【高考】2018-2019学年最新数学高考一轮复习(文科)训练题:天天练 15 Word版含解析

合集下载

[推荐学习]2018-2019学年数学高考一轮复习(文科)训练题:天天练 20 Word版含解析

[推荐学习]2018-2019学年数学高考一轮复习(文科)训练题:天天练 20 Word版含解析
三、解答题
12.(2018·广东肇庆二模)设数列{an}的前n项和为Sn,且Sn=-1+2an.
(1)求{an}的通项公式;
(2)若bn=log2an+1,且数列{bn}的前n项和为Tn,求 + +…+ .
解析:(1)由已知,得Sn=-1+2an.①
当n=1时,a1=-1+2a1,即a1=1.
当n≥2时,Sn-1=-1+2an-1.②
二、填空题
9.已知数列{an}满足a1=0,an+1=an+2n,则a10=________.
答案:90
解析:由an+1=an+2n可得an+1-an=2n,所以a2-a1=2,a3-a2=4,a4-a3=6,……,an-an-1=2(n-1).将上述式子左右两边分别相加得an-a1=2+4+6+…+2(n-1)=n(n-1),又a1=0,所以an=n(n-1).故a10=90.
解法二 由an+1= 可和 = + ,即数列 是以 =1为首项, 为公差的等差数列,故 =1+(n-1)× = n+ ,即an= ,由 = ,解得n=7,故选B.
5.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是an=()
A.nB. n-1
C.n2D.2n-1
答案:A
10.(2018·山东枣庄第三中学质检)已知数列{an}的前n项和Sn=5n2+2n+1,则数列的通项公式为an=________.
答案:
解析:当n=1时,a1=8;当n≥2时,Sn-1=5(n-1)2+2(n-1)+1.所以an=Sn-Sn-1=10n-3,此式对n=1不成立,故an=
易错警示:忽视起始值是否满足所求通项公式
答案: an=
解析:由an= 两边取倒数,得 = ,即 = +1,所以数列 是以1为首项,1为公差的等差数列,所以 =n.所以an= ,a5= .

