:原式=9 11 21 ⋯⋯2 分= 20 21⋯⋯3 分 =99= 1.⋯⋯4 分= 0 .⋯⋯4分17.解:原式=1 24513412242419.解:原式=9⋯⋯2分2462 2⋯⋯1 分9= 2 5 4⋯⋯3 分=3 4 2⋯⋯3分=7 .⋯⋯4 分218 .解:原式=1831⋯⋯2 分=3 632= 9 .⋯⋯4 分x6 .∴ x=6 是原方程的解.⋯⋯5分22.解: 2 x+23 2 x 1 6⋯⋯1分四、解答 (共 3 个小 ,每小5 分,共 15 分)20.解: 6x 4x=5 1 ⋯⋯2分 2x=6 ⋯⋯4 分x=3 .2x 4 6x 3 62x 6x 6 4 34x1⋯⋯2 分 ⋯⋯3 分⋯⋯4分∴ x=3 是原方程的解.x1⋯⋯5分.421.解: 2x 6 3x 1 1 ⋯⋯2分 ∴ x1是原方程的解.⋯⋯5分2x 3x1 6 1⋯⋯3分 4x6⋯⋯4分五、解答 (共 4 个小 ,第 23 5 分,第 24 6 分,第 25 5 分,第 26 8 分,共 24 分)23.解:原式=a 26a 2 6a 2a 2 ⋯⋯2 分= 3a 22 .⋯⋯3 分1当 a,321原式= 32⋯⋯4分3= 3 129 = 12.⋯⋯5分324.解:( 1)∵ OE 是∠ COB 的平分 (已知) ,∴∠ COB = 2∠COE (角平分 定 ) . ⋯⋯1分∵∠ COE = 40°,∴∠ COB = 80°.⋯⋯2分∵∠ AOC = 30°,∴∠ AOB =∠ AOC +∠ COB = 110°.⋯⋯3 分(2)如右 :⋯⋯5分∠ AOB =150°.⋯⋯6分ECBO A25.解: 一片国槐 叶一年的平均滞 量x 毫克, 一片 杏 叶一年的平均滞 量2x 4 毫克.根据 意列方程,得⋯⋯1分11 2x4 20x . ⋯⋯3分解 个方程,得x 22 .⋯⋯4分答:一片国槐 叶一年的平均滞 量22毫克. ⋯⋯5分26.解:( 1)- 1.⋯⋯1 分(2)存在符合 意的点P ,此 x3.5 或 1.5 .⋯⋯4 分(3) 运 t 分 ,点 P 的数是 3t ,点 M 的数是3 t ,点 N 的数是 1 4t .①当点 M 和点 N 在点 P 同 ,因PM = PN ,所以点 M 和点 N 重合,所以 3 t 1 4t ,解得 t4 ⋯⋯6分,符合 意.3②当点 M 和点 N 在点 P 两 ,有两种情况.情况 1:如果点 M 在点 N 左 , PM3t3 t3 2t .PN1 4t3t1 t .因 PM = PN ,所以 3 2t 1 t ,解得 t 2 .此 点 M 的数是5 ,点 N 的数是7 ,点 M 在点 N 右 , 不符合 意, 舍去.情况 2:如果点 M 在点 N 右 , PM3t 1 4t 2t 3 .PN3t1 4tt 1 .因 PM = PN ,所以 2t 3 t 1,解得 t 2 . 此 点 M 的数是5 ,点 N 的数是 7,点 M 在点 N 右 ,符合 意.上所述,三点同 出 ,4分 或 2 分 点 P 到点 M ,点 N 的距离相等.⋯⋯8分3。
2019—2020年最新浙教版七年级数学上学期期末测优质试卷及答案解析.doc

第一学期期末模拟考试七年级数学试题卷温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.答题前,请在答题卷的相应区域内填写学校、班级、姓名、考场号、座位号、以及填涂学生检测号等.3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.-2016的倒数是………………………………………………………………………(▲)A.12016- B.12016C. 2016- D. 20162.9的平方根是…………………………………………………………………………(▲)A.3B. -3C. 3± D.3±3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示13的点应在…………………………………………(▲)A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE上4.下列选项是无理数的为………………………………………………………………(▲)第3题图A. 31-B.C. 3.1415926D. π-5.82cm 接近于 …………………………………………………………………………( ▲ )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度6.若2x =是关于x 的方程2310x m +-=的解,则m 的值为………………………( ▲ )A. 1-B .0C. 1D.137.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是………………………………………( ▲ ) A. 48)12(5=-+x x B. 48)12(5=-+x x C. 48)5(12=-+x xD. 48)12(5=-+x x8.如图,点A B C 、、是直线l 上的三个点,图中共有线段 条数是……………………………………………( ▲ ) A. 1条 B. 2条 C. 3条D. 4条9.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是………………………………………………………………………( ▲ )A. 60oB. 120oC. 60o 或 90oD. 60o 或120o10.计算:1314+=,23110+=,33128+=,43182+=,531244+=,,ABCl归纳各计算结果中的个位数字的规律,猜测132016+的个位数字是………………………( ▲ ) A. 0B. 2C. 4D. 8二、认真填一填(本题有6小题,每小题4分,共24分) 11.=---4)7( ▲ .12.精确到万位,并用科学记数法表示5 109 500≈ ▲ . 13.化简:3271-= ▲ .14.x 与x %30-的和是 ▲ .15.用度、分、秒的形式表示032.48= ▲ .16.在数轴上,点A ,O ,B 分别表示-16,0,14,点P ,Q 分别从点A ,B 同时开始沿数轴正方向运动,点P 的速度是每秒3个单位,点Q 的速度是每秒1个单位,运动时间为t 秒.若点P ,Q ,O 三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为 ▲ 秒. 三、解答题(本大题有8小题,共66分)17.(本题6分)已知线段b a ,. 用直尺和圆规作图:(1)作线段b a AB 2+=. (2)作线段b a MN -=.(温馨提醒:不用写作法,但相应字母标注到位.)18.(本题6分)计算(1)322)2132()6(--⨯- (2)523)35(2⨯-++⨯19.(本题6分)化简(1))1(2)22(22-+---a a a(2))32(3)(222xy x xy x ---20.(本题8分)解方程: (1)()552 4.x x -+=-(2)31)331(23=---x x21.(本题8分)已知2277A B a ab -=-,且2467B a ab =-++. (1)用含b a ,的代数式表示A.(2)若21(2)0a b ++-=,求A 的值.22.(本题10分)已知,如图直线AB 与CD 相交于点O ,AB OE ⊥,过点O 作射线OF ,∠AOD=30°,∠FOB=∠EOC. (1)求∠EOC 度数; (2)求∠DOF 的度数;(3)直接写出图中所有与∠AOD 互补的角.23.