直线和圆锥曲线常见题型(精品)
圆锥曲线经典题型

题型一:定义法题型二:中点弦问题---点差法题型三对称问题题型四面积问题题型五角平分线题型六平行四边形题型七切线问题题型八四点共圆题型九角度问题题型三 对称问题【2015浙江理】已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称. (1)求实数m 的取值范围;(2)求AOB △面积的最大值(O 为坐标原点).已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
题型四 面积问题1(2016全国3)已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C的准线于P ,Q 两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.题型四 面积问题2如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的标准方程; (2)求12S S 的最小值及此时点G 的坐标.题型四 面积问题3已知A 、B 是椭圆()012222>>=+b a by a x 的左、右顶点B(2,0),过椭圆C 的右焦点F 的直线交其于点M,N,交直线x=4于点P ,且直线PAPF,PB 的斜率成公差不为零的等差数列(1) 求椭圆C 的方程(2)若记△AMB,△ANB 的面积分别为21,S S ,求21S S 的取值范围题型五 角平分线(2010安徽文)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e (1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.题型七 切线问题如图,过抛物线py x C 2:21=上的一点Q 与抛物线py x C 2:22-=相切于B A ,两点.若抛物线py x C 2:21=的焦点1F 到抛物线py x C 2:22-=的焦点2F 的距离为21 (Ⅰ)求抛物线1C 的方程;(Ⅱ)求证:直线AB 与抛物线1C 相切于一点P .题型八 四点共圆已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.题型九 角度问题求解椭圆中的角度问题常用方法: 1.余弦定理2.向量,||||cos a b a b θ⋅= 角度问题的等价转化:①“以弦AB 为直径的圆过点O ”(提醒:需讨论K 是否存在)⇔OA OB ⊥ ⇔121K K •=- ⇔0OA OB •= ⇔ 12120x x y y +=②“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ③“等角、角平分、角互补问题” ⇔斜率关系(120K K +=或12K K =);已知椭圆C : +=1(a >b >0)的离心率为,直线l :y =x +2与以原点为圆心、椭圆C 的短半轴为半径的圆O 相切.(1)求椭圆C 的方程;(2)过椭圆C 的左顶点A 作直线m ,与圆O 相交于两点R ,S ,若△ORS 是钝角三角形,求直线m 的斜率k 的取值范围.题型三十八:三角形的内切圆问题()r CA BC AB S ABC ⋅++=∆21例1:双曲线C 的方程为1322=-y x ,左右焦点21,F F ,过点2F 作直线与双曲线C 的右支于点Q P 、,使得901=∠PQ F ,则PQ F 1∆的内切圆的半径是例2.椭圆1162522=+y x 的左右焦点21,F F ,弦AB 过点1F 且2ABF ∆内切圆的周长为π,若B A 、的坐标分别为()()2211,,,y x y x ,则=-21y y。
高考圆锥曲线的常见题型

高考圆锥曲线的常见题型题型一:定义的应用1、圆锥曲线的定义:(1)椭圆(2)椭圆(3)椭圆 2、定义的应用(1)寻找符合条件的等量关系(2)等价转换,数形结合3、定义的适用条件:典型例题例1、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 的轨迹方程。
例2、方程表示的曲线是题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):?1、椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
2、双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
典型例题例1、已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 例2、k 为何值时,方程15922=---ky k x 的曲线: (1)是椭圆;(2)是双曲线.题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题1、椭圆焦点三角形面积2tan 2αb S =;双曲线焦点三角形面积2cot 2αb S =2、常利用第一定义和正弦、余弦定理求解3、22,,,n m mn n m n m +-+四者的关系在圆锥曲线中的应用;典型例题例1、椭圆x a y ba b 222210+=>>()上一点P 与两个焦点F F 12,的张角∠F P F 12=α,求证:△F 1PF 2的面积为b 22tan α。
例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且,.求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值;2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围;3、注重数形结合思想不等式解法典型例题例1、已知1F 、2F 是双曲线12222=-by a x (0,0>>b a )的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是()A.324+B.13-C.213+ D.13+ 例2、双曲线22221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞例3、椭圆G :22221(0)x y a b a b+=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在 点M 使120FM F M ⋅=.求椭圆离心率e 的取值范围; 例4、已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线 与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞题型五:点、直线与圆锥的位置关系判断1、点与椭圆的位置关系点在椭圆内⇔12222<+by a x 点在椭圆上⇔12222=+by a x 点在椭圆外⇔12222>+by a x 2、直线与圆锥曲线有无公共点或有几个公共点的问题: ∆>0⇔相交∆=0⇔相切(需要注意二次项系数为0的情况)∆<0⇔相离3、弦长公式:4、圆锥曲线的中点弦问题:1、伟达定理:2、点差法:(1)带点进圆锥曲线方程,做差化简(2)得到中点坐标比值与直线斜率的等式关系典型例题例1、双曲线x 2-4y 2=4的弦AB 被点M (3,-1)平分,求直线AB 的方程.例2、已知中心在原点,对称轴在坐标轴上的椭圆与直线L:x+y=1交于A,B 两点,C 是AB 的中点,若|AB|=22,O 为坐标原点,OC 的斜率为2/2,求椭圆的方程。
直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
直线与圆锥曲线的位置关系典型例题