2018-2019学年数学高考一轮复习(文科)训练题:天天练 24 Word版含解析

2018-2019学年数学高考一轮复习(文科)训练题:天天练 24 Word版含解析

天天练24 不等式的性质及一元二次不等式一、选择题1.若a >b >0,c <d <0,则一定有( ) A .ac >bd B .ac <bd C .ad <bc D .ad >bc 答案:B解析:根据c <d <0,有-c >-d >0,由于a >b >0,故-ac >-bd ,ac <bd ,故选B.2.若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系为( )A .d <a <c <bB .a <d <c <bC .a <d <b <cD .d <c <a <b 答案:A解析:因为a <b ,(c -a )(c -b )<0,所以a <c <b ,因为(d -a )(d -b )>0,所以d <a <b 或a <b <d ,又d <c ,所以d <a <b .综上,d <a <c <b . 3.(2018·河南信阳月考)对于任意实数a ,b ,c ,d ,以下四个命题:①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ;③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个 答案:B解析:因为ac 2>bc 2,可见c 2≠0,所以c 2>0,所以a >b ,故①正确.因为a >b ,c >d ,所以根据不等式的可加性得到a +c >b +d ,故②正确.对于③和④,用特殊值法:若a =2,b =1,c =-1,d =-2,则ac =bd ,故③错误;若a =2,b =0,则1b 无意义,故④错误.综上,正确的只有①②,故选B.4.(2018·辽宁阜新实验中学月考)已知命题p :x 2+2x -3>0,命题q :x >a ,若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3] 答案:A解析:将x 2+2x -3>0化为(x -1)(x +3)>0,所以命题p :x >1或x <-3.因为綈q 的一个充分不必要条件是綈p ,所以p 的一个充分不必要条件是q ,所以(a ,+∞)是(-∞,-3)∪(1,+∞)的真子集,所以a ≥1.故选A.5.(2018·南昌一模)已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( )A .T >0B .T <0C .T =0D .T ≥0 答案:B解析:通解 由a +b +c =0,abc >0,知三个数中一正两负,不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc =ab -c 2abc,因为ab <0,-c 2<0,abc >0,所以T <0,故选B. 优解 取特殊值a =2,b =c =-1,则T =-32<0,排除A ,C ,D ,可知选B.6.不等式x2x -1>1的解集为( )A.⎝ ⎛⎭⎪⎫12,1 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞) D.⎝ ⎛⎭⎪⎫12,2 答案:A解析:原不等式等价于x2x -1-1>0,即x -(2x -1)2x -1>0,整理得x -12x -1<0,不等式等价于(2x -1)(x -1)<0,解得12<x <1.故选A.7.(2018·河南洛阳诊断)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝ ⎛⎦⎥⎤-∞,-235答案:B解析:由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是⎩⎨⎧f (5)≥0,f (1)≤0,解得-235≤a ≤1,故选B.8.不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件是( )A .m >2B .0<m <1C .m >0D .m >1 答案:C解析:当不等式x 2-2x +m >0对一切实数x 恒成立时,对于方程x 2-2x +m =0,Δ=4-4m <0,解得m >1,所以m >1是不等式x 2-2x +m >0对一切实数x 恒成立的充要条件;m >2是不等式x 2-2x +m >0对一切实数x 恒成立的充分不必要条件;0<m <1是不等式x 2-2x +m >0对一切实数x 恒成立的既不充分也不必要条件;m >0是不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件.故选C.二、填空题9.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-32,52解析:设2a -b =mf (1)+nf (-1)=(m -n )·a +(m +n )b ,则⎩⎨⎧m -n =2,m +n =-1,解得m =12,n =-32,∴2a -b =12f (1)-32f (-1),∵0<f (1)<2,-1<f (-1)<1,∴0<12f (1)<1,-32<-32f (-1)<32,则-32<2a-b <52.10.(2018·江苏无锡一中月考)若关于x 的方程(m -1)·x 2+(m -2)x -1=0的两个不等实根的倒数的平方和不大于2,则m 的取值范围为________.答案:{m |0<m <1或1<m ≤2}解析:根据题意知方程是有两个根的一元二次方程,所以m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)·(-1)>0,得m 2>0,所以m ≠1且m ≠0.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m ,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2,所以m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}. 11.(2018·内蒙古赤峰调研)在a >0,b >0的情况下,下面四个不等式:①2ab a +b ≤a +b 2;②ab ≤a +b 2;③a +b 2≤ a 2+b 22;④b 2a +a 2b ≥a +b .其中正确不等式的序号是________. 答案:①②③④解析:2ab a +b -a +b 2=4ab -(a +b )22(a +b )=-(a -b )22(a +b )≤0,所以2aba +b ≤a +b 2,故①正确;由基本不等式知②正确;⎝ ⎛⎭⎪⎪⎫a +b 22-a 2+b 22=-(a -b )24≤0,所以a +b2≤ a 2+b 22,故③正确;⎝ ⎛⎭⎪⎫b2a +a 2b -(a +b )=a 3+b 3-a 2b -ab 2ab =(a 3-a 2b )+(b 3-ab 2)ab =(a -b )2(a +b )ab≥0,所以b 2a +a 2b ≥a +b ,故④正确.综上所述,四个不等式全都正确.三、解答题12.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;(2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解:(1)由题意可得m =0或⎝⎛m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <67.。