(本题10分)观察下列等式:第1个等式:)311(213111-⨯=⨯=a ; 第2个等式:)5131(215312-⨯=⨯=a ; 第3个等式:)7151(217513-⨯=⨯=a ; 第4个等式:)9171(219714-⨯=⨯=a ; ……请解答下列问题:(1)按以上规律列出第5个等式:a 5= ▲ = ▲ ; (2)写出第100个等式,并说明这个等式成立的理由; (3)求a 1+a 2+a 3+a 4+…+a 2016的值.24.(本题12分)为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的.(1)该户居民8月份用水8吨,求该用户8月应交水费;(2)该户居民9月份应交水费26元,求该用户9月份用水量;(3)该户居民10月份应交水费30元,求该用户10月份用水量;(4)该户居民11月、12月共用水18吨,且已知11月用水量比12月用水量少,若11月用水a吨,用含a的代数式表示该户居民11月、12月共应交的水费.七年级数学参考答案一、仔细选一选 ACCDC A ACDB 二、认真填一填 11.11-; 12.61011.5⨯; 13.31-; 14.x %70; 15.'''121948︒ 16.374,431,736,718 三、解答题17.(1)略(3分); (2)略(3分) 18.(1) -2(3分); (2) 9(3分); 19.(1) a a 22+(3分); (2) xy (3分); 20.(1) 3.x =(4分); (2)32=x (4分); 21.(1)1452++-ab a (4分); (2)2,1=-=b a ,(2分);3(2分); 22.(1)60°(4分); (2)90°(3分);(3)∠AOC ;∠BOD ;∠EOF (3分). 23.(1)1191⨯ (2分); )11191(21-⨯(2分);(2)2011991⨯=)20111991(21-⨯, (2分); 理由略(2分) (3)40332016 (2分);24.(1)20元;(2)9.5吨;(3)10.25吨(4)⎪⎩⎪⎨⎧+-+-吨之间)吨与在(吨之间)吨与在吨之间)吨与在(984886(80460926a a a a a。
2019-2020学年浙教版初一数学上学期期末测试卷(含答案)

2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人3.(3分)的平方根是()A.B.C.D.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.16.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣27.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=13.(4分)单项式的系数为.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.15.(4分)如图,以图中的A、B、C、D为端点的线段共有条.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×18.(6分)计算:19.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点米?(3)球员在这一组练习过程中,共跑了多少米?22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.浙教版2019-2020学年度七年级上册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数解:A、0的绝对值是0,故选项错误;B、绝对值为3的数是3或﹣3,故选项错误;C、﹣2的绝对值是2,故选项正确;D、正数的绝对值是它本身,故选项错误.故选:C.2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人解:12000用科学记数法表示为1.2×104.故选:B.3.(3分)的平方根是()A.B.C.D.解:∵(±)2=,∴的平方根是±,故选:C.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元解:由题意可得,这一商品的价格为:m(1+50%)×0.6=0.9m(元),故选:B.5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.1解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.6.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣2解:∵2x2+3x+7=8,∴2x2+3x=1,∴2x2+3x﹣9=1﹣9=﹣8.故选:B.7.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,故A选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、根据等式的性质2得出,c=0,不成立,故C选项符合题意;D、根据等式的性质2可得出,若=,则3x=2y,故D选项不符合题意;故选:C.9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为9或1.解:由题意得:5+4=9或5﹣4=1,则距离A点4个单位长度的点表示的数为9或1;故答案为:9或1.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=7解:∵,∴3<<4,∴a=3,b=4,∴a+b=7.故答案为:713.(4分)单项式的系数为﹣.解:单项式的系数为:﹣.故答案为:﹣.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.15.(4分)如图,以图中的A、B、C、D为端点的线段共有6条.解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6条.故答案为:6.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过90或110秒两人相距100米.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×解:原式=2﹣××(﹣3)=2+=2.18.(6分)计算:解:=﹣1+4﹣3+2=219.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.解:原式=6x2y﹣12xy2+3xy2﹣x2y=5x2y﹣9xy2,当x=﹣,y=1时,原式=+=.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.解:如图1,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,∴∠AOC+∠BOC=2α﹣10°+α=80°,∴α=30°,∴∠BOC=30°;如图2,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点60米?(3)球员在这一组练习过程中,共跑了多少米?