四年级奥数思维训练第21讲 数列求和(二)

合集下载

小学数学四年级奥数基础教程目录

小学数学四年级奥数基础教程目录

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数等差数列求和

四年级奥数等差数列求和

等差数列求和例1、有一个数列:3、6、9、12、……480,这个数列共有几项?其中48是第几项?练1、有一个数列:13、21、29、37、……85,这个数列共有几项?练2、有一个数列:113、108、103、98、……48,这个数列共有几项?练3、已知一个等差数列,首项是6,末项是126,公差是5,其中121是第几项?练4、已知等差数列5、7、9、11……这个数列的第20项和第92项分别是什么?练5、已知等差数列500、497、494、491……这个数列的第20项和第92项分别是什么?例2、计算1+2+3+4+5+6+7+8+9+10练、计算1+2+3+4+5+……+99+100 1+2+3+4+……+500计算1+2+3+4+……+133 1+2+3+4+……+311例3、计算5+8+11+14+17……+38练、计算16+19+22+25……+100 5+7+9+11+……+47计算41+46+51+……306 6+16+26……+666计算999+997+995+……+101 777+769+761+753……+401例4、有一个等差数列:1、5、9、13……那么这个等差数列前100项的和是多少?练1、有一个等差数列:1、5、9、13……那么这个等差数列前50项的和是多少?练2、有一个等差数列:9、11、13、15……那么这个等差数列前65项的和是多少?练3、有一个等差数列:300、297、294……那么这个等差数列前55项的和是多少?练4、有一个等差数列a1=18,d=5,那么这个等差数列前99项的和是多少?例5、计算(1+3+5+……+2019)-(2+4+6+……2018)练1、计算(2+4+6+...+100)-(1+3+5+ (99)练2、计算1000-1-2-3-……-20练3、计算2000-3-6-9-……-51-54练4、计算1+2+3+......+9+10+20+30+......+90+100+200+300+ (1000)请认真完成作业~·~1、有一个数列:10、13、16、19……124,这个数列共有几项?其中28是第几项?2、计算1+2+3+4+……199 1+2+3+4……+3333、计算80+81+82+83……+150 332+331+330+……+1004、计算1+3+5+7+9……+99 8+10+12+14+……+1885、计算23+26+29+……119 222+118+114+……+986、有一个等差数列,a1=13,d=4,求前40项的和。

四年级下册数学奥数思维训练

四年级下册数学奥数思维训练

四年级下册数学奥数思维训练可以通过以下方式进行:
1.理解基础知识:确保学生对四年级下册数学的基础知识有深入的理解,包括整数、
小数、百分数、算数、几何、概率等。

2.练习解决问题:让学生学会如何用所学知识解决实际问题,通过大量的练习题,提
高学生的思维能力和解题技巧。

3.小组讨论:可以组织小组讨论,让学生们在一起学习,互相帮助,共同提高。

4.参加竞赛:可以鼓励学生参加数学竞赛,如奥数竞赛等,提高学生的思维能力和解
题能力。

5.学习小组活动:可以组织小组学习活动,让学生们在一起学习,互相帮助,共同提
高。

四年级奥数数列求和练习题

四年级奥数数列求和练习题

四年级奥数数列求和练习题1. 已知等差数列的首项是2,公差是3,共有7项,求这个数列的和。

解析:首先我们可以确定这个等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

代入已知数据,得到an =2 + (n-1)3。

根据题意,项数为7,代入公式得到a7 = 2 + (7-1)3 = 2 + 18 = 20。

然后,我们可以使用求和公式Sn = n(a1 + an)/2来求和。

代入已知数据,得到S7 = 7(2 + 20)/2 = 7(22)/2 = 7*11 = 77。

因此,这个等差数列的和为77。

2. 求等差数列2,5,8,11,...的前20项和。

解析:根据等差数列的性质,我们可以观察到这个等差数列的首项是2,公差是3。

我们可以利用相邻项之差来求和,即2+5=7,5+8=13,8+11=19,...。

可以发现每两个相邻项之和都比前一个项大3。

因此,我们可以计算前20项之和为S20 = (a1 + a20)*10/2 = (2 + 2 + (20-1)3)*10/2 = (2 + 2 + 57)*10/2 = 61*10/2 = 305。