1、直线和圆锥曲线位置关系(1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。
其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x 或y 方程的二次项系数为0。
直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x 或y 方程的二次项系数为0。
(2)直线和圆锥曲线相交时,交点坐标就是方程组的解。
当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。
4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。
例题研究例1、 根据下列条件,求双曲线方程。
(1)与双曲线116y 9x 22=-有共同渐近线,且过点(-3,32); (2)与双曲线14y 16x 22=-有公共焦点,且过点(23,2)。
分析:法一:(1)双曲线116y 9x 22=-的渐近线为x 34y ±=令x=-3,y=±4,因432<,故点(-3,32)在射线x 34y -=(x ≤0)及x 轴负半轴之间,∴ 双曲线焦点在x 轴上 设双曲线方程为1by ax 2222=-,(a>0,b>0) ⎪⎪⎩⎪⎪⎨⎧=--=1b )32(a)3(34a b 2222 解之得:⎪⎩⎪⎨⎧==4b 49a 22 ∴ 双曲线方程为14y 49x 22=-(2)设双曲线方程为1b y a x 2222=-(a>0,b>0)则 ⎪⎩⎪⎨⎧=-=+1b 2a )23(20b a 222222解之得:⎪⎩⎪⎨⎧==8b 12a 22∴ 双曲线方程为18y 12x 22=-法二:(1)设双曲线方程为λ=-16y 9x 22(λ≠0)∴ λ=--16)32(9)3(22∴ 41=λ ∴ 双曲线方程为14y 49x 22=-(3)设双曲线方程为1k 4y k 16x 22=+--⎪⎪⎭⎫ ⎝⎛>+>-0k 40k 16 ∴ 1k42k 16)23(22=+--解之得:k=4∴ 双曲线方程为18y 12x 22=-评注:与双曲线1b y a x 2222=-共渐近线的双曲线方程为λ=-2222b y a x (λ≠0),当λ>0时,焦点在x 轴上;当λ<0时,焦点在y 轴上。
高考圆锥曲线专题-直线和圆锥曲线常考题型

内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心是三条高的交点,它能构成很多直角三角形相似。
(2019年全国一卷理科)19.(12分)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.19.解:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-.从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=.代入C 的方程得1213,3x x ==.故||AB =. (2019年全国二卷理科)21.(12分)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.21.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k =+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖.设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. (2019年全国三卷理科)21.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.21.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()()2222121212||11421AB t x x t x x x x t =+-=+⨯+-=+.设12,d d 分别为点D ,E 到直线AB 的距离,则212221,1d t d t =+=+.因此,四边形ADBE 的面积()()22121||312S AB d d t t =+=++. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,42S =. 因此,四边形ADBE 的面积为3或42.(2018年全国三卷理科)20. 已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明。
圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
高中数学直线和圆锥曲线常考题型汇总及例题解析

