3.2简单几何体的三视图(第二课时)
九年级数学上册(浙教版)课件 3.2 简单几何体的三视图

知识点二:三视图 4.如图,几何体的主视图是( C )
5.下面简单几何体的左视图是( A )
6.如图,由三个小立方块搭成几何体的俯视图是( A )
7.下图是由D6个同样大小的正方体摆成的几何体,将正方体①移走后,
(2)猜想并写出第n个图形中看不见的小立方体的个数. 解:(n-1)3
第3章 三视图与表面展开图
3.2 简单几垂直于投影面
1.正投影:在平行投影中,______________________________,那么这
种投影就称为正投影.
正投影面上的正投影
2.物体的三视图:物体在___________________________叫做主视图, 在__水__平__投__影__面__上__的__正__投__影___叫做俯视图,在___侧__投__影__面__上__的__正__投__影____叫 做左视图.主视图、左视图和俯视图合称___三__视__图_____.产生主视图的投
射线方向也叫做___主__视__方__向_____. 3.“____长__对__正____、____高__平__齐_____、____宽__相__等_____”是画三视图必须
遵循的法则.
知识点一:正投影 1.下列图形中的投影是正投影的是( D )
线段 2.当正方形纸板P垂直于投影面时,P的正投影成为一条__________.
所得几何体(
)
A.主视图改变,左视图改变
B.俯视图不变,左视图不变
C.俯视图改变,左视图改变
D.主视图改变,左视图不变
8.画出如图所示的物体的三视图. 解:略
公开课教案《简单几何体的三视图》精品教案(市一等奖)(市优)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
3.2简单几何体的三视图教学目标:1、知识目标进一步明确正投影与三视图的关系2、能力目标经历探索简单立体图形的三视图的画法,能识别物体的三视图;培养动手实践能力,发展空间想象能力。
3、情感目标使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
重点:简单立体图形的三视图的画法难点:三视图中三个位置关系的理解教学过程:一、复习引入1、画一个立体图形的三视图时要注意什么?(上节课中的小结内容)2、说一说:直三棱柱、圆柱、圆锥、球的三视图3、做一做:画出下列几何体的三视图4、讲一讲:你知道正投影与三视图的关系获二、讲解例题例2画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构成的组合体.画三视四时要注意这两个长方体的上下、前后位置关系.解:如图是支架的三视图例3右图是一根钢管的直观图,画出它的三视图分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.解.图如图29.2-7是钢管的三视图,其中的虚线表示钢管的内壁.三、巩固再现一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为 200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图.四、作业课本习题本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
中考数学 题型02 简单几何体的三视图(解析版)

备考2020年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是( )A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是( )A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是( )A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是( )A .B .C .D .【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D .3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A .B .C .D .【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D .4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是( )A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是( )A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是( )A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B .4.如图所示几何体,从左面看是( )A .B .C .D .【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B .5.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B .6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是( )A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是( )A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。
空间几何体的三视图(第二课时)

空间几何体的三视图
练习
1.画出下列几何体的三视图:
空间几何体的三视图
练习
1.画出下列几何体的三视图:
空间几何体的三视图
练习
2.如图是截去一角的长方体,画出它的三视图:
正视图
侧视图
俯视图
空间几何体的三视图
练习
3.如图,在正方形ABCD-A'B'C'D'中,M,N是分别是BB',BC的中点,则 图中阴影部分在平面ADD'A'上的投影为(A)
A
B
C
D
空间几何体的三视图
练习
4.如图所示是两个相同的正方体,阴影部分选为正面,正方体的棱长 为1,分别画出它们的三视图.
空间几何体的三视图
练习
5.如图所示,这些几何体各自的三视图中,有且仅有两个视图相同 的是( D)
①正方体
A.①②
②圆锥
B.①③
③三棱台
C.①④
④正四棱锥
D.②④
侧视图
空间几何体的三视图
常见几何体的三视图
7.球体
正视图
O
三视图
俯视图
侧视图
空间几何体的三视图空间几何体的三视图
简单组合体的三视图
a
正视图
h
b
a
b
侧视图
俯视图
空间几何体的三视图
简单组合体的三视图
俯 侧
正视图
侧视图
正
俯视图
空间几何体的三视图
小结
1.一个几何体的侧视图和正视图高度一样,俯视图和正视图长度 一样,侧视图和俯视图宽度一样. 2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,不能 看见的轮廓线和棱用虚线表示.
三视图(2) 大赛获奖精美课件 公开课一等奖课件

