第四章练习题及参考解答

合集下载

复变函数第4章测验题参考解答

复变函数第4章测验题参考解答
数在 z 2 内解析,因此 a 的最大值为 2 . 4.若幂级数 【答案】4

3.若幂级数

【解析】由于 lim n
n →
(−1)n 2 n z 和函数在圆盘 z a 内解析,则 a 的最大值为 n n =1 n 4


【答案】 3
n 1 = , 所以该幂级数的收敛半径为 3. 3n 3
n
的收敛半径为 1, 即收敛圆盘为
ቤተ መጻሕፍቲ ባይዱz + 1 1 , 因此幂级数在 z = −
i i n 处发散, 从而函数 f ( z ) = (n + 1)( z + 1) 在 z = − 处 2 2 n =0
O
min{
【解析】 由阿贝尔第一定理可知
c ( z − 1)

n
在 z = i 处收敛, 则该幂级数在 z − 1 i − 1 内

n b n 1 a 1 + i n +1 n +1 a = 1 , 所以幂级数的收 a + ib 【解析】若 a b , 则 l = lim = lim n + 1 n → n → 1 b a n +1 n n a 1 + i a + ib a

5.设 a , b 为正实数,则幂级数 (A) max{ a , b } 【答案】 A
zn 的收敛半径是( n n n = 0 a + ib

i 处( 2
n =0
数 M
).
(B) min{ a , b }
(C) max{
敛半径 R =
敛半径为 max{ a , b } , 故选 A.

固态电子论-第四章习题参考解答

固态电子论-第四章习题参考解答
价带空穴由受主杂 质电离提供,随温 度升高迅速增加, 忽略本征激发
导带电 子浓度 由本征 激发决 定
p0
(cm-3)
杂质全部电离,价带空穴浓度等 于受主杂质浓度
随温度 增加,本 征激发载 流子浓度 越来越大
NA
低 温 弱 电 离 区
中 间 电 离 区
饱和区
过 渡 区
高 温 区
0
200
400
600
T(K)
导带底附近电子状态密度,
dZ V 23/ 2 2/3 2 1/3 3/ 2 1/ 2 gc ( E ) s ( m m ) ( E E ) t l c dE 2 2 3
V (2mdn )3/ 2 1/ 2 ( E E ) c 2 2 3
mdn s2/3 (ml mt2 )1/3
E EF k0T
泡利不相容原理的限制作用可以忽略不计(在
E 附近,存在大量的没有被粒子填充的
空状态,当少量粒子填充这些状态时,发生泡利不相容的几率很小),由费米统计分布 给出的几率值与波费米统计分布退化为玻尔兹曼统计分布给出的几率值非常接近。
E EF 1 exp k0T E EF 1 exp k0T E A exp k T 0
等能面 E ~ E dE 的体积,
d
d 2 dE 3 (8mt2 ml )1/ 2 ( E Ec )1/ 2 dE dE
导带底附近电子状态数,
dZ 2s
s4
V
2
3
2 2 1/2 1/2 (8 m m ) ( E E ) dE t l c 3
-- 鍺导带4个等效极值
F EF n T

