_空间几何体的三视图

合集下载

空间几何体的三视图1

空间几何体的三视图1

2、画水平放置的圆的直观图.
y
C E G
C'
E'
y′
A
O
B
x
A'
D'
O′
F'
B'
x′
D FH
规则:
ห้องสมุดไป่ตู้
(1)在已知图形中取水平平面,取互相垂直的轴ox、 oy,再取oz轴,使∠xoz=900,且∠yoz=900 ;
(2)画直观图时,把它们画成对应的 轴,使 x ' o ' y ' 45 0 或 135 0 , x ' o ' z ' 90 0. 的平面表示水平平面;
o' x', o' y', o' z'
x'o' y'
所确定
(3)已知图形中平行于x轴、y轴或z轴的线段,在 直观图中分别画成平行于 x ' 轴 y '轴或 z '轴的线段; (4)已知图形中平行于x轴和z轴的线段,在直观 图中保持长度不变;平行于y轴的线段,长度为原 来的一半
3、画长、宽、高分别为4cm、3cm、2cm的
长方体的直观图.
D1
z
y
C1
A1 D M A P Q
B1 C N B
o
x
4、已知几何体的三视图如下,画出它的直观图.
p
p
. 正视图 . O .p .
O′
. 侧视图 . O
O′
.
俯视图
z
y′
y
O′
x′
o
x
.p . .
o
O′

空间几何体的三视图

空间几何体的三视图
俯 侧
棱台旳三视图:


圆台旳三视图:
圆台旳三视图:


圆台旳三视图:


ቤተ መጻሕፍቲ ባይዱ
注意:
(1)画几何体旳三视图时,
能看见旳轮廓和棱用实线表达, 不能看见旳轮廓和棱用虚线表达。
(2)长对正, 高平齐, 宽相等。
除了会画如正方体、长方体、圆柱、圆锥、 球等基本几何体旳三视图外,我们还将学 习画出由某些简朴几何体构成旳组合体旳 三视图。
什么是空间图形旳三视图呢?
我们从不同旳方向观察同一物体时, 可能看到不同旳图形。 从正面看到旳图叫做正视图, 从左面看到旳图叫做侧视图, 从上面看到旳图叫做俯视图。
三视图
长方体旳三视图
侧视图
正视图
b(宽)
c(高) a(长)
俯视图
那怎样画一种空间几何体旳三视图呢? 请同学们看下图旳三视图.
从上面看到旳图 从左边看到旳图
三视图能反应物体真实旳形状和长、宽、高.
基本几何体旳三视图:
回忆初中已经学过旳正方体、长方体、 圆柱、圆锥、球旳三视图.
正方体旳三视图: 俯 侧
长方体旳三视图:


圆柱旳三视图:


圆锥旳三视图:


球旳三视图:
俯 侧
基本几何体旳三视图:
棱柱旳三视图:


棱锥旳三视图:


棱锥旳三视图:
俯视图
【总一总★成竹在胸】
一、三视图之间旳投影规律: 正视图与俯视图------长对正。 正视图与侧视图------高平齐。 俯视图与侧视图------宽相等。 二、画几何体旳三视图时, 能看得见旳轮廓线或棱用实线表达, 不能看得见旳轮廓线或棱用虚线表达。