解:(1)+40﹣30+50﹣25+25﹣30+15﹣28+16﹣18=15(米)∴球员最后到达的地方在出发点的东方,距出发点15米远;(2)+40﹣30+50=60(米)故答案为:60;(3)|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=40+30+50+25+25+30+15+28+16+18=277(米)∴球员在这一组练习过程中,共跑了277米.22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.解:(1)由题意,得∠P AB=65°,∵表示同一方向的射线是平行的,即AP∥BQ,∴∠P AB+∠QBA=180°,∴∠QBA=180°﹣∠P AB=180°﹣65°=115°,∵∠ABC=100°,∴∠CBQ=∠QBA﹣∠ABC=115°﹣100°=15°,∴C村在B村的北偏西15°方向上;(2)设每个施工队每天铺设x米,由题意,得9x﹣6x=600,解得x=200,∴9x+6x=9×200+6×200=3000,答:两段公路的总长3000米.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?解:(1)由于3000×0.9=2700>2600所以,应该是按照活动①付款.即按照标价2600元付款.答:第一次购买了标价2600元的家具;(2)因为5000×0.8=4000,3906<4000所以,不可能打八折.设付款39602元的家具的标价是x元,由题意,得0.9x=3906解得x=4340则(4340+2600)×0.8=5552(元)答:如果小华爸爸一次性购买这些家具,应付5552元;(3)2600+3906=6506(元),则能比原来节约:=.24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
浙江省湖州市吴兴区2019-2020学年七年级上学期期末数学试题(word无答案)
浙江省湖州市吴兴区2019-2020学年七年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 的倒数是()A.B.C.D.(★) 2 . 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元(★) 3 . 下列四种运算中,结果最大的是()A.1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)(★) 4 . 吴兴区自2003年成立以来,本着“生态吴兴、经济强区、科技新城、幸福家园”的总战略,全区的经济实力显著增强.2018年,全区实现年财政总收入亿元,将亿用科学记数法表示正确的是()A.B.C.D.(★) 5 . 估计的值在()A.到之间B.到之间C.到之间D.到之间(★) 6 . 如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.90°(★) 7 . 下列选项中,正确的是()A .若,则B .C .D .一个数的绝对值一定是正数(★) 8 . 如图, ,点是线段上的动点,则两点之间的距离不可能是()A .B .C .D .(★) 9 . 代数式的值会随 的取值不同而不同,下表是当 取不同值时对应的代数式的值,则关于 的方程 的解是()A .B .C .D .(★) 10 . “幻方”最早记载于春秋时期的《大戴礼》中,现将这 个数字填入如图1所示的“幻方”中,使得每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”(规律如图1),则的值是()A.B.C.D.二、填空题(★) 11 . 代数式的系数是__________.(★) 12 . 比较大小__________ .(★) 13 . 9的算术平方根是.(★) 14 . 如图,将长方形沿折叠,使得点点、点在同一条直线上,若,则的度数为__________.(★) 15 . 已知关于的一元一次方程的解是,那么关于的一元一次方程的解是__________.三、解答题(★★) 16 . 为了从个外形相同的鸡蛋中找出唯一的一个双黄蛋,检查员将这些蛋按的序号排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋;他将剩下的蛋在原来的位置上又按编了序号(即原来的号变为号,原来的号变为号,),又从中取出新序号为单数的蛋进行检查,仍没有发现双黄蛋;如此继续下去,检查到最后一个原始编号为的蛋才是双黄蛋.那么最大值是_________,如果最后找到的是原始编号为的双黄蛋,则的最大值是_________.(★) 17 . 计算(1)(2)(★) 18 . 解方程(1)(2)(★) 19 . 一辆货车从百货大楼出发送货,向东行驶千米到达小明家,继续向东行驶千米到达小红家,然后向西行驶千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向, 个单位长度表示 千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点 表示,小红家用点 表示,小刚家用点 表示) (2)小明家与小刚家相距多远?(★) 20 . 先化简,再求值: ,其中(★) 21 . 小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元) 星期 一 二 三 四 五 六 日收入支出(1)到本周日,小李结余多少?(2)根据小李这一周每日的支出水平,估计小李一个月(按 天算)的总收入至少达到多少,才能维持正常开支? (★) 22 . 将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形内(相同纸片之间不重叠),其中.小明发现:通过边的平移及线段的转化,阴影部分⑥的周长只与的长有关.(1)根据小明的发现,用含 的代数式表示阴影部分⑥的周长; (2)若正方形②的边长为,用含的代数式表示阴影部分⑥与阴影部分⑤的周长之差.(★) 23 . 每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折:“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满 元减元的优惠.如标价为元的商品,折后为元,再减元,即实付:(元).(1)该商店标价总和为元的商品,在“双十一”购买,最后实际支付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单(再购买少量商品)实际支付金额只需再多付元,就可获得最大优惠?(★★) 24 . [阅读理解]射线是内部的一条射线,若则我们称射线是射线的伴随线.例如,如图1,,则,称射线是射线的伴随线:同时,由于,称射线是射线的伴随线.[知识运用](1)如图2,,射线是射线的伴随线,则,若的度数是,射线是射线的伴随线,射线是的平分线,则的度数是.(用含的代数式表示)(2)如图,如,射线与射线重合,并绕点以每秒的速度逆时针旋转,射线与射线重合,并绕点以每秒的速度顺时针旋转,当射线与射线重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻(秒),使得的度数是,若存在,求出的值,若不存在,请说明理由;②当为多少秒时,射线中恰好有一条射线是其余两条射线的伴随线.。