新人教版数学七年级上册第四章同步习题+答案解析

新人教版数学七年级上册第四章同步习题+答案解析

人教版数学七年级上册第4章 4。

1.1立体图形与平面图形同步练习一、单选题1、下列说法中,正确的是( )A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形2、下列说法不正确的是( )A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆3、下列图形中,是棱锥展开图的是()A、 B、 C、 D、4、下面图形不能围成一个长方体的是( )A、 B、 C、 D、5、下列图形是四棱柱的侧面展开图的是()A、 B、 C、 D、6、下列图形中,是正方体的表面展开图的是()A、 B、 C、 D、7、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是( )A、 B、 C、 D、8、如图是一个正方体的表面展开图,这个正方体可能是()A、 B、 C、 D、9、一个几何体的展开图如图所示,这个几何体是( )A、棱柱B、棱锥C、圆锥D、圆柱10、在下面的图形中,不可能是正方体的表面展开图的是()A、 B、 C、 D、11、下列图形中,是正方体表面展开图的是( )A、 B、 C、 D、12、下列四个图形中是如图展形图的立体图的是()A、 B、 C、 D、二、填空题(共6题;共12分)13、一个棱锥有7个面,这是________棱锥.14、如果一个棱柱共有15条棱,那么它的底面一定是________边形.15、长方体是一个立体图形,它有________个面,________条棱,________个顶点.16、六棱柱有________个顶点,________个面,________条棱.17、如图是由________、长方体、圆柱三种几何体组成的物体.18、将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).三、解答题(共4题;共20分)19、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.20、(2009春•滨湖区期中)人人争当小小设计师.一个工程队为建设一项重点工程,要在一块长方形荒地上建造几套简易住房,每一套简易住房的平面是由长4y、宽4x构成,要求建成:两室、一厅、一厨、一卫.其中客厅面积为6xy;两个卧室的面积和为8xy;厨房面积为xy;卫生间面积为xy.请你根据所学知识,在所给图中设计其中一套住房的平面结构示意图.21、如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?22、如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)第4章 4.1.2点、线、面、体同步练习一、单选题(共12题;共24分)1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A、正方形B、等腰三角形C、圆D、等腰梯形2、下面现象能说明“面动成体”的是( )A、旋转一扇门,门运动的痕迹B、扔一块小石子,小石子在空中飞行的路线C、天空划过一道流星D、时钟秒针旋转时扫过的痕迹3、下列说法中,正确的是()A、棱柱的侧面可以是三角形B、四棱锥由四个面组成的C、正方体的各条棱都相等D、长方形纸板绕它的一条边旋转1周可以形成棱柱4、直角三角尺绕着它的一条直角边旋转一周后形成的几何体是( )A、圆柱B、球体C、圆锥D、一个不规则的几何体5、如图所示的几何体是由右边哪个图形绕虚线旋转一周得到()A、 B、 C、 D、6、如图,用水平的平面截几何体,所得几何体的截面图形标号是()A、 B、 C、 D、7、下列说法中,正确的是( )A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形8、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆9、如图,将正方体沿面AB′C剪下,则截下的几何体为()A、三棱锥B、三棱柱C、四棱锥D、四棱柱10、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A、6,11B、7,11C、7,12D、6,1211、用一个平面去截圆柱体,则截面形状不可能是( )A、梯形B、三角形C、长方形D、圆12、下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有( )A、4个B、3个C、2个D、1个二、填空题(共5题;共5分)13、飞机表演的“飞机拉线”用数学知识解释为:________.14、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.15、正方体的截面中,边数最多的是________边形.16、用一个平面去截一个三棱柱,截面图形的边数最多的为________边形.17、用平面去截一个六棱柱,截面的形状最多是________边形.三、作图题(共1题;共5分)18、用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.四、解答题(共2题;共10分)19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.五、综合题(共2题;共20分)21、已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)22、小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积= 底面积×高)4.2直线、射线与线段同步练习一、单选题(共10题;共20分)1、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出()A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是()A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是()A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有()A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是()A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB, AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C①画直线AB ②画射线BC ③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.20、已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.第4章 4.3.1角同步练习一、单选题(共12题;共24分)1、下列说法中,正确的是( )A、直线有两个端点B、射线有两个端点C、有六边相等的多边形叫做正六边形D、有公共端点的两条射线组成的图形叫做角2、如图已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD=()A、49°07′B、54°53′C、55°53′D、53°7′3、∠1=45゜24′,∠2=45。

概率论第4章习题参考解答

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示: ξ 0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示: ξ 0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{408.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。

人工智能教程习题及答案第4章习题参考解答

人工智能教程习题及答案第4章习题参考解答

第四章不确定性推理习题参考解答4.1 练习题4.1什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?4.2什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。