1.2.2 空间几何体的三视图课件

1.2.2 空间几何体的三视图课件
俯视图——从上面看到的图
2.画物体的三视图时,要符合如下原则:
位置:正视图
பைடு நூலகம்侧视图
俯视图
大小:长对正,高平齐,宽相等.
3.注意:看得见的轮廓线和棱用实线,不能 看见的轮廓线和棱用虚线表示。
作业:(用数学作业本二完成)
• 课本、20页 习题1.2 A组 第一题
课后作业:练习册完成
P7-10。
正视图
侧视图
俯视图
三通水管
图2
图1 如果要做一个水管的三叉接头,工人事先看到的不是图1, 而是图2,然后根据这三个图形制造出水管接头.
简单组合体的三视图 观察下列两个实物体,它们的结构特征如何?你 能画出它们的三视图吗?
简单组合体的三视图
正视图
侧视图
俯视图 遮挡住看不见的线用虚线
简单组合体的三视图
把一个空间几何体投影到一个平面上,可以获得一个平面 图形.视图是指将物体按正投影向投影面投射所得到的图形. 但只有一个平面图形难以把握几何体的全貌,因此我们需 要从多个角度进行投影.
三 视 图
(1)光线从几何体的前面向后面正投影所得到的投影图 叫做几何体的正(主)视图. (2)光线从几何体的左面向右面正投影所得到的投影图 叫做几何体侧(左)视图. (3)光线从几何体的上面向下面正投影所得到的投影图 叫做几何体的俯视图.
三视图的作图步骤
1. 确定正视图方向;
2. 画物体的三视图时,要符合如下原则: 位置:正视图 侧视图 俯视图
3. 先画出能反映物体真实形状的一个视图(一般为 正视图);
4. 运用长对正、高平齐、宽相等的原则画出其它视图;
下面各图中物体形状分别可以看成什么样的几何体?
圆柱
圆锥

三视图

三视图
投影图
从上面看
从左面看
从正面看
主视图
左视图
俯视图
左视图 从左面看到的图
到从 俯 上 的面 视 图看 图
思考3:圆柱、圆锥、圆台的三视图分别 是什么?
正视图 侧视图
俯视图
如何画三视图
1.确定三视图的摆放位置;
2.确定三视图形状,可压缩来判 断; 3.确定三视图中的长宽高,若有 数据要做标记; 4.注意看到的棱画实线,看不到 的棱画虚线;
空间几何体的三视图
例子
知识探究(一):中心投影与平行投影
光是直线传播的,一个不透明物体在 光的照射下,在物体后面的屏幕上会留 下这个物体的影子,这种现象叫做投影. 其中的光线叫做投影线,留下物体影子 的屏幕叫做投影面. 思考1:不同的光源发出的光线是有差异 的,其中灯泡发出的光线与手电筒发出 的光线有什么不同?
圆柱,圆锥三视图
正视图 侧视图 正视图 侧视图
· 俯视图 俯视图
圆台的三视图
圆台
正视图
侧视图
俯视图
圆台
球的三视图
正视图 侧视图
俯视图
画出正三棱柱的三视图
F
A
1
C
B
1
1
A
F ( B1)
1
C
1
F
B
1
A
B
E
C
A A
A
E(B)
1
C
C
C
1
E
B
BB
1
画出正三棱柱的三视图
A
F
1
C
B
1
1

A
B
E
三视图之间的关系 主、侧视图的高相等 主、俯视图的长相等 俯、侧视图的宽相等

空间几何体的三视图教案

空间几何体的三视图教案

空间几何体的三视图教案空间几何体的三视图教案作为一位不辞辛劳的人民教师,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。