2019-2020学年浙江省湖州市长兴县七年级(上)期末数学试卷 (含解析)
2019-2020学年浙江省湖州市长兴县七年级(上)期末数学试卷一、选择题(共10小题).1.2020的相反数是()A.2020B.2020-C.12020D.12020-2.2019年天猫双十一交易额最终定格在2684亿元,再次刷新双十一交易额记录,则2684亿元用科学记数法表示为()A.32.68410⨯元B.1026.8410⨯元C.120.268410⨯元D.112.68410⨯元3.若1∠与2∠互补,154∠=︒,则2∠为()A.27︒B.54︒C.36︒D.126︒4.下列说法正确的是()A.35xy-的系数是3-B.22m n的次数是2次C.23x y-是多项式D.21x x--的常数项是15.一个正数的两个平方根分别是21a-与2a-+,则a的值为() A.1B.1-C.2D.2-6.把方程10.58160.60.9x x-++=的分母化为整数,结果应为()A.1581669x x-++=B.10105801669x x-++=C.101058016069x x-+-=D.15816069x x-++=7.如果代数式22x x+的值为5,那么代数式2243x x+-的值等于() A.2B.5C.7D.138.已知实数a,b,c在数轴上对应点的位置如图所示,||||||a b a c b c+++--的值是( )A.0B.22a b+C.22b c-D.22a c+9.某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是( )A .21⨯ 000(26)800x x -=B .1 000(26)2800x x -=⨯C .1 000(13)800x x -=D .1 000(26)800x x -=10.甲、乙两名运动员在圆形跑道上从A 点同时出发,并按相反方向匀速跑步,甲的速度为每秒6米,乙的速度为每秒7米,当他们第一次在A 点再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇次数是( ) A .13B .14C .42D .43二、填空题(本题有6小题,每小题2分,共12分)11.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“5+”,那么“亏7”可以记为 . 12.计算:327-= .13.如图,已知O 是直线AB 上一点,140∠=︒,OD 平分BOC ∠,则2∠的度数是 .14.若523m xy +与2n x y 的和仍为单项式,则n m = .15.若关于x 的方程44166ax x x -+-=-的解是正整数,则符合条件的所有整数a 的和是 .16.如图1所示AOB ∠的纸片,OC 平分AOB ∠,如图2把AOB ∠沿OC 对折成(COB OA ∠与OB 重合),从O 点引一条射线OE ,使12BOE EOC ∠=∠,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为76︒,则AOB ∠= ︒.三、解答题(共58分) 17.计算: (1)128(2)-÷-(2)3328(8)64-+-÷-⨯18.如图,平面内有三个点A ,B ,C ,请你根据下列要求完成作图(作图工具不限). (1)画直线AB ,射线CB ,线段AC ; (2)过点C 作直线l ⊥直线AB ,垂足为D .19.化简并求值:2222(3)3(2)a b ab a b ab ---,其中12a =,4b =-. 20.如图,已知点C 为线段AB 上一点,15AC cm =,35CB AC =,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.21.如图,现有5张写着不同数的卡片,请按要求完成下列问题:(1)从中任选2张卡片,使这2张卡片上的数的乘积最大,则该乘积的最大值是多少? (2)从中任选4张卡片,用卡片上的数和加、减、乘、除四则运算(可用括号,每个数都要用且只能用一次)列出两个不同的算式(每个算式可选用不同的卡片),使其计算结果为24.22.如图,已知直线AB ,CD 相交于点O ,90COE ∠=︒. (1)若36AOC ∠=︒,求BOE ∠的度数; (2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数.23.目前节能灯在各地区基本已普及使用,某市一商场为响应号召推广销售,该商场计划用3800元购进两种节能灯共120只,这两种节能灯的进价、售价如下表:型号进价(元/只)售价(元/只)甲型2026乙型4860(1)则甲、乙两种型号节能灯各进多少只?(2)全部售完这120只后,该商场获利多少元?24.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 12从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,则:(1)动点P从点A运动至点C需要时间多少秒?(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分 1.2020的相反数是( ) A .2020B .2020-C .12020D .12020-解:2020的相反数是:2020-. 故选:B .2.2019年天猫双十一交易额最终定格在2684亿元,再次刷新双十一交易额记录,则2684亿元用科学记数法表示为( ) A .32.68410⨯元 B .1026.8410⨯元C .120.268410⨯元D .112.68410⨯元解:2684亿元用科学记数法表示为811268410 2.68410⨯=⨯元. 故选:D .3.若1∠与2∠互补,154∠=︒,则2∠为( ) A .27︒B .54︒C .36︒D .126︒解:1∴∠与2∠互补,154∠=︒, 2180118054126∴∠=︒-∠=︒-︒=︒,故选:D .4.下列说法正确的是( ) A .35xy-的系数是3- B .22m n 的次数是2次 C .23x y-是多项式 D .21x x --的常数项是1解:A 、35xy -的系数是35-,故此选项错误; B 、22m n 的次数是3次,故此选项错误; C 、23x y-是多项式,正确; D 、21x x --的常数项是1-,故此选项错误;故选:C .5.一个正数的两个平方根分别是21a -与2a -+,则a 的值为( ) A .1B .1-C .2D .2-解:由题意得:2120a a --+=, 解得:1a =-, 故选:B . 6.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++=C .101058016069x x -+-= D .15816069x x -++= 解:把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .7.如果代数式22x x +的值为5,那么代数式2243x x +-的值等于( ) A .2B .5C .7D .13解:225x x +=Q , 2243x x ∴+-,22(2)3x x =+-253=⨯- 103=-7=.故选:C .8.已知实数a ,b ,c 在数轴上对应点的位置如图所示,||||||a b a c b c +++--的值是( )A .0B .22a b +C .22b c -D .22a c +解:由数轴可得:0a c +<,0b c ->,0a b +>, 则||||||a b a c b c +++--,a b a c b c=+---+,=;故选:A.9.