因此,这个等差数列的前20项和为305。

3. 若数列1,4,7,10,...的和为155,求此数列的第n项。

解析:首先我们可以观察到这个等差数列的首项是1,公差是3。

由于求等差数列的和已知,我们可以用求和公式来解这道题。

设第n项为an,根据求和公式Sn = n(a1 + an)/2,代入已知数据得到155 = n(1 + an)/2。

将等差数列的通项公式an = a1 + (n-1)d代入,得到155 = n(1 +(1 + (n-1)3))/2。

化简得到310 = n(2 + 3n)/2。

进一步化简得到310 = n(1+ 3n)。

解这个二次方程得到3n^2 + n - 310 = 0。

通过因式分解或者求根公式求得n = 10或n = -11/3。

小学四年级奥数基础教程全

小学四年级奥数基础教程全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

最新四年级奥数----等差数列求和二

最新四年级奥数----等差数列求和二

第四周巧妙求和专题解析:前面我们学习了等差数列求和,其实生活中某些问题,可以转化为求若干个数的和,在解决这些问题时,要先判断是否是求某个等差数列的和。

如果是等差数列求和,就可以用等差数列公式求和。

某一项=首项+(项数-1)×公差项数=(末项-首项)÷公差 + 1总和=(首项+末项)×项数÷2例题1:计算1+3+5+7+……+197+199【思路导航】仔细观察发现,这个算式是一个等差数列求和的问题,公差为2,再根据项数=(末项-首项)÷公差 + 1来求得项数是多少,然后根据公式:总和=(首项+末项)×项数÷2 ,即得到算式总和。

解:公差为2,项数=(199-1)÷2+1=100,总和:(1+199)×100÷2=10000。

练习1:(1)计算:2+6+10+14+……+398+402 (2)计算:5+10+15+20+……+195+200(3)计算:1+11+21+31+……+1991+2001+2011 (4)计算:100+99+98+……+61+60例题2:计算:(2+4+6+……+98+100)-(1+3+5+……+97+99)【思路导航】我们可以发现,被减数和减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

练习2:计算下面各题。

(1)(2+4+6+......+2000)-(1+3+5+ (1999)(2)(2001+1999+1997+1995)-(2000+1998+1996+1994)(3)1+2-3+4+5-6+7+8-9+……+58+59-60例题3:王俊读一本小说,他第一天读了30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完,这本书共有多少页?练习3:(1)(2)刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个,正好做完,这批零件共有多少个?(3)(4)一个电影院的第一排有17个座位,以后每排比第一排多2个座位,最后一排有75个座位,这个电影院共有多少个座位?(5)(6)赵玲读一本书,她第一天读了20页,从第二天起,每天读的页数比前一天多5页,最后一天读了50页恰好读完,这本书有多少页?。

小学奥数知识点总结之数列求和

小学奥数知识点总结之数列求和

小学奥数知识点总结之数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)公差;
数列和公式:sn,=(a1+an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。

四年级奥数(2)简单的数列求和

四年级奥数(2)简单的数列求和

四年级奥数(2)简单的数列求和教学内容:简单的数列问题(一)世界著名的数学家高斯(1777年?1855年),幼年时代聪明过人。

上小学时,有一天数学老师出了一道题让全班同学计算:1 +2 +3 + 4+,??+ 99 + 100 =?老师出完题后,全班同学都在埋头计算,小高斯却很快地说出了正确答案5050。

那些正忙着把这100 个数一个一个相加求和的同学大吃一惊!小高斯有什么窍门呢?原来小高斯通过细心观察,发现1?100这一串数中,1+ 100 = 2 + 99= 3+ 98=-= 49+ 52= 50+ 51= 101 。

即:与这串数首末两端距离相等的每两个数的和,都等于首末两数的和,这样的和为101的数共有100+ 2 = 50对。

于是小高斯就把这道题巧算为:1+ 2+ 3+-+ 99+ 100=(1 + 100)X 100 + 2= 5050像1,2,3,-,99,100 这样的一串数我们称为“等差数列” ,下面介绍有关等差数列的概念。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

从第一项开始,后项与前项之差都相等的数称为等差数列,后项与前项之差称为公差,数列中数的个数称为项数。

例如:(1)5,6,7,8,-,100;(2)1,3,5,7,9,-,99;(3)4,12,20,28,-,804;(4)1,4,8,16,-,256。

其中( 1)是首项为5,末项为100,公差为1 的等差数列;( 2)是首项为1,末项为99,公差为 2 的等差数列;( 3)是首项为4,末项为804,公差为8 的等差数列;( 4)中前后两项的差都不相等,它不是等差数列。

从高斯的故事我们知道,要想求出像1 ,2,3,-,99,100 这一等差数列的和,只要用第一个数 1 与最后一个数100 相加求和,再乘以这串数的个数100,最后除以2。

由此,我们得到等差数列的求和公式为:数列和=(首项+末项)X项数十2[例1]计算1+ 2+ 3+-+ 1999[分析与解]这串加数组成的数列1,2,3,-,1999 是等差数列,公差是1,首项是1,末项是1999,项数是1999。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲数列求和(二)
例3.有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050 上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。

例4.求等差数列2,4,6,…,48,50的和。

分析与解答:这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:
项数=(末项-首项)÷公差+1=(50-2)÷2+1=25
首项=2,末项=50,项数=25
等差数列的和=(2+50)×25÷2=650
练习七计算下面各题。

1.1+2+3+…+49+50
2.6+7+8+…+74+75
3.100+99+98+…+61+60
4.2+6+10+14+18+22
5.5+10+15+20+…+195+200
6.9+18+27+36+…+261+270。

相关文档
最新文档