[推荐学习]2018-2019学年数学高考一轮复习(文科)训练题:天天练 19 Word版含解析

[推荐学习]2018-2019学年数学高考一轮复习(文科)训练题:天天练 19 Word版含解析
8.(2018·洛阳二模)已知直线x+y+k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有| + |≥ | |,则k的取值范围是()
A.( ,+∞) B.[ ,+∞)
C.[ ,2 ) D.[ 则OD⊥AB,因为| + |≥ | |,所以|2 |≥ | |,所以| |≤2 | |,所以| |2≤12| |2.因为| |2+ | |2=4,所以| |2≥1,因为直线x+y+k=0(k>0)与圆x2+y2=4交于不同的两点A,B,所以| |2<4,所以1≤| |2<4,所以1≤ 2<4,因为k>0,所以 ≤k<2 ,所以k的取值范围是[ ,2 ).
一、选择题
1.(2018·遂宁一模)给出下列命题:
① + =0;②0· =0;③若a与b共线,则a·b=|a||b|;④(a·b)·c=a·(b·c).
其中正确命题的个数是()
A.1B.2
C.3 D.4
答案:A
解析:①∵ =- ,∴ + =- + =0,∴该命题正确;②∵数量积是一个实数,不是向量,∴该命题错误;③∵a与b共线,当方向相反时,a·b=-|a||b|,∴该命题错误;④当c与a不共线,且a·b≠0,b·c≠0时,(a·b)·c≠a·(b·c),∴该命题错误.故正确命题的个数为1.故选A.
答案:8
解析:设BC的中点为D,连接OD,AD,则 ⊥ ,所以 · =( + )· = · = ( + )·( - )= ( 2- 2)= ×(52-32)=8.
三、解答题
12.(2018·河南第一次段考)已知a,b,c是同一平面内的三个向量,其中a=(1,-2).
(1)若|c|=2 ,且c∥a,求c的坐标;
答案:等边三角形

【高考数学】2018最新高考文科数学第一轮复习经典习题集(含答案)(专题拔高特训)

【高考数学】2018最新高考文科数学第一轮复习经典习题集(含答案)(专题拔高特训)

高考第一轮复习文科数学习题集(含答案)目录第一章集合,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 第一节集合的含义、表示及基本关系,,,,,,,,,,,,,,,,,,,, 1 第二节集合的基本运算,,,,,,,,,,,,,,,,,,,,,,,,,, 3 第二章函数,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 第一节对函数的进一步认识,,,,,,,,,,,,,,,,,,,,,,,, 5 第二节函数的单调性,,,,,,,,,,,,,,,,,,,,,,,,,,,9 第三节函数的性质,,,,,,,,,,,,,,,,,,,,,,,,,,,13 第三章指数函数和对数函数,,,,,,,,,,,,,,,,,,,,16 第一节指数函数,,,,,,,,,,,,,,,,,,,,,,,,,,,,16 第二节对数函数,,,,,,,,,,,,,,,,,,,,,,,,,,,,20 第三节幂函数与二次函数的性质,,,,,,,,,,,,,,,,,,,,,24 第四节函数的图象特征,,,,,,,,,,,,,,,,,,,,,,,,,28 第四章函数的应用,,,,,,,,,,,,,,,,,,,,,,,,32 第五章三角函数,,,,,,,,,,,,,,,,,,,,,,,,,33 第一节角的概念的推广及弧度制,,,,,,,,,,,,,,,,,,,,,33 第二节正弦函数和余弦函数的定义及诱导公式,,,,,,,,,,,,,,,39 第三节正弦函数与余弦函数的图象及性质,,,,,,,,,,,,,,,,,42第四节函数()sin()f x A xw j=+的图象,,,,,,,,,,,,,,,,,45第六章三角恒等变换,,,,,,,,,,,,,,,,,,,,,,,50 第一节同角三角函数的基本关系,,,,,,,,,,,,,,,,,,,,,50 第二节两角和与差及二倍角的三角函数,,,,,,,,,,,,,,,,,,53 第七章解三角形,,,,,,,,,,,,,,,,,,,,,,,,,56 第一节正弦定理与余弦定理,,,,,,,,,,,,,,,,,,,,,,,56 第二节正弦定理、余弦定理的应用,,,,,,,,,,,,,,,,,,,,59- 1 -。