某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是()A.21⨯000(26)800x x-=⨯-=B.1 000(26)2800x xC.1 000(13)800x x-=-=D.1 000(26)800x x解:根据题意得28001000(26)⨯=-.x x故选:B.10.甲、乙两名运动员在圆形跑道上从A点同时出发,并按相反方向匀速跑步,甲的速度为每秒6米,乙的速度为每秒7米,当他们第一次在A点再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇次数是() A.13B.14C.42D.43解:Q要在点A相遇,∴两人都会跑整数圈.Q每圈的路程相同,且两人同时出发∴甲、乙跑的圈数与路程成正比.Q甲、乙速度之比为6:7,∴甲、乙所跑圈数之比也是6:7,∴两人跑的最小圈数分别是6圈和7圈.+=Q(圈),且两人跑一圈时相遇一次,6713∴共相遇13次,Q开始算一次相遇,∴共相遇14次,故选:B.二、填空题(本题有6小题,每小题2分,共12分)11.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“5-.+”,那么“亏7”可以记为7解:如果“盈5”记为“5-”,+”,那么“亏7”可以记为“7故答案为:7-.12.计算:327-= 3- . 解:3273-=-. 故答案为:3-.13.如图,已知O 是直线AB 上一点,140∠=︒,OD 平分BOC ∠,则2∠的度数是 70︒ .解:140∠=︒Q ,1801140COB ∴∠=︒-∠=︒, OD Q 平分COB ∠,1121407022COB ∴∠=∠=⨯︒=︒, 故答案为:70︒. 14.若523m x y +与2n x y 的和仍为单项式,则n m = 9 . 解:523m xy +Q 与2n x y 的和仍为单项式,52m ∴+=,2n =,则3m =-, 故2(3)9nm =-=. 故答案为:9. 15.若关于x 的方程44166ax x x -+-=-的解是正整数,则符合条件的所有整数a 的和是 7- .解:44166ax x x -+-=- 去分母,得6446x ax x -+=+- 移项、合并同类项,得(5)2a x +=, 25x a=+, 由题意得,3a =-、4-,则符合条件的所有整数a 的和是347--=-, 故答案是:7-.16.如图1所示AOB ∠的纸片,OC 平分AOB ∠,如图2把AOB ∠沿OC 对折成(COB OA ∠与OB 重合),从O 点引一条射线OE ,使12BOE EOC ∠=∠,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为76︒,则AOB ∠= 114 ︒.解:OC Q 是AOB ∠的平分线则AOC BOC AOB ∠=∠=∠或22AOB AOC BOC ∠=∠=∠ 又Q 剪开后得到的3个角中最大的一个角为76︒, 276COE ∴∠=︒ 38COE ∴∠=︒又12BOE EOC ∠=∠Q ,138192BOE ∴∠=⨯︒=︒ 193857BOC BOE EOC ∴∠=∠+∠=︒+︒=︒则2257114AOB BOC ∠=∠=⨯︒=︒ 故答案为:114︒ 三、解答题(共58分) 17.计算: (1)128(2)-÷-(2)3328(8)64-+-÷-解:(1)128(2)-÷- 124== 16=(2)3328(8)64-+-÷-8(2)(8)8=-+-÷-⨯ 82=-+6=-18.如图,平面内有三个点A ,B ,C ,请你根据下列要求完成作图(作图工具不限). (1)画直线AB ,射线CB ,线段AC ; (2)过点C 作直线l ⊥直线AB ,垂足为D .解:(1)如图,直线AB ,射线CB ,线段AC 为所作; (2)如图,直线l 为所作.19.化简并求值:2222(3)3(2)a b ab a b ab ---,其中12a =,4b =-. 解:2222(3)3(2)a b ab a b ab --- 2226263a b ab a b ab =--+ 223ab ab =-+当12a =,4b =-时,原式2112(4)3(4)2222=-⨯⨯-+⨯⨯-=-. 20.如图,已知点C 为线段AB 上一点,15AC cm =,35CB AC =,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.解:15AC cm =Q ,35CB AC =, 9BC ∴=,24AB AC BC ∴=+=,Q 点D ,E 分别为线段AC ,AB 的中点,11522AD AC ∴== 1122AE AB == 92DE AE AD ∴=-=. 答:线段AB 与DE 的长为24、92. 21.如图,现有5张写着不同数的卡片,请按要求完成下列问题:(1)从中任选2张卡片,使这2张卡片上的数的乘积最大,则该乘积的最大值是多少?(2)从中任选4张卡片,用卡片上的数和加、减、乘、除四则运算(可用括号,每个数都要用且只能用一次)列出两个不同的算式(每个算式可选用不同的卡片),使其计算结果为24.解:(1)由题意可得,从中抽取2张卡片,使这2张卡片上的数的乘积最大,最大值是(6)(3)18-⨯-=;(2)答案不唯一:如53(6)(3)⨯----1563=++24=;或(3)3(6)5----⨯3330=--+24=.22.如图,已知直线AB ,CD 相交于点O ,90COE ∠=︒.(1)若36AOC ∠=︒,求BOE ∠的度数;(2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数.解:(1)90COE ∠=︒Q ,36AOC ∠=︒,180∴∠=︒-∠-∠BOE AOC COE=︒-︒-︒1803690=︒;54(2):2:7∠+∠=︒,BOD BOC∠∠=Q,180BOD BOC∴∠=︒,40BODQ,∠=∠BOD AOC∴∠=︒,AOC40Q,∠=︒COE90∴∠=∠+∠=︒+︒=︒.AOE COE AOC904013023.目前节能灯在各地区基本已普及使用,某市一商场为响应号召推广销售,该商场计划用3800元购进两种节能灯共120只,这两种节能灯的进价、售价如下表:(1)则甲、乙两种型号节能灯各进多少只?(2)全部售完这120只后,该商场获利多少元?解:(1)设购进甲种型号节能灯x只,则购进乙种节能灯(120)x-只,依题意,得:2048(120)3800+-=,x x解得:70x=,∴-=.12050x答:购进甲种型号节能灯70只,乙种节能灯50只.(2)(2620)70(6048)501020-⨯+-⨯=(元).答:该商场获利1020元.24.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 12从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,则:(1)动点P 从点A 运动至点C 需要时间多少秒?(2)若P ,Q 两点在点M 处相遇,则点M 在折线数轴上所表示的数是多少(3)求当t 为何值时,P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等.解:(1)动点P 从点A 运动至点C 需要时间(012)2(2010)210121t =-÷+-÷+÷=(秒). 答:动点P 从点A 运动至点C 需要时间为21秒;(2)由题意可得10t s >, (6)2(10)10t t ∴-+-=,解得12t =,∴点M 在折线数轴上所表示的数是6;(3)当点P 在AO 上,点Q 在CB 上时,122OP t =-,10BQ t =-, OP BQ =Q ,12210t t ∴-=-,解得2t =;当点P 在OB 上时,点Q 在CB 上时,6OP t =-,10BQ t =-, OP BQ =Q ,610t t ∴-=-,解得8t =;当点P 在OB 上时,点Q 在OB 上时,6OP t =-,2(10)BQ t =-, OP BQ =Q ,62(10)t t ∴-=-,解得14t =;当点P 在BC 上时,点Q 在OA 上时,102(16)OP t =+-,10(15)BQ t =+-,OP BQ =Q ,102(16)10(15)t t a ∴+-=+-, 解得17t =.当2t =,8,14,17时,OP BQ =.。