教案应该怎么写呢?以下是小编为大家整理的空间几何体的三视图教案,欢迎阅读与收藏。

教学目标(1)了解两种投影方法,中心投影与平行投影。

(2)掌握三视图的画法规则,能画出简单空间几何体的三视图,能由三视图还原成实物图。

过程与方法通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

◆情感态度与价值观欣赏空间图形反映的数学美,培养学生大胆创新、勇于探索、互相合作的精神。

教学重点画出空间几何体的三视图。

教学难点识别三视图所表示的空间几何体。

教学方法问题探索和启发引导式相结合教具准备多媒体教学设备教学过程(一)创设情境,引入新课活动1.(多媒体播放手影表演图片,组织学生欣赏)1.导入:同学们在感受这些形象逼真的图形时,是否思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这就是我们本节课所要探讨的第一个问题——中心投影和平行投影.设计意图引入生活情境,激发学生的学习欲望,自然导入新课,同时又弘扬了中国传统文化,增强文化意识.活动2.多媒体播放演示中心投影和平行投影的相关知识.1.投影的概念①投影:由于光的照射,在不透明物体后面的屏幕上留下这个物体的影子,这种现象叫做投影.其中,光线叫做投影线,屏幕叫做投②中心投影:把光由一点向外散射形成的投影叫做中心投影.③平行投影:把在一束平行光线照射下形成的投影称为平行投影.平行投影分为斜投影与正投影.讲解原则:配以多媒体动画,让学生思考,抽象或概括出相应定义,教师加以修正.设计意图通过动画演示投影的形成过程,使学生直观、生动地感悟,使抽象问题具体化,加速学生对概念的理解.2.中心投影和平行投影的区别和用途中心投影的投影线交于一点,形成的投影图能非常逼真地反映原来的物体,主要运用于绘画领域.平行投影的投影线相互平行,形成的投影图则能比较精确地反映原来物体的形状和特征.因此更多应用于工程制图或技术图样.活动3.直观感知形成概念--三视图①欣赏图片;图片说明从不同的角度看同一物体视觉的'效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这就是本节课我们要探讨的第二个问题——空间几何体的三视图.②欣赏飞机、轿车的三视图图片;设计意图引入生活情境激发学生的学习欲望,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力.(二)动手作图掌握技能在初中,我们已经学习了长方体、正方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),下面我们就以长方体为例,结合刚刚学过的投影知识,进一步了解空间几何体的三视图。

课件演示空间几何体的三视图

课件演示空间几何体的三视图

正视图
侧视图
俯视图
圆锥
一个几何体的三视图如下,你能说出它是 什么立体图形吗?
正视图
侧视图
俯视图
四棱锥
正视图 侧视图 俯视图
正视图 侧视图 俯视图
画出下面这个组合图形的三视图.
看得见的轮廓线与棱画实线 遮挡住看不见的线画虚线
练习2.根据下列三视图,想象对应的几何体.
三棱柱 四棱柱
圆台
四棱柱 与圆柱组 成的简单 组合体
小结
ቤተ መጻሕፍቲ ባይዱ 三视图
正视图——从正面看到的图
侧视图——从左面看到的图
俯视图——从上面看到的图
画物体的三视图时,要符合如下原则:
位置:正视图 侧视图
俯视图
画图:看得见的轮廓线与棱画实线
遮挡住看不见的线画虚线
大小:长对正,高平齐,宽相等.
小结
• 三视图
• 正视图——从正面看到的图
• 侧视图——从左面看到的图
(1)光线从几何体的前面向后面正投影 得到的投影图,叫做几何体的正视图;
(2)光线从几何体的左面向右面正投影 得到的投影图,叫做几何体的侧视图;
(3)光线从几何体的上面向下面正投影 得到的投影图,叫做几何体的俯视图;
(4)几何体的正视图、侧视图、俯视图 统称为几何体的三视图.
思考1:正视图、侧视图、俯视图分别是 从几何体的哪三个角度观察得到的几何 体的正投影图?它们都是平面图形还是 空间图形?


画出球的三视图


思考4:一般地,一个几何体的正视图、 侧视图和俯视图的长度、宽度和高度有 什么关系?
b
a
c
正侧等高, 正俯等长, 侧俯等宽.
正视图

空间几何体的三视图

空间几何体的三视图

轴截面:过轴的截面,分别是全等的矩形,等腰三角形, 等腰梯形。
球的结构特征
1、球的定义:以半圆的直径所在直线为旋转轴,半
圆面旋转一周形成的几何体叫做球体,简称球。
(1)半圆的半径叫做球的半径。 (2)半圆的圆心叫做球心。
A O
(3)半圆的直径叫做球的直径。 半径 2、球的表示:用 球心
表示球心的字母表
1、边长为a的正三角形应用斜二测画法得到的直观图 的面积为___________.
6 2 a 16
变式:一个三角形应用斜二测画法得到的直观图是正三 角形,则原三角形的面积为____。
6 2 a 2