4.3什么是信任增长度?什么是不信任增长度?根据定义说明它们的含义。

4.4当有多条证据支持一个结论时,什么情况下使用合成法求取结论的可信度?什么情况下使用更新法求取结论可信度?试说明这两种方法实际是一致的。

4.5设有如下一组推理规则:r1:IF E1THEN E2(0.6)r2:IF E2AND E3THEN E4 (0.8)r3:IF E4THEN H (0.7)r4:IF E5THEN H (0.9)且已知CF(E1)=0.5,CF(E3)=0.6,CF(E5)=0.4,结论H的初始可信度一无所知。

求CF(H)=?4.6已知:规则可信度为r1:IF E1THEN H1(0.7)r2:IF E2THEN H1(0.6)r3:IF E3THEN H1(0.4)r4:IF (H1AND E4) THEN H2(0.2)证据可信度为CF(E1)=CF(E2)=CF(E3)=CF(E4)=CF(E5)=0.5H1的初始可信度一无所知,H2的初始可信度CF0(H2)=0.3计算结论H2的可信度CF(H2)。

4.7设有三个独立的结论H1,H2,H3及两个独立的证据E1与E2,它们的先验概率和条件概率分别为P(H1)=0.4,P(H2)=0.3,P(H3)=0.394P(E1/H1)=0.5,P(E1/H2)=0.6,P(E1/H3)=0.3P(E2/H1)=0.7,P(E2/H2)=0.9,P(E2/H3)=0.1利用基本Bayes方法分别求出:方法分别求出:(1)当只有证据E1出现时,P(H1/E1),P(H2/E1),P(H3/E1)的值各为多少?这说明了什么?么?(2)当E1和E2同时出现时,P(H1/E1E2),P(H2/E1E2),P(H3/E1E2)的值各是多少?这说明了什么?明了什么?4.8在主观Bayes方法中,请说明LS与LN的意义。

人教版 八年级上册物理 第4章 光现象 同步训练含答案

人教版 八年级上册物理 第4章 光现象 同步训练含答案

人教版八年级物理第4章光现象同步训练附答案一、选择题1. 关于光现象,下列说法正确的()A. 凸透镜只对平行光线具有会聚作用B. 人向平面镜走近时,他在镜中的像逐渐变大C. 黑板面“反光”是由于光发生漫反射造成的D. 日食的形成是由于月球挡住了太阳射向地球的光2. 构建思维导图是整理知识的重要方法,如图是小金复习光学知识时构建的思维导图,图中Ⅰ处可以补充的现象是()A. 镜子中优秀的“自己”B. 湖水中青山的倒影C. 阳光下绿树的影子D. 岸上的人看到水中的“鱼”3. 如图所示,渔夫叉鱼时,应瞄准哪个方向才能叉到鱼?()A. 看到的鱼的前方B. 看到的鱼的方向C. 看到的鱼的上方D. 看到的鱼的下方4. 黑暗的房间里有两盏电灯,只有一盏灯点亮,但人能看到未点亮的灯泡。

图中对于“看到未点亮灯泡”所画的光路图,正确的是()5. 小明想利用一块平面镜使射向井口的太阳光竖直射入井中,如图所示.选项中的数字序号表示的是确定平面镜位置时作图的先后次序,其中作图过程正确的是()6. 学校大门旁竖直放置了一块平面镜,小张同学逐渐靠近平面镜的过程中,下列说法正确的是()A.小张的像逐渐变大B.小张想通过平面镜看到自己的全身像,则平面镜的高度至少为他身高的一半C.小张在平面镜中看见了小王,则小王在平面镜中看不到小张D.小张在平面镜中所成的像是实像7. 一条光线射到平面镜上,如果入射方向保持不变,转动平面镜的镜面,使入射角增大20°,则反射光线跟入射光线恰成直角,镜面转动前的反射光线与入射光线的夹角是() A.20°B.25°C.35°D.50°8. 如图2所示是晚上汽车在干燥的沥青路面和潮湿的沥青路面上行驶时大灯部分光路简图,在晚上开车时()A.潮湿的路面更容易使光发生漫反射B.干燥的路面发生镜面反射C.对面无车时,驾驶员看潮湿的路面更暗D.照射到干燥路面上的光不遵循光的反射定律二、填空题9. 如图,面镜在各行各业中都有广泛的应用,利用________面镜制成的太阳灶可以用来会聚太阳光烧水;而牙医利用口腔内窥镜,可以看到牙齿在镜中所成的________像(选填“实”或“虚”).10. 《康熙几暇格物编》中记载:“置钱碗底,远视若无,及盛满水时,则钱随水光而显现矣.”如图所示,在铜钱放在碗底B处后加适量水,从A处恰好看到铜钱的像在E处,用激光笔从A点向________处(用图中字母表示)照射,可照亮铜钱.加满水,从A处看到像的位置将________(选填“变高”、“变低”或“不变”).11. 月亮不是光源,它本身不会发光,“月亮的光”实际上是照到月球表面被反射的太阳光。