浙教版 2019-2020学年度初一数学上册期末测试题(含答案)
2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
2019-2020学年浙教版七年级数学上册期末测试题(含答案)
2019-2020学年七年级数学第一学期期末测试卷满分120分,考试时间100分钟班级__________ 姓名__________ 学号__________一、选择题(本大题有1 0小题,每小题3分,共30分) 1.下列各式中结果为负数的是( ).A .(3)--B .2(3)-C .3--D2. 571亿元用科学记数法表示为( ). A .25.7110⨯元B .65.7110⨯元C .85.7110⨯D .105.7110⨯3.在实数:4,2,π,,2270.1010010001(每2个1之间依次多一个0)中,无理数的个数是( ). A .1个B .2个C .3个D .4个4.把方程20.3120.30.7x x +--=的分母化为整数,结果应为( ). A .231237x x +--= B .1020310237x x +--= C .10103102037x x +--= D .2312037x x +--= 5.下列说法正确的有( ).①23xy -的系数是2-;②1x 不是单项式;③6x y +多项式;④232mn 次数是3次;⑤2x 21--的次数是3次;⑥1x是代数式但不是整式.A .2个B .3个C .4个D .5个6.实验幼儿园给小朋友分苹果,若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个,问苹果共有多少个?若设共有x 个苹果,则列出的方程正确的是( ). A .3142x x +=-B .3142x x +=+C .1234x x -+= D .1234x x +-= 7.下列说法正确的有( ).①过两点有且只有一条直线;②连结两点的线段叫做两点间的距离;③两点之间,线段最短;④射线AC 和射线CA 是同一条封线;⑤过一点有一条而且仅有一条直线垂直于已知直线. A .1个B .2个C .3个D .4个8.如图是一组有规律的图案,第1个图案中由4个基础图形组成,第2个图案是由7个基础图形组成……接此规律,则第10个图形中基础图形的个数是( ).123……A .27B .30C .31D .609.如图,在直线上有A ,B ,C ,D 四个点,且23BC AB CD ==,若11AD =,那么CD =( ).A .2B .3C .6D .910.已知2(1)0n -+=,则:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b ++++++++++值是( ).A .1B .2C .20152016D .20162017二、填空题(本大题有6小题,每小题4分,共24分)11.比较大小:①15-___________0;②12-___________13-.12已知5245α'=︒∠,则它的余角等___________度.13.如果1x =-是关于x 的方理231x m -=-的解,则m 的值是___________.14.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为___________. 15.甲、乙、丙三位同学进行报数游戏,游戏规则为甲报1,乙报2,内报3,再甲报4,乙报5,丙报6依次循环反复下去,与报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是___________. 16.在“元旦”期间,某超市推出如下购物优惠方案: (1)一性购物在100元(不含100元)以内的,不享受优惠.(2)一性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠. (3)一性购物在300元(含300元)以上时,一律享受八折的优惠,李明在本超市两次购物分别付款80元、252元如果改成在本超市一次性购买与上两次完全相同的商品,则应付款___________元. 三、解答题(本大题有7小题,共66分) 17.(6分)计算:(1)377(60)4126⎛⎫+-⨯- ⎪⎝⎭.(2)201521(3)(4)----18.(8分)解下列方程: (1)35(1)1x x --=.(2)323136x x +-=-. 19.(8分)(1)先化简,再求值:2112423123a a a ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,其中2a =-;(2)已知1a b +=,求代数式201522a b --的值.20.(10分)某班有学生45人,参加文学社剧的人数比参加书画社团的人数多6人,两个社团都参加的有12人,两个社团都没参加的有15人,问只参加书画社团的有多少人?21.(10分)如图所示,80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分数. (1)当30AOC =︒∠时,求MON ∠的度数.(2)当锐角AOC ∠的大小发生改变时,MON ∠的大小是否发生改变?请说明理由.MNCBA O22.(12分)已知数轴上点A ,B ,C 所表示的数分别是x , 6.4-.(1)线段BC 的比为__________,线段BC 的中点D 所表示的数是__________. (2)若8AC =.求x 的值.(3)在数轴上有两个功点P ,Q ,P 的速度为1个单位长度/秒,Q 的速度为2个单位/秒,点P ,Q分别从点B ,C 同时出发,在数轴上运动,则经过多少时间后P ,Q 两点相距4个单位? 23.(12分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:医疗费为12000元,则按标准报销金额为__________元.(2)设某农民一年的实际医疗费为x 元5001000()x <≤,按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民医疗费为多少元?2019-2020学年七年级数学第一学期期末测试卷满分120分,考试时间100分钟班级__________ 姓名__________ 学号__________一、选择题(本大题有1 0小题,每小题3分,共30分) 1.