2、如图所示,ABCD是一平面图形的水平放置的斜二测直 观图,在斜二测直观图中,ABCD是一直角梯形,AB ∥CD,AD CD,且BC与y轴平行,若AB 6, DC 4,
2 A. 4
2 B. 2
C .1
D.
2
空间几何体的三视图
1.三视图的概念
前面向后面 (1)光线从几何体的___________正投影所得到的投 影图,叫做几何体的正视图. (2)光线从几何体的___________正投影所得到的投 左面向右面 影图,叫做几何体的侧视图. 上面向下面 (3)光线从几何体的___________正投影所得到的投 影图,叫做几何体的俯视图.
例.用斜二测画法画水平放置的正六边形的直观图
y
F
A
M
E D
y
A
x
B
F M E
N
O
O
D
C
x
B
N C
问题1:如何画正六棱锥?
问题2:如何画正六棱柱? 问题3:如何画正六棱台?

高中数学知识点:空间几何体的三视图精选全文完整版

高中数学知识点:空间几何体的三视图精选全文完整版

可编辑修改精选全文完整版
高中数学知识点:空间几何体的三视图
1.三视图的概念
把一个空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形很难把握几何体的全貌,因此我们需要从多个角度进行投影,这样才能较好地把握几何体的形状和大小.通常,我们总是选择三种投影.
(1)光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;
(2)光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;
(3)光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.
几何体的正视图、侧视图和俯视图统称为几何体的三视图.
2.三视图的画法规则
画三视图时,以正视图为准,俯视图在正视图的正下方,侧视图在正视图的正右方,正、俯、侧三个视图之间必须互相对齐,不能错位.
正视图反映物体的长度和高度,俯视图反映物体的长度和宽度,侧视图反映物体的宽度和高度,由此,每两个视图之间有一定的对应关系,根据这种对应关系得到三视图的画法规则:
(1)正、俯视图都反映物体的长度——“长对正”;
(2)正、侧视图都反映物体的高度——“高平齐”;(3)俯、侧视图都反映物体的宽度——“宽相等”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?
思考:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并画出其示意图.
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
A) A
B


A
B
C
错误三视图——长未对正
错误三视图——高不平齐
错误三视图——宽不相等
三、三视图的作图步骤
1.确定视图方向 2.画出能反映物体真实形状的一个视图
3.运用长对正、高平齐、宽相等的原 则画出其它视图
4.检查,加深
巩固提高:
组合体的三视图
10 6
12
8
知识探究:画简单几何体的三视图
正视图
侧视图
俯视图
一个正方体各面分别标上A、B、C、D、E、F, 甲、乙、丙三位同学从不同的方向观察正方体, 结果如下图,则各面的字母分别是什么?
F A
D C
B
A D
E
C
中心投影:投射线交于一点 投影的分类 斜投影 平行投影 投射线平行
正投影(本节主要学习利用正投影绘制 空间图形的三视图,并能根据所给的三 视图了解该空间图形的基本特征)
请欣赏漫画并思考 : 为什么会出现争执?
漫画 “6”与“9”

三视图有关概念
“视图”是将物体按正投影法向投影面投 射时所得到的投影图. 光线自物体的前面向后投影所得的投影图 称为“正视图” ,自左向右投影所得的投影图 称为“侧视图”,自上向下投影所得的投影图 称为“俯视图”.
中心投影、平行投影
和空间几何体的三视图
请同学们看下面几个常见的自然 现象,考虑它们是怎样得到的?
这种现象我们把它称为是投影.
知识探究(一):投影的概念
光是直线传播的,一个不透明物体在 光的照射下,在物体后面的屏幕上会留 下这个物体的影子,这种现象叫做投影. 其中的光线叫做投影线,留下物体影子 的屏幕叫做投影面.
侧视图
俯视图
四棱柱
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?
四棱锥
思考、如图为某几何体的三视图,说明这是什么几何体?
主视图
侧视图
俯视图
正视图
侧视图
俯视图
正视图
如果将投影中心移到无穷远处,则所有的投影线都相互平 行,这种投射线为平行线时的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大 小,作图比较方便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直 观性强,但作图比较麻烦,也不能反映物体的 真实形状,在作图中只是作为一种辅助图样.
V正立投影面 H水平投影面
三视图的形成
W V
V正视图
H俯视图
W侧视图
H
三视图的形成
主 视 图 左视图 俯视图
三视图的特点
长对正 高平齐
宽相等
三视图的作图规则
主—俯:长对正 主—左:高平齐 主 左—俯:宽相等 视
图 左视图
俯视图
基本几何体的三视图
回忆初中已经学过的正方体、长方体、圆 柱、圆锥、球的三视图.
从正面看
主视图
左视图
俯视图
左视图 从左面看到的图
到从 俯 上 的面 视 图看 图
正视图
左视图