初二物理上册练习题第四章

初二物理上册练习题第四章

初二物理上册练习题第四章1. 问题一:一辆汽车以2m/s的速度匀速行驶。

如果汽车在10秒内行驶了多少米?解答:已知速度v = 2 m/s,时间t = 10 s,根据速度公式v = s/t,可得:s = v * t = 2 m/s * 10 s = 20 m所以,汽车在10秒内行驶了20米。

2. 问题二:某人坐电梯上楼,电梯从1楼到8楼共耗时25秒。

如果电梯在这段时间内上升了45米,求电梯的平均速度。

解答:已知上升距离s = 45 m,时间t = 25 s,根据速度公式v = s/t,可得:v = s / t = 45 m / 25 s = 1.8 m/s所以,电梯的平均速度为1.8米每秒。

3. 问题三:小明骑自行车以10 km/h的速度匀速行驶,行驶了2小时后,他行驶的总距离是多少?解答:已知速度v = 10 km/h,时间t = 2 h,根据速度公式v = s/t,可得:s = v * t = 10 km/h * 2 h = 20 km所以,小明行驶的总距离是20公里。

4. 问题四:某人骑自行车以每小时60公里的速度行驶,行驶了4小时后停下休息。

休息了30分钟后,他继续以每小时50公里的速度行驶。

他行驶的总距离是多少?解答:第一段行驶中,已知速度v1 = 60 km/h,时间t1 = 4 h,根据速度公式v = s/t,可得第一段行驶的距离s1:s1 = v1 * t1 = 60 km/h * 4 h = 240 km休息了30分钟后,继续行驶,已知速度v2 = 50 km/h,时间t2 = 0.5 h,根据速度公式v = s/t,可得第二段行驶的距离s2:s2 = v2 * t2 = 50 km/h * 0.5 h = 25 km所以,他行驶的总距离是第一段行驶距离加上第二段行驶距离:总距离 = s1 + s2 = 240 km + 25 km = 265 km所以,他行驶的总距离是265公里。