下列各式中结果为负数的是( ).A .(3)--B .2(3)-C .3--D 【答案】C【解析】(2)3--=,2(3)9-=3.2. 571亿元用科学记数法表示为( ). A .25.7110⨯元B .65.7110⨯元C .85.7110⨯D .105.7110⨯【答案】D【解析】1057100000000 5.7110=⨯.3.在实数:4,2,π,,2270.1010010001(每2个1之间依次多一个0)中,无理数的个数是( ). A .1个B .2个C .3个D .4个【答案】C【解析】无理数有π,0.1010010001.4.把方程20.3120.30.7x x +--=的分母化为整数,结果应为( ). A .231237x x +--= B .1020310237x x +--= C .10103102037x x +--= D .2312037x x +--= 【答案】B【解析】分子分母同时乘以10,则可化为1020310237x x +--=.5.下列说法正确的有( ).①23xy -的系数是2-;②1x 不是单项式;③6x y +多项式;④232mn 次数是3次;⑤2x 21--的次数是3次;⑥1x是代数式但不是整式.A .2个B .3个C .4个D .5个【答案】B【解析】①系数为23-,②1π是单项式,常数项,⑤21x x --的次系是2次.6.实验幼儿园给小朋友分苹果,若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个,问苹果共有多少个?若设共有x 个苹果,则列出的方程正确的是( ). A .3142x x +=- B .3142x x +=+C .1234x x -+= D .1234x x +-= 【答案】C 【解析】由解得1234x x -+=.7.下列说法正确的有( ).①过两点有且只有一条直线;②连结两点的线段叫做两点间的距离;③两点之间,线段最短;④射线AC 和射线CA 是同一条封线;⑤过一点有一条而且仅有一条直线垂直于已知直线. A .1个B .2个C .3个D .4个【答案】B【解析】①③正确,②线段的长度叫距离,⑤若在立体空间内则有无数条.8.如图是一组有规律的图案,第1个图案中由4个基础图形组成,第2个图案是由7个基础图形组成……接此规律,则第10个图形中基础图形的个数是( ).123……A .27B .30C .31D .60【答案】C【解析】由图规律可知第n 个图开中包含了31n +个基础图形,则第10个图形中有31个基础图形.9.如图,在直线上有A ,B ,C ,D 四个点,且23BC AB CD ==,若11AD =,那么CD =( ).A .2B .3C .6D .9【答案】A【解析】设CD x =,则32AB x =,3BC x =,33112AD x x x =++=,2x =.10.已知2(1)0n -+=,则:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b ++++++++++值是( ). A .1B .2C .20152016D .20162017【答案】D【解析】由2(1)0a -可得10a -=,20b -=,1a =,2b =,则1111()()(2)(1)12a nb n n n n n ==-++++++,则原式11111111201611223342016201720172017=-+-+-++-=-=.二、填空题(本大题有6小题,每小题4分,共24分)11.比较大小:①15-___________0;②12-___________13-.【答案】<,<【解析】12已知5245α'=︒∠,则它的余角等___________度. 【答案】37.25【解析】余角为905245371537.25''︒-︒=︒=︒.13.如果1x =-是关于x 的方理231x m -=-的解,则m 的值是___________.【答案】13-【解析】将1x =-代入得231m --=-,13m =-.14.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为___________.【答案】12(10)1260x x +-=【解析】计划生产总件数1312(10)60x x =+-.15.甲、乙、丙三位同学进行报数游戏,游戏规则为甲报1,乙报2,内报3,再甲报4,乙报5,丙报6依次循环反复下去,与报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是___________. 【答案】336【解析】由题得甲报的数为31n +,当报到2015时,201536712÷=,则甲共报了672次,由上得当n 为奇数时,所报数为偶数,则共有336次奇数次,则共记336分.16.在“元旦”期间,某超市推出如下购物优惠方案: (1)一性购物在100元(不含100元)以内的,不享受优惠.(2)一性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠. (3)一性购物在300元(含300元)以上时,一律享受八折的优惠,李明在本超市两次购物分别付款80元、252元如果改成在本超市一次性购买与上两次完全相同的商品,则应付款___________元. 【答案】288或316【解析】由题知80100<元未打折,若252为八折优惠时,小时的购物价为280元,若252为九折优惠时,原价应为315元,则小明购物原价为360元或395元.应付288元或316元.三、解答题(本大题有7小题,共66分) 17.(6分)计算:(1)377(60)4126⎛⎫+-⨯- ⎪⎝⎭.(2)201521(3)(4)----【答案】见解析【解析】解:(1)原式45357010=--+=-.(2)原式129215=-+⨯-=. 18.(8分)解下列方程: (1)35(1)1x x --=.(2)323136x x +-=-. 【答案】见解析【解析】解:(1)3551x x -+=,24x -=-,∴2x =.(2)2(32)6(3)x x +=--,6463x x +=-+,75x =,∴57x =. 19.(8分)(1)先化简,再求值:2112423123a a a ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,其中2a =-;(2)已知1a b +=,求代数式201522a b --的值. 【答案】见解析【解析】解:(1)原式224397a a a a a β=--++-=--+,当2a =-时,原式418721=-++=.(2)原式20152()2013a b =-+=.20.(10分)某班有学生45人,参加文学社剧的人数比参加书画社团的人数多6人,两个社团都参加的有12人,两个社团都没参加的有15人,问只参加书画社团的有多少人? 【答案】见解析【解析】解:设参加书画社团的有x 人,由题意得(6)121545x x ++-+=,解得:18x =,则只参加书画社团的人数18126=-=(人).答:只参加书画社团的人数为6人.21.(10分)如图所示,80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分数. (1)当30AOC =︒∠时,求MON ∠的度数.(2)当锐角AOC ∠的大小发生改变时,MON ∠的大小是否发生改变?