配套K122018-2019学年数学高考一轮复习(文科)训练题:天天练 1 Word版含解析

配套K122018-2019学年数学高考一轮复习(文科)训练题:天天练 1 Word版含解析
(2)∁RB={x|x<m-2或x>m+2},∵A⊆∁RB,
∴m-2>3或m+2<-1,即m>5或m<-3.
所以实数M的取值范围是{m|m>5,或m<-3}.
A.2 B.3
C.4 D.5
答案:D
解析:由题意,当a=1,b=1时,a+b=2;当a=1,b=0时,a+b=1;当a=1,b=-1时,a+b=0;当a=-1,b=1时,a+b=0;当a=-1,b=0时,a+b=-1;当a=-1,b=-1时,a+b=-2.因此集合C={2,1,0,-1,-2},共有5个元素.故选D.
2.(2018·重庆第八中学二调)设集合A={x|x2≤7},Z为整数集,则集合A∩Z中元素的个数是()
A.3 B.4
C.5 D.6
答案:C
解析:由题意得A={x|- ≤x≤ },则A∩Z={-2,-1,0,1,2},故A∩Z中元素的个数是5.故选C.
3.(2018·河北石家庄第二中学等校联考)已知集合A={1,-1},B={1,0,-1},则集合C={a+b|a∈A,b∈B}中元素的个数为()
5.(2018·长沙一模)已知全集U=R,集合A={x|x2-3x≥0},B={x|1<x≤3},则如图所示的阴影部分表示的集合为()
A.[0,1) B.(0,3]
C.(0,1] D.[1,3]
答案:C
解析:因为A={x|x2-3x≥0}={x|x≤0或x≥3},B={x|1<x≤3},所以A∪B={x|x>1或x≤0},所以图中阴影部分表示的集合为∁U(A∪B)=(0,1],故选C.
A.(0,4] B.(-∞,4)
C.[4,+∞) D.(4,+∞)
答案:C
解析:由已知可得A={x|0<x<4}.若A⊆B,则a≥4.故选C.