高中数学(必修一)第四章 指数 练习题及答案解析

高中数学(必修一)第四章 指数 练习题及答案解析

高中数学(必修一)第四章 指数 练习题及答案解析学校:___________姓名:___________班级:_____________一、解答题1.计算:2.求下列各式的值: (1)1236;(2)52164⎛⎫ ⎪⎝⎭;(4)1216-⨯.3.(1)已知11223x x-+=,计算:22111227x x x x x x ---+-+++;(2)设128x y +=,993y x -=,求x y +的值.4.(1)化简:()314211113643,01645x y x y x y x y ---->⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭;(2)计算:11026188100-⎛⎫⨯+ ⎪⎝⎭.5.求解下列问题:(1)证明:log 1log log a a ab x b x =+.(2)已知333pa qb rc ==,且1111a b c ++=.求证:()11112223333pa qb rc p q r ++=++.6.求下列各式的值:;()3,3x ∈-. 7.计算下列各式: (1)()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)20.53207103720.12392748π--⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭;(322.551030.064π-⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦;(4))0x ⎛> ⎪⎝⎭;(5)()21113322156630,0.13a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭>>8.化简求值:(1)4133222333814a a b b a a ⎛- ÷ +⎝⎭;(2)48lg 2(log 3log 3)lg 3+⨯.9.中国茶文化博大精深.茶水的口感与茶叶的类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.经过研究发现,在25℃室温下,设茶水温度从85℃开始,经过x 分钟后的温度为y ℃,则满足25x y ka =+(k ∈R ,01a <<,0x ≥).(1)求实数k 的值;(2)经过测试知0.9227a =,求在25℃室温下,刚泡好的85℃的茶水大约需要放置多长时间才能产生最佳饮用口感(结果精确到1分钟).(参考数据:lg70.8451≈,lg12 1.0792≈,lg 0.92270.0349≈-)10.计算求值(1)()3620189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.11.定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.12.已知函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2xx a f x a =+. (1)求a 的值;(2)求证:()()1f x f x +-为定值;(3)求12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.二、单选题13.已知函数()()ln ,0,e ,0,x x x f x x -⎧-<=⎨≥⎩,则()()e f f -=( ) A .e -B .0C .1eD .114.85-化成分数指数幂为( ) A .12x B .415x C .415x - D .25x三、填空题15.若01b a <<<,b p a =,a q b =,b r b =,则__________.(用>连接)16.已知17a a+=,则1122a a -+=______. 17.一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h )参考答案:1.6【分析】先将根指数幂转化成分数指数幂的形式,在按照分数指数幂的运算法则进行计算即可. 【详解】解:原式()()111111111123323623623323223236-+++-=⨯⨯⨯⨯⨯=⨯=⨯=. 故答案为:62.(1)6 (2)312532(3)232 (4)12【分析】(1)利用指数幂的运算性质即可求解;(2)利用指数幂的运算性质即可求解;(3)将根式转化为分数指数幂,再利用幂的运算性质即可求解;(4)利用指数幂的运算性质即可求解.(1) 解:()1122122266663⨯===;(2) 解:552252252555316412522232⨯⎡⎤⎛⎫⎛⎫⎛⎫====⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎛⎫⎥⎦⎝⎣ ⎪⎭; (3)()()11310112105223133113333222222⨯⨯-⨯⎡⎤⎢⎥⎣⎦==== (4)解:()11411112162222222-----===⨯=⨯⨯=. 3.(1)4;(2)27【分析】(1)对11223x x -+=两边平方,求出17x x -+=,再对此式两边平方,化简可得2247x x -+=,从而代入可求结果,(2)将等式两边化为同底数幂的形式,然后可得关于,x y 的方程组,求出,x y 的值,从而可求得x y +的值【详解】(1)因为11223x x -+=,所以211229x x -⎛⎫+= ⎪⎝⎭,所以129x x -++=,所以17x x -+=,所以()2127x x -+=,即22249x x -++=,所以2247x x -+=, 所以22111227477473x x x x x x ---+--==++++. (2)因为128x y +=,所以()3122y x +=,即()31x y =+.又993y x -=,所以2933y x -=,即29y x =-,由3(1)29x y y x =+⎧⎨=-⎩,解得216x y =⎧⎨=⎩, 故x y +的值为27.4.(1)10y -;(2)3【分析】(1)分数指数幂的运算法则进行计算;(2)分数指数幂与根式运算法则进行计算.【详解】(1)原式14223431310310x y y x y ---==--. (2)原式())()111113226210018210018210183--⎡⎤=--+=-+=+-=⎣⎦. 5.(1)证明见解析(2)证明见解析【分析】(1)结合换底公式以及对数运算证得等式成立.(2)令333pa qb rc k ===,结合指数运算,通过证明等式左边=右边=13k 来证得等式成立.(1) 左边1log log log log 1log 1log log log a x x a a ab x x x a ab ab b x aab =====+=右边 (2)令333pa qb rc k ===,则2k pa a =,2k qb b=,2k rc c =, 所以()1132223k k k pa qb rca b c ⎛⎫++=++= ⎪⎝⎭1133111k k a b c ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦, 1111111133333333333111k k k p q r k k a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫++=++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()12223pa qb rc ++=111333p q r ++. 6.(1)-2(3)π3-(4)22,31,4,1 3.x x x ---<≤⎧⎨-<<⎩【分析】根据根式与分数指数幂的转化化简求值即可.(1)2=-(2)=(3)3ππ3-=-(4)原式13x x ==--+,当31-<≤x 时,原式()1322x x x =--+=--;当13x <<时,原式()134x x =--+=-.因此,原式22,31,4,1 3.x x x ---<≤⎧=⎨-<<⎩7.(1)1615;(2)100;(3)3;(4)2x ;(5)9a -. 【分析】利用根式与分数指数幂的互化,根式的性质,指数幂的运算性质计算求值.【详解】(1)原式()1122221412116110129431015-⎛⎫=+⨯-=+⨯-= ⎪⎝⎭. (2)原式()12232125273710396448--⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭5937100331648=++-+100=. (3)原式()1315270.4128-⎛⎫=-- ⎪⎝⎭5350.51222=-++-3=. (4)原式31222x x x =⋅=.