请说明理由.MNCBA O【答案】见解析【解析】解:(1)∵80AOB =︒∠,30AOC =︒∠,∴8030110AOB AOC +=︒+︒=︒∠∠, ∵OM 是BOC ∠ 的平分线,ON 是AOC ∠的平分线,∴111105522COM BOC ==⨯︒=︒∠∠,11230152CON AOC ==-︒=︒∠∠,∴1110552BOC =⨯︒=︒∠,551540CON =︒-︒=︒∠(或用MOA NOA +∠∠).(2)不改变∵80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分线,∴12CON BOC =∠∠,12CON AOC =∠∠∴11()4022MON COM CON BOC AOC AOB =-=-==︒∠∠∠∠∠∠(或用MOA NOA +∠∠或设AOC x =︒∠) . 22.(12分)已知数轴上点A ,B ,C 所表示的数分别是x , 6.4-.(1)线段BC 的比为__________,线段BC 的中点D 所表示的数是__________. (2)若8AC =.求x 的值.(3)在数轴上有两个功点P ,Q ,P 的速度为1个单位长度/秒,Q 的速度为2个单位/秒,点P ,Q分别从点B ,C 同时出发,在数轴上运动,则经过多少时间后P ,Q 两点相距4个单位? 【答案】见解析【解析】解:(1)10,1-.(2)48x -=,解得12x =或4-.(3)设运动时间为t 秒.①若P ,Q同向左运动,则相遇前,2104t t +=-,得2(s)t =,相遇后,2104t t +=+,得143t =;②若P ,Q 同向左运动,则追到前,2104t t -=-,得6t =;追到后,2104t t -=+,得14t =.答:当相向运动2秒或143秒,或者同向左运动6秒或14秒时,P ,Q 两点相距4个单位. 23.(12分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:医疗费为12000元,则按标准报销金额为__________元.(2)设某农民一年的实际医疗费为x 元5001000()x <≤,按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民医疗费为多少元? 【答案】见解析【解析】解:(1)1750,8250.(2)由题意得:某农民一年的实际医疗费为x 元5001000()x <≤,按标准销的金额为(500)70%(0.7350)x x -⨯=-元.(3)当该农民当年实际医疗费为10000元时,该农民自付费用为:10000.7(10000500)3350--=元,因26003350<,所以该农民当年实际医疗费为超过500元且不超过10000元.设该农民当年实际医疗费为y 元,由题意得:即0.7(500)2600y y --=,解得,7500y =元,所以,该农民当年实际医疗费为7500元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省湖州市长兴县2019-2020学年七年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 2020的倒数是()
A.﹣2020B.2020C.D.-
(★) 2 . 2019年天猫双十一交易额最终定格在2684亿元,再次刷新双十一交易额记录,则2684亿元用科学记数法表示为()
A.元B.元C.元D.元(★) 3 . 已知与互补,,则为()
A.B.C.D.
(★) 4 . 下列说法正确的是()
A.的系数是B.的次数是2次
C.是多项式D.的常数项是1
(★) 5 . 一个正数的两个平方根分别是与,则 a的值为( )
A.-1B.1C.-2D.2
(★) 6 . 把方程的分母化为整数,结果应为()
A.B.
C.D.
(★) 7 . 如果代数式x 2+2x的值为5,那么代数式2x 2+4x﹣3的值等于( )
A.2B.5C.7D.13
(★) 8 . 已知a,b,c在数轴上的位置如图所示,则()
A.0B.C.D.
(★★) 9 . 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
(★★) 10 . 甲、乙两名运动员在圆形跑道上从点同时出发,并按相反方向匀速跑步,甲的速度为每秒6米,乙的速度为每秒7米,当他们第一次在点再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇次数是()
A.13B.14C.42D.43
二、填空题
(★) 11 . 我国在数的发展史上有辉煌的成就. 早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”. 如果“盈5”记为“+5”,那么“亏7”可以记为__________.
(★) 12 . 计算: = _____ .
(★) 13 . 如图,已知点是直线上一点,,射线平分,则的度数是______.
(★) 14 . 若与的和仍为单项式,则__________.
(★) 15 . 若关于的方程的解是正整数,则符合条件的所有整数的和是
_________.
(★) 16 . 如图1所示∠ AOB的纸片, OC平分∠ AOB,如图2把∠ AOB沿 OC对折成∠ COB ( OA与 OB重合),从 O点引一条射线 OE,使∠ BOE= ∠ EOC,再沿 OE把角剪开,若剪
开后得到的3个角中最大的一个角为76°,则∠ AOB=
_____________ °.
三、解答题
(★) 17 . 计算:(1)(2)
(★) 18 . 如图,平面内有三个点,请你根据下列要求完成作图(作图工具不限).
(1)画直线,射线,线段;
(2)过点作直线直线,垂足为.
(★) 19 . 化简并求值:,其中,
(★) 20 . 如图,已知点为线段上一点,,,点分别为线段,的中点,求线段与的长.
(★) 21 . 如图,现有5张写着不同数的卡片,请按要求完成下列问题:
(1)从中任选2张卡片,使这2张卡片上的数的乘积最大,则该乘积的最大值是多少?(2)从中任选4张卡片,用卡片上的数和加、减、乘、除四则运算(可用括号,每个数都要用且只能用一次)列出两个不同的算式(每个算式可选用不同的卡片),使其计算结果为24.(★) 22 . 如图,已知直线,相交于点,
(1)若,求的度数;
(2)若,求的度数.
(★) 23 . 目前节能灯在各地区基本已普及使用,某市一商场为响应号召推广销售,该商场计划用3800元购进两种节能灯共120只,这两种节能灯的进价、售价如下表:
型号进价(元/只)售价(元/只)
甲型2026
乙型4860
(1)则甲、乙两种型号节能灯各进多少只?(2)全部售完这120只节能灯后,该商场获利多少元?
(★) 24 . 如图,将一条数轴在原点和点处各折一下,得到一条“折线数轴”,图中点表示-12,点表示10,点表示20,我们称点和点在数轴上相距32个长度单位.动点
从点出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点运动到点期间速度变为原来的一半,之后立刻恢复原速;同时,动点从点出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点运动到点期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为秒.则:
(1)动点从点运动至点需要时间多少秒?
(2)若,两点在点处相遇,则点在折线数轴上所表示的数是多少?
(3)求当为何值时,、两点在数轴上相距的长度与、两点在数轴上相距的长度相等.。