【配套K12】2018-2019学年数学高考一轮复习(文科)训练题:天天练 28 Word版含解析

【配套K12】2018-2019学年数学高考一轮复习(文科)训练题:天天练 28 Word版含解析

天天练28直线与平面的平行与垂直一、选择题1.(2018·湖北省重点中学一联)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案:D解析:选项A,若α⊥β,m⊂α,n⊂β,则可能m⊥n,m∥n,若m,n异面,故A错误;选项B,若α∥β,m⊂α,n⊂β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m⊂α,n⊂β,则α与β可能相交,平行,或垂直,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,因此D正确.故选D.2.(2018·泉州质检)已知直线a,b,平面α,β,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:因为直线a,b不一定相交,所以a∥β,b∥β不一定能够得到α∥β;而当α∥β时,a∥β,b∥β一定成立,所以“a∥β,b∥β”是“α∥β”的必要不充分条件.3.(2018·湖北八校联考(一))如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A -BCD中,下列说法正确的是()A.平面ABD⊥平面ABCB .平面ACD ⊥平面BCDC .平面ABC ⊥平面BCDD .平面ACD ⊥平面ABD答案:D解析:由题意可知,AD ⊥AB ,AD =AB ,所以∠ABD =45°,故∠DBC =45°,又∠BCD =45°,所以BD ⊥DC .因为平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD ,所以平面ACD ⊥平面ABD .4.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当P A ∥平面EBF 时,PF FC =( )A.23B.14C.13D.12答案:D解析:连接AC 交BE 于G ,连接FG ,因为P A ∥平面EBF ,P A⊂平面P AC ,平面P AC ∩平面BEF =FG ,所以P A ∥FG ,所以PF FC =AG GC .又AD ∥BC ,E 为AD 的中点,所以AG GC =AB BC =12,所以PF FC =12.5.(2018·江西景德镇二模)将图1中的等腰直角三角形ABC 沿斜边BC 上的中线折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直答案:C解析:在题图1中,AD⊥BC,故在题图2中,AD⊥BD,AD⊥DC,又因为BD∩DC=D,所以AD⊥平面BCD,又BC⊂平面BCD,D 不在BC上,所以AD⊥BC,且AD与BC异面,故选C.6.如图,在三棱锥P-ABC中,已知P A⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点,则下列说法错误的是() A.当AE⊥PB时,△AEF一定是直角三角形B.当AF⊥PC时,△AEF一定是直角三角形C.当EF∥平面ABC时,△AEF一定是直角三角形D.当PC⊥平面AEF时,△AEF一定是直角三角形答案:B解析:由P A⊥底面ABC,得P A⊥BC,又AB⊥BC,所以BC⊥平面P AB,BC⊥AE,又AE⊥PB,则AE⊥平面PBC,则AE⊥EF,故A正确;当EF∥平面ABC时,因为EF⊂平面PBC,平面PBC∩平面ABC=BC,所以EF∥BC,故EF⊥平面P AB,AE⊥EF,故C 正确;当PC⊥平面AEF时,PC⊥AE,又BC⊥AE,则AE⊥平面PBC,AE⊥EF,故D正确.故选B.7.(2018·银川一模)如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B′、B′C′的中点,G为△ABC 的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为()A .KB .HC .GD .B ′答案:C 解析:取A ′C ′的中点M ,连接EM 、MK 、KF 、EF ,则EM 綊12CC ′綊KF ,得EFKM 为平行四边形,若P =K ,则AA ′∥BB ′∥CC ′∥KF ,故与平面PEF 平行的棱超过2条;HB ′∥MK ⇒HB ′∥EF ,若P =H 或P =B ′,则平面PEF 与平面EFB ′A ′为同一平面,与平面EFB ′A ′平行的棱只有AB ,不满足条件,故选C.8.如图,在以角C 为直角顶点的三角形ABC 中,AC =8,BC=6,P A ⊥平面ABC ,F 为PB 上的点,在线段AB 上有一点E ,满足BE =λAE .若PB ⊥平面CEF ,则实数λ的值为( )A.316B.516C.916D. 3答案:C解析:∵PB ⊥平面CEF ,∴PB ⊥CE ,又P A ⊥平面ABC ,CE ⊂平面ABC ,∴P A ⊥CE ,而P A ∩PB =P ,∴CE ⊥平面P AB ,∴CE ⊥AB ,∴λ=EB AE =EB ·AB AE ·AB =BC 2AC 2=916.二、填空题9.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案:MN ∥平面BB 1C 1C 解析:如图,连接AM 并延长,交BB 1的延长线于点P ,连接CP ,则由已知可得AA 1∥BB 1,所以A 1M MB =AM MP =12,又AN NC =12,所以AM MP=AN NC =12,所以MN ∥PC ,故有MN ∥平面BB 1C 1C .10.(2018·青岛一模)如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为正确的条件即可)答案:DM ⊥PC (或BM ⊥PC 等)(不唯一)解析:如图,连接AC ,∵四边形ABCD 的各边都相等,∴四边形ABCD为菱形,∴AC⊥BD,又P A⊥平面ABCD,∴P A⊥BD,又AC∩P A=A,∴BD⊥平面P AC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC 等)时,有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.11.(2018·益阳一模)如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案:①②③解析:①由于P A⊥平面ABC,因此P A⊥BC,又AC⊥BC,因此BC⊥平面P AC,所以BC⊥AF,由于PC⊥AF,因此AF⊥平面PBC,所以AF⊥PB;②因为AE⊥PB,AF⊥PB,所以PB⊥平面AEF,因此EF⊥PB;③在①中已证明AF⊥BC;④若AE⊥平面PBC,由①知AF⊥平面PBC,由此可得出AF∥AE,这与AF,AE有公共点A矛盾,故AE⊥平面PBC不成立.故正确的结论为①②③.三、解答题12.(2017·江苏卷,15)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.。

2018高考数学一轮复习文科训练天天练统计案例有答案和解释

2018高考数学一轮复习文科训练天天练统计案例有答案和解释
16.
(1)

(xi
i)(
1,2

16)





r










一一一


























(

|r|<
025




























)
-
(2
■)
一一一















(x

3s
x
+
3s)












线

















二二二




9
-
(20
18?