(5)原式21111532623699a b a +-+-=-=-.8.(1)2a (2)56【分析】(1)结合指数幂的运算公式以及立方差公式化简整理即可求出结果;(2)结合对数的换底公式化简整理即可求出结果.(1) 原式()1133211223333381242a a b b a b a b a a ⎛⎫- ⎪=÷- ⎪ ⎪++⎝⎭3311133311533621121333362242a a b a b a a b a b a a ⎡⎤⎛⎫⎛⎫⎢⎥- ⎪ ⎪⎢⎥⎝⎭⎝⎭-⎣⎦=÷⨯++ 111211211533333333362112133336(2)(24)242a a b a a b b a b a a b a b a a -++-=÷⨯++ 5445162336616aa a a a +-=⋅==451366a +-=2a =,(2) 原式lg3lg3lg2115()2lg23lg2lg3236=+⨯=+=.9.(1)60(2)大约需要放置7分钟才能产生最佳饮用口感【分析】(1)直接由0x =时,85y =代入求解即可;(2)将60y =代入函数关系式,再结合对数的运算性质求解即可.(1)依题意,当0x =时,85y =,所以08525k a =⋅+,解得60k =, 所以实数k 的值是60.(2)由(1)知,当0.9227a =时,600.922725x y =⨯+,当60y =时,600.92272560x ⨯+=,即70.922712x =, 两边取对数,得lg0.9227lg7lg12x =-, 所以lg 7lg120.8451 1.07927lg 0.92270.0349x --=≈≈-. 所以刚泡好的85℃的茶水大约需要放置7分钟才能产生最佳饮用口感.10.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算(2)由对数的运算法则计算(3)将指数式转化为对数式后计算(1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lg lg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+-2239log 33log 322=++-=;(3)6log 3a =,2log 3b =, 则31log 6a =,31log 2b=; 所以33311log 6log 2log 31a b-=-==. 11.(1)11()(10)210x xf x =-,11()(10)210x xg x =+ (2)证明见解析 (3)121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+【分析】(1)由题意可得:()()10x f x g x +=,再根据函数的奇偶性可得:()()10()()x f x g x f x g x --+-==-+,进而结合两个式子求出两个函数的解析式. (2)由(1)可得12()()g x g x +的表达式,再利用基本不等式把12()()g x g x +进行化简整理即可得到答案. (3)由(1)可得1()f x 、2()f x 、1()g x 、2()g x 、12()f x x -与12()g x x +的表达式与结构特征,进而可求(1)解:()()10x f x g x +=℃()()10x f x g x -∴-+-=,()f x 为奇函数,()g x 为偶函数()()f x f x ∴-=-,()()g x g x -=()()10x f x g x -∴-+=℃由℃,℃解得11()(10)210x x f x =-,11()(10)210x x g x =+. (2) 解:1212121111()()(10)(10)221010x x x x g x g x +=+++ 1212121211111111(1010)()210102222210101010x x x x x x x x =+++≥⨯+⨯ 121212221102()210x x x x x x g +++=+=,当且仅当121010x x =,即12x x =时取等号; 所以1212()()2()2x x g x g x g ++≥ (3)解:11()(10)210x x f x =-,11()(10)210x x g x =+. 12121211()(10)210x x x x f x x --∴-=- 122111010()21010x x x x =- 1212121221122112110101110101(10)(10)44101010101010x x x x x x x x x x x x x x x x ++++=+----+- 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =-+-+- 1212()()()()f x g x g x f x =-121212111()(10)2210x x x x g x x +++=+⋅ 121211111010221010x x x x +⋅⋅⋅= 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =--+++. 1212()()()()g x g x f x f x =+即121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+;12.(1)4a =(2)证明见解析(3)100【分析】(1)函数x y a =在[]1,2上单调,得到220a a +=,排除5a =-,得到答案.(2)()442xx f x =+,代入数据计算得到()()11f x f x +-=,得到证明. (3)根据()()11f x f x +-=,两两组合计算得到答案.(1)解:因为函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,且函数x y a =(0a >且1a ≠)在[]1,2上单调,所以当1x =和2x =时,函数x y a =(0a >且1a ≠)在[]1,2上取得最值,即220a a +=,解得4a =或5a =-(舍去),所以4a =.(2)解:由(1)知,4a =,所以()442xx f x =+,故()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅. (3)解:由(2)知,()()11f x f x +-=, 因为12001201201+=,21191201201+=,,1001011201201+=, 所以12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12001192012012020121f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1001011100100201201f f ⎡⎤⎛⎫⎛⎫+=⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 13.C【分析】直接代值计算即可.【详解】()e ln e=1f -=,则()()()1e 1e f f f --== 故选:C.14.B【分析】直接化根式为分数指数幂,即可得出答案.【详解】解:8855--=⎝⎭ 885145615x x ---⎛⎫=== ⎪⎝⎭⎝⎭.故选:B.15.p r q >>【分析】利用幂函数和指数函数的单调性比较大小即可【详解】解:因为01b <<,所以函数b y x =在(0,)+∞上为增函数, 因为01b a <<<,所以011b b b b a <<<=,即01r p <<<, 因为01b <<,所以函数x y b =在R 上为减函数,因为01b a <<<,所以01b a b b b b >>>,即1b q r <<<,所以p r q >>,故答案为:p r q >>16.3【分析】根据指数幂的运算即可求解.【详解】由17a a+=,可得0a >,11220a a -+>,11223a a -∴+==. 故答案为:317.6.6【分析】写出血液中药物含量关于时间的关系式,解不等式求出答案.【详解】设x h 后血液中的药物量为y mg , 则有()020001100x y =-, 令1000y ≥得:lg 20.3010 6.612lg 3120.4771x ≤≈≈--⨯ 故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。