4
五、课堂小结 相似三角形的性质: 性质2.相似三角形周长的比等于相似比.
性质3.相似三角形面积的比等于相似比的平方.
相似多边形的性质1:相似多边形周长的比等于相似比.
相似多边形的性质2:相似多边形面积的比等于相似比的平方.
本节课主要是让学生理解并掌握相似三角形周长的比等于相似 比、面积比等于相似比的平方,通过探索相似多边形周长的比 等于相似比、面积的比等于相似比的平方让学生体验化归思想, 学会应用相似三角形周长的比等于相似比、面积的比等于相似 比的平方来解决简单的问题.因此本课的教学设计突出了“相 似比⇒相似三角形周长的比⇒相似多边形周长的比”,“相似 比⇒相似三角形面积的比⇒相似多边形面积的比”等一系列从 特殊到一般的过程,让学生深刻体验到有限数学归纳法的魅 力.
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
本节课的教学,以课程标准为指南,结合学生的已有知识和 经验而设计.重点讲解由三视图判断几何体的结构特征,也 就是画三视图时尺寸不作严格要求.教学设计时使用了大量 的图片,建议在实际应用时尽量使用信息技术,如画法几何, 让学生从动态过程中获得三视图的感性认识,以便从整体上 把握三视图的画法.
2022春九年级数学下册 第32章 投影与视图32.2 视图第2课时由三视图到几何体教案冀教版

由三视图到几何体【教学目标】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.经历探索简单的几何体的三视图的还原,进一步发展空间想象能力.3.通过探索由三视图还原几何体或实物的活动,培养动手实践能力,发展学生逆向思维能力.【重点难点】重点:根据三视图描述基本几何体和实物原型.难点:根据三视图想象基本几何体和实物原型的形状.┃教学过程设计┃教学过程设计意图一、复习引入新知1.完成下列练习:如图所示,画出它的主视图、俯视图和左视图.教师出示练习题,学生先做(提醒学生注意三视图的位置与大小关系),然后学生说出答案,教师点拨.2.展示机械制图中三视图与对应立体图形的图片,导入本课. 回忆已学习的相关内容,温故知新. 培养空间观念,为新课的探索做铺垫.二、师生互动,探究新知1.完成教材第100~101页“一起探究”:(1)圆柱、正四棱柱.(2)圆柱、棱柱等;圆柱、球等.(3)两个四棱柱的重叠.2.例题(教材第101页例3).由学生先讨论解答,最后教师出示正确答案. 学生观察、对照图示,结合主视图、俯视图、左视图的位置与大小的对应关系完成由平面视图到几何体的转变,教师适时点拨,最后教师出示立体图片.由视图逐步还原立体图形或实物、发展学生空间想象能力、逆向思维能力.结合视图,对比辨析,找出异同,加深对三视图的理解,弄清三视图中长、宽、高的大小对应关系.三、运用新知,解决问题教材第102页练习第1,2,3题.学生分析解决练习题,教师巡视指导,教师视情况点拨.让学生充分暴露自己对新知识理解存在的问题,“兵”教“兵”、广参与,查漏补缺,巩固提高.四、课堂小结,提炼观点学生回顾总结,归纳本节课所学知识,教师系统归纳.帮助学生归纳总结,巩固新学知识.五、作业布置,巩固提升必做:教材第102~103页A组.选做:教材第104页B组.教师布置作业,学生课后完成.巩固知识.┃教学小结┃【板书设计】视图3由视图还原立体图形。
人教版初三数学下册“三视图”(第2课时)教学设计