高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型五:共线向量问题解析几中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过未达定理------同类坐标变换,将问题解决。
此类问题不难解决。
例题7、设过点D(0,3)的直线交曲线M :22194x y +=于P 、Q 两点,且DP DQ l =uuu r uuu r ,数l 的取值围。
分析:由DP DQ l =uuu r uuu r 可以得到12123(3)x x y y l l ìï=ïíï=+-ïî,将P(x 1,y 1),Q(x 2,y 2),代人曲线程,解出点的坐标,用l 表示出来。
解:设P(x 1,y 1),Q(x 2,y 2),Q DP DQ l =uuu r uuu r \(x 1,y 1-3)=l (x 2,y 2-3)即12123(3)x x y y l l ì=ïïíï=+-ïïî法一:程组消元法又Q P 、Q 是椭圆29x +24y =1上的点\22222222194()(33)194x y x y l l l ìïï+=ïïïíï+-ï+=ïïïî 消去x 2,可得222222(33)14y y l l l l +--=- 即y 2=1356l l - 又Q -2£y 2£2,\-2£1356l l-£2 解之得:155λ≤≤ 则实数l 的取值围是1,55⎡⎤⎢⎥⎣⎦。
法二:判别式法、韦达定理法、配凑法设直线PQ 的程为:3,0y kx k =+≠,由2234936y kx x y =+⎧⎨+=⎩消y 整理后,得 22(49)54450k x kx +++= Q P 、Q 是曲线M 上的两点22(54)445(49)k k ∴∆=-⨯+=2144800k -≥即295k ≥ ① 由韦达定理得:1212225445,4949k x x x x k k +=-=++ 212121221()2x x x x x x x x +=++Q222254(1)45(49)k k λλ+∴=+ 即22223694415(1)99k k kλλ+==++ ② 由①得211095k <≤,代入②,整理得 236915(1)5λλ<≤+, 解之得155λ<< 当直线PQ 的斜率不存在,即0x =时,易知5λ=或15λ=。
总之实数l 的取值围是1,55⎡⎤⎢⎥⎣⎦。
法总结:通过比较本题的第二步的两种解法,可知第一种解法,比较简单,第二种法是通性通法,但计算量较大,纵观高考中的解析几题,若放在后两题,很多情况下能用通性通法解,但计算量较大,计算繁琐,考生必须有较强的意志力和极强的计算能力;不用通性通法,要求考生必须深入思考,有较强的思维能力,在命题人设计的框架中,找出破解的蛛丝马迹,通过自己的思维将问题解决。
练习:已知椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线241x y =的焦点,离心率为552. (1)求椭圆C 的标准程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若AF MA 1λ=,BF MB 2λ=,求21λλ+的值.例八.如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r(Ⅰ)求动点P 的轨迹C 的程;(Ⅱ)过点F 的直线交轨迹C 于A 、B 两点,交直线l 于点M ,已知12,MA AF AF BF λλ==u u u r u u u r u u u r u u u r,求12λλ+的值。
小题主要考查直线、抛物线、向量等基础知识,考查轨迹程的求法以及研究曲线几特征的基本法,考查运算能力和综合解题能力.满分14分.解法一:(Ⅰ)设点()P x y,,则(1)Q y-,,由QP QF FP FQ=u u u r u u u r u u u r u u u rg g得:(10)(2)(1)(2)x y x y y+-=--g g,,,,,化简得2:4C y x=.(Ⅱ)设直线AB的程为:1(0)x my m=+≠.设11()A x y,,22()B x y,,又21Mm⎛⎫--⎪⎝⎭,,联立程组241y xx my⎧=⎨=+⎩,,,消去x得:2440y my--=,2(4)120m∆=-+>,故121244y y my y+=⎧⎨=-⎩,.由1MA AFλ=u u u r u u u r,2MB BFλ=u u u r u u u r得:1112y ymλ+=-,2222y ymλ+=-,整理得:1121myλ=--,2221myλ=--,12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=--g 2424m m =---g 0=解法二:(Ⅰ)由QP QF FP FQ =u u u r u u u r u u u r u u u r gg 得:()0FQ PQ PF +=u u u r u u u r u u u rg , ()()0PQ PF PQ PF ∴-+=u u u r u u u r u u u r u u u rg ,220PQ PF ∴-=u u u r u u u r ,PQ PF ∴=u u u r u u u r所以点P 的轨迹C 是抛物线,由题意,轨迹C 的程为:24y x =.(Ⅱ)由已知1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,得120λλ<g . 则:12MA AF MB BFλλ=-u u u ru u u ru u u r u u u r .…………① 过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B ,则有:11MA AA AFMB BB BF ==u u u r u u u r u u u r u u u r u u u r u u u r .…………②由①②得:12AF AFBF BFλλ-=u u u r u u u ru u u r u u u r ,即120λλ+=.练习1:设椭圆)0(12:222>=+a y a x C 的左、右焦点分别为1F 、2F ,A 是椭圆C 上的一点,且0212=⋅F F AF ,坐标原点O 到直线1AF 的距离为||311OF . (1)求椭圆C 的程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点)0,1(-P ,较y 轴于点M ,若2=,求直线l 的程.练习2:双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线。
(I ) 求双曲线C 的程;(II)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)。
当12PQ QA QB λλ==u u u r u u u r u u u r ,且3821-=+λλ时,求Q 点的坐标。
练习3:已知椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率等于5。
(1)求椭圆C 的标准程;(2)点P 为椭圆上一点,弦PA 、PB 分别过焦点F 1、F 2,(PA 、PB 都不与x 轴垂直,其点P的纵坐标不为0),若111222,PF F A PF F B λλ==u u u r u u u r u u u u r u u u u r,求12λλ+的值。
题型六:面积问题例题9、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
(Ⅰ)求椭圆C 的程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。
解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆程为2213x y +=。
(Ⅱ)设11()A x y ,,22()B x y ,。
(1)当AB x ⊥轴时,AB =。
(2)当AB 与x 轴不垂直时, 设直线AB 的程为y kx m =+。
2=,得223(1)4m k =+。
把y kx m =+代入椭圆程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+。
22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤。
当且仅当2219k k=,即33k =±时等号成立。
当0k =时,3AB =, 综上所述max 2AB =。
∴当AB 最大时,AOB △面积取最大值max 1332S AB =⨯⨯=。
练习1、如图,直线y kx b =+与椭圆2214x y +=交于A 、B 两点,记ABC ∆的面积为S 。
(Ⅰ)求在0k =,01b <<的条件下,S 的最大值; (Ⅱ)当12==,S AB 时,求直线AB 的程。
练习2、已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边形为正形,两准线间的距离为4。
(Ⅰ)求椭圆的程;(Ⅱ)直线l 过点P(0,2)且与椭圆相交于A 、B 两点,当ΔAOB 面积取得最大值时,求直线l 的程。
练习3、已知中心在原点,焦点在x 轴上的椭圆的离心率为22,21,F F 为其焦点,一直线过点1F 与椭圆相交于B A ,两点,且AB F 2 的最大面积为2,求椭圆的程。
题型七:弦或弦长为定值问题例题10、在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2py (p>0)相交于A 、B 两点。
(Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的程;若不存在,说明理由。