因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。

因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。

在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。

加进或剔除一个变量,通常是根据F 检验看其对ESS 的贡献而作出决定的。

根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么?练习题4.2参考解答:根据对多重共线性的理解,逐步向前和逐步向后回归的程序都存在不足。

逐步向前法不能反映引进新的解释变量后的变化情况,即一旦引入就保留在方程中;逐步向后法则一旦某个解释变量被剔出就再也没有机会重新进入方程。

而解释变量之间及其与被解释变量的相关关系与引入的变量个数及同时引入哪些变量而呈现出不同,所以要寻找到“最优”变量子集则采用逐步回归较好,它吸收了逐步向前和逐步向后的优点。

4.3 下表给出了中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 。

资料来源:《中国统计年鉴》,中国统计出版社2000年、2008年。

请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ 1)利用表中数据估计此模型的参数。

2)你认为数据中有多重共线性吗? 3)进行以下回归:it t i t t i t t v CPI C C GDP v CPI B B Y v GDP A A Y 321221121ln ln ln ln ln ln ++=+=+=++根据这些回归你能对数据中多重共线性的性质说些什么?4)假设数据有多重共线性,但32ˆˆββ和在5%水平上个别地显著,并且总的F 检验也是显著的。

对这样的情形,我们是否应考虑共线性的问题?练习题4.3参考解答: (1) 参数估计结果如下22ln() 3.060 1.657ln() 1.057ln() (0.337) (0.092) (0.215)0.992 0.991 F 1275.093GDP CPI R R =-+-===进口(括号内为标准误)(2)居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且且CPI 与进口之间的简单相关系数呈现正向变动。

可能数据中有多重共线性。

计算相关系数:(3)最大的CI=108.812,表明GDP 与CPI 之间存在较高的线性相关。

(4)分别拟合的回归模型如下:22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)0.9828 0.9820 1198.698GDP R R F =-+===22ln Y 5.4424 2.6637ln (PI) t= (-4.3412) (11.6809)0.8666 0.8603 136.4437C R R F =-+===22ln() 1.4380 2.2460ln (PI) t=(-1.9582) (16.8140)0.9309 0.9276 282.7107GDP C R R F =-+===单方程拟合效果都很好,回归系数显著,可决系数较高,GDP 和CPI 对进口分别有显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。

(5)如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意。

4.4 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造解释变量数据矩阵X 才可能避免多重共线性的出现?练习题4.4参考解答:本题很灵活,主要应注意以下问题:(1)选择变量时要有理论支持,即理论预期或假设;变量的数据要足够长,被解释变量与解释变量之间要有因果关系,并高度相关。

(2)建模时尽量使解释变量之间不高度相关,或解释变量的线性组合不高度相关。

4.5 克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y 和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE 估计得出了下列回归方程:37.107 95.0 (1.09) (0.66) (0.17) (8.92) 3121.02452.01059.1133.8ˆ2==+++=F R X X X Y括号中的数据为相应参数估计量的标准误差。

试对上述模型进行评析,指出其中存在的问题。

练习题4.5参考解答:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数95.02=R ,F 统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F 临界值为3.028,计算的F 值远大于临界值,表明回归方程是显著的。

模型整体拟合程度较高。

依据参数估计量及其标准误,可计算出各回归系数估计量的t 统计量值:01238.1331.0590.4520.1210.91, 6.10,0.69,0.118.920.170.661.09t t t t ========除1t 外,其余的j t 值都很小。

工资收入X1的系数的t 检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符。

另外,理论上非工资—非农业收入与农业收入也是消费行为的重要解释变量,但两者的t 检验都没有通过。

这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。

4.6 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。

为此,收集了中国能源消费总量Y (万吨标准煤)、国民总收入(亿元)X1(代表收入水平)、国内生产总值 (亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2007年期间的统计数据,具体如表4.2所示。

表4.12 1985~2007年统计数据资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。

要求:1)建立对数多元线性回归模型,分析回归结果。

2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。

练习题4.6参考解答:(1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下:生成: lny=log(y), 同样方法生成: lnx1,lnx2,lnx3,lnx4,lnx5,lnx6,lnx7.作全部变量对数线性多元回归,结果为:从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,,各变量联合起来对能源消费影响显著。

可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5的参数为负值,在经济意义上不合理。

所以这样的回归结果并不理想。

(2) 预料此回归模型会遇到多重共线性问题, 因为国民总收入与GDP本来就是一对关联指标;而工业增加值、建筑业增加值、交通运输邮电业增加值则是GDP的组成部分。

这两组指标必定存在高度相关。

解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下:可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于0.900以上。

如果决定用表中全部变量作为解释变量,很可能会出现严重多重共线性问题。

(3)因为存在多重共线性,解决方法如下:A:修正理论假设,在高度相关的变量中选择相关程度最高的变量进行回归建立模型:而对变量取对数后,能源消费总量的对数与人均生活电力消费的对数相关程度最高,可建立这两者之间的回归模型。

如22ln 9.9320.421ln 6 (0.116) (0.026)0.926 0.922 261.551y x R R F =+===B :进行逐步回归,直至模型符合需要研究的问题,具有实际的经济意义和统计意义。

采用逐步回归的办法,去检验和解决多重共线性问题。

分别作ln Y 对1234567ln ,ln ,ln ,ln ,ln ,ln ,ln X X X X X X X 的一元回归,结果如下:一元回归结果:其中加入lnX6的方程调整的可决系数最大, 以lnX6为基础, 顺次加入其他变量逐步回归。

相关文档
最新文档