长 宽
画 一 个 物 体 的 三视图时 , 主视图 ,左视图,俯视图 所画的位置如图 所示 , 且要符合如 下原则: 长对正, 高平齐, 宽相等.
俯视图
考考你
主视图( 左视图 ( 俯视 图 (
思考:不同的光源发出的光线是有差异的, 其中灯泡发出的光线与手电筒发出的光 线有什么不同?
中心投影与平行投影
投射线可自一点发出,也可是一束与投影面成一 定角度的平行线,这样就使投影法分为中心投影和平 行投影
光由一点向外散射形成的投影,叫做中心投影.其投影 线交于一点(投影中心).
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
正视图
侧视图
·
俯视图
练习、如图几何体的三视图,说 出它对应的几何体。
主视图
侧视图
·
俯视图
练习、画下例几何体的三视图
练习、画下例几何体的三视图
主视图
侧视图
主视图
俯视图
思考:如图,桌子上放着一个长方体和一 个圆柱,若把它们看作一个整体,你能 画出它们的三视图吗?
正视图
侧视图
正视 俯视图
知识探究:将三视图还原成几何体
思考:如图所示,将一 个长方体截去一部分, 这个几何体的三视图是 什么?
正视图
侧视图
正视
俯视图
简单组合体的三视图
例题1:画出下面几何体的三视图。
简单组合体的三视图
正视图 侧视图
俯视图
简单组合体的三视图
正视图 侧视图
俯视图
练习、画下例几何体的三视图
思考、如图是几何体的三视图, 你能说出它对应的几何体名称吗?
用这三种视图即可刻划空间物体的几何结 构,这种图称之为“三视图”.即向三个互相 垂直的投影面分别投影,所得到的三个图形摊 平在一个平面上,则就是三视图.
思考:如图,设长方体的长、宽、高分 别为a、b、c ,那么其三视图分别是什 么? c
b
a
正视图
b
c
a
侧 视 图
俯视图
三视图的形成
V
W侧立投影面
正方体的三视图


长方体的三视图


长方体
圆柱的三视图


圆柱
圆锥的三视图


圆锥
圆台的三视图


圆台
圆台的三视图


圆台
请思考:把圆台倒过来三视图如何画?
旋转体的三视图

左 圆台
注意:在视图中,被挡住的轮廓线画成虚线 ,能看到的线条画成实线
球的三视图


球体
旋转体的三视图 有什么共性? 主视图与左视 图全等
侧视图
俯视图
思考:下列两图分别是两个简单组合体的 三视图,想象它们表示的组合体的结构 特征,并作适当描述.
正视图 正视图 侧视图
侧视图
俯视图
俯视图
理论迁移
例1 下面物体的三视图有无错误? 如果有,请指出并改正.
正视图
侧视图正视 俯视图源自例2 将一个长方体挖去两个小长方体 后剩余的部分如图所示,试画出这个组 合体的三视图.
基本几何体三视图
再看棱柱、棱锥、棱台的三视图是怎样的?
棱柱的三视图


六棱柱
棱锥的三视图


正三棱锥
棱锥的三视图


正四棱锥
棱台的三视图


正四棱台
六棱锥的三视图
六棱锥 小结:若相邻的两平面的相 交,表面的交线是它们的分 界线,在三视图中,分界线 和可见轮廓线都用实线画出。
从上面看
从左面看
相关文档
最新文档