活动流程图
活动内容和目的
新课学习
例3根据下面的三视图说出立体图形的名称.
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形,
解:(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是长方体,如图(1)所示;
(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是圆锥,如图(2)所示.
师生共同归纳总结收获体会。
教学过程设计
问题与情景
师生行为
设计意图
〔活动1〕
1.思考三视图的画法。
2.课件演示:对几何体进行正投影得到三视图。
3.将水平面、侧面、正面展开到同一平面,观察得到三种视图的位置关系。
4.同桌讨论得到三种视图大小上的规律。
教师提问:
(1)如何绘制一个几何体的三视图?(观察:从不同方向正视几何体观察几何体的三视图)。
通过总结三视图画法,指出三视图的学习培养了我们图)描述物体的形状.
分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到。两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的.且有一条棱〔中间的实线)可见到,综合各视图可知,物体是五棱柱形状的.
解:物体是五棱柱形状的,如下图所示.
(2)我们今天学习的内容和以前“从不同方向看”有哪些不同?
(3)画一个几何体的三视图的一般步骤是怎样的?
活动中教师应关注:
(1)引导学生总结:本节课的学习使我们不但知道三视图的形状,还明确了三种视图之间的位置关系及大小对应关系。
(2)学生是否明确三视图的画法步骤?
空间几何体的三视图2

螺丝钉
由三视图想象几何体
下面是一个组合图形的三视图,请描述物体形 状.
正视图
左视图
俯视图
由三视图想象几何体
立体图
知识结构
简单组合 体的结构
简单组合体 的三视图
由三视图想 象几何体
空间几何体的三视图
中教育星软件技术有限公司 2006年3月制作
简单组合体的三视图
画出下面这个组合图形的三视 图.
遮挡住看不见的线用虚线
马蹄形磁铁的三视图
简单组合体的三视图 画出下面这个简单组合体的三视图:
正视图
左视图
立体图
俯视图
由三视图想象几何体
下面是一个组合图形的三视图,请描述物体形 状.
正视图
左视图
俯视图
物体形状
从实物中抽象出几何模型
由三视图想象实物模型 下面是一个组合图形的三视图,请描述物体形 状.
笔筒
由三视图想象实物模型 请想象下面三视图所表示的几何图形的实物模 型. 圆锥
圆台
冰淇淋
由三视图想象实物模型 请想象下面三视图所表示的几何图形的实物模 型. 圆柱 圆台 圆柱
热水瓶
由三视图想象实物模型 请想象下面三视图所表示的几何图形的实物模 型.
圆柱
圆台
圆柱
手电筒
由三视图想象实物模型 请想象下面三视图所表示的几何图形的实物模 型. 圆柱 半圆球
1.2.1 空间几何体的三视图
-简单几何体的三视图
简单组合体的结构
叠加式
简单组合体的结构
挖切式
简单组合体的结构
综合方式
简单组合体
简单组合体
影子与投影的区别
一视图和二视图 不同物体的一视图和二视图相同.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6cm,按所标的主视方向说出它在正投影面、水平投
影面、 侧投影面上的正投影各是什么图形?并按指定 主视方向画出它的三视图(比例为1:1)。
解:圆柱体在正 投影面上正投影 是矩形,在水平 投影面上的正投 影是圆,在侧投 影面上的正投影 是矩形。其三视 图如图
主视图
左视图
俯视图
1.下列选项中,如图圆柱的三视图画法正确的是(
复习
1、画出下列基本几何体的三视图:
主视图高 平 齐Fra bibliotek左视图
1cm 长对正
3cm
2cm
宽相等
主视方向 俯视图 主视图和俯视图共同反映左右方向的尺寸, 常称为“长对正”; 主视图和左视图共同反映上下方向的尺寸,常称为“高平齐”; 俯视图和左视图共同反映前后方向的尺寸,常称为“宽相等”
例3.
如图3-21,一个圆柱的底面半径为1.2cm,高
)
例4、一个圆锥如下图所示,底面直径为8㎝,
高6㎝,画出它的三视图(比例为1:4)
解:所求三视图如 图
主视图
·
左视图
俯视图
1.将图中的实物与它的主视图用线连起来.
2.一个圆柱和一个长方体如图放置,说出下面①② 两组视图分别是什么视图.