2018-2019学年数学[高考总复习资料]一轮复习(文科)训练题:天天练 30 Word版含解析

2018-2019学年数学[高考总复习资料]一轮复习(文科)训练题:天天练 30 Word版含解析

天天练30 圆的方程及直线与圆、圆与圆的位置关系一、选择题1.(2018·河南天一大联考段考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5答案:A解析:由题意,圆心在直线2x -y -1=0上,将点(a,1)代入可得a =1,即圆心为(1,1),半径为r =|2-1+4|5=5,∴圆的标准方程为(x -1)2+(y -1)2=5,故选A.2.(2018·长春二模)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4答案:D解析:设圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为A (a ,b ),则⎩⎪⎨⎪⎧ b a -2·33=-1,b 2=33·a +22,∴a =1,b =3,∴A (1,3),从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.3.已知直线y =kx +3与圆x 2+y 2-6x -4y +5=0相交于M ,N 两点,若|MN |=23,则k 的值是( )A .1或 2B .1或-1C .-2或12 D.2或12答案:C解析:由已知得圆的标准方程为(x -3)2+(y -2)2=8,则该圆的圆心为(3,2),半径为2 2.设圆心到直线y =kx +3的距离为d ,则23=28-d 2,解得d =5,即|3k -2+3|1+k 2=5,解得k =-2或12.故选C.4.(2018·大连一模)直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦长为( )A .6B .3C .6 2D .3 2答案:A解析:假设直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦为AB .∵圆的半径r =10,圆心到直线的距离d =5(-3)2+42=1,∴弦长|AB |=2×r 2-d 2=210-1=2×3=6.故选A.5.(2018·安徽黄山屯溪一中第二次月考)若曲线x 2+y 2-6x =0(y >0)与直线y =k (x +2)有公共点,则k 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-34,0B.⎝ ⎛⎭⎪⎫0,34 C.⎝ ⎛⎦⎥⎤0,34 D.⎣⎢⎡⎦⎥⎤-34,34 答案:C解析:∵x 2+y 2-6x =0(y >0)可化为(x -3)2+y 2=9(y >0),∴曲线表示圆心为(3,0),半径为3的上半圆,它与直线y =k (x +2)有公共点的充要条件是:圆心(3,0)到直线y =k (x +2)的距离d ≤3,且k >0,∴|3k -0+2k |k 2+1≤3,且k >0,解得0<k ≤34.故选C. 6.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3),则n -3m +2的最大值为( ) A .3+ 2 B .1+ 2C .1+ 3D .2+ 3解析:由题意可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k ,将圆C 化为标准方程得(x -2)2+(y -7)2=8,C (2,7),r =22,由直线MQ 与圆C有交点,得|2k -7+2k +3|1+k2≤22,得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,选D.7.设P ,Q 分别为圆O 1:x 2+(y -6)2=2和圆O 2:x 2+y 2-4x =0上的动点,则P ,Q 两点间的距离的最大值是( )A .210+2+ 2 B.10+2+ 2C .210+1+ 2 D.10+1+ 2答案:A解析:圆O 1的圆心O 1(0,6),半径r 1=2,圆O 2化为标准方程为(x -2)2+y 2=4,圆心O 2(2,0),半径r 2=2.则|O 1O 2|=22+62=4+36=210>r 1+r 2=2+2,所以两圆相离,则|PQ |max =210+2+ 2.选A.8.(2018·福建福州外国语学校适应性考试)已知点A (-2,0),B (2,0),若圆(x -3)2+y 2=r 2(r >0)上存在点P (不同于点A ,B )使得P A ⊥PB ,则实数r 的取值范围是( )A .(1,5)B .[1,5]C .(1,3]D .[3,5]答案:A解析:根据直径所对的圆周角为90°,结合题意可得以AB 为直径的圆和圆(x -3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3,故|r -2|<3<r +2,求得1<r <5,故选A.二、填空题9.已知直线l :y =x ,圆C 1:(x -3)2+y 2=2.若圆C 2与圆C 1关于直线l 对称,点A ,B 分别为圆C 1,C 2上任意一点,则|AB |的最小值为________.解析:因为圆C 1的圆心坐标为(3,0),半径为2,所以C 1到直线l 的距离d =|3-0|2=322,所以圆C 1上的点到直线l 的最短距离为322-2=22.因为圆C 2与圆C 1关于直线l 对称,所以|AB |min =2×22= 2.10.(2018·河南豫东、豫北名校段考)已知圆M 与圆O :x 2+y 2=3+22相内切,且和x 轴的正半轴,y 轴的正半轴都相切,则圆M 的标准方程是________.答案:(x -1)2+(y -1)2=1解析:圆O :x 2+y 2=3+22的圆心坐标为(0,0),半径为2+1,设圆M 的圆心坐标为(a ,a ),半径为a (a >0),因为圆M 与圆O :x 2+y 2=3+22相内切,所以2a =2+1-a ,所以a =1,所以所求圆M 的方程为(x -1)2+(y -1)2=1.11.(2018·湖南师大附中摸底)已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,则直线l 的方程是________.答案:x +4=0和4x +3y +25=0解析:由已知条件知圆心(-1,-2),半径r =5,弦长m =8.设弦心距是d ,则由勾股定理得r 2=d 2+⎝ ⎛⎭⎪⎫m 22,解得d =3.若l 的斜率不存在,则直线l 的方程为x =-4,圆心到直线的距离是3,符合题意.若l 的斜率存在,设为k ,则直线l 的方程为y +3=k (x +4),即kx -y +4k -3=0,则d =|-k +2+4k -3|k 2+1=3,即9k 2-6k +1=9k 2+9,解得k =-43,则直线l 的方程为4x +3y +25=0.所以直线l 的方程是x +4=0和4x +3y +25=0.三、解答题12.(2017·新课标全国卷Ⅲ,20)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.解析:(1)设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎨⎧ x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4. 因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1, 所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4,故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP→=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0,即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0.由(1)可得y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12. 当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以tanα=tan
= = = .
11.若α,β∈ ,cos = ,sin =- ,则cos(α+β)的值等于________.
答案:-
解析:∵α,β∈ ,cos = ,sin =- ,∴α- =± , -β=- .
∴2α-β=± ,α-2β=- .
α+β=(2α-β)-(α-2β)=0或 (0舍去).
一、选择题
1.(2018·成都一诊)已知α为第二象限角,且sin2α=- ,则cosα-sinα的值为()
A. B.-
C. D.-
答案:B
解析:因为sin2α=2sinαcosα=- ,即1-2sinαcosα= ,所以(sinα-cosα)2= ,又α为第二象限角,所以cosα<sinα,则cosα-sinα=- .故选B.
8.对于锐角α,若sin = ,则cos =()
A. B.
C. D.-
答案:D
解析:由α为锐角,且sin = ,可得cos = ,那么cos =cos =cos cos -sin sin = ,于是cos =2cos2 -1=2× 2-1=- .故选D.
二、填空题
9.(2018·荆州一模)计算:sin46°·cos16°-cos314°·sin16°=________.
答案:D
解析:由 (tanαtanβ+2)+2tanα+3tanβ=0得, tanαtanβ+3(tanα+tanβ)=tanα-2 ①,tan(α+β)= = ,即 (tanα+tanβ)=1-tanαtanβ②,由①②得tanα=3 ,故选D.
4.(2018·广东潮州模拟)若 =- ,则sin 的值为()
A. B.-
C. D.-
答案:C
解析:∵ = =-(cosα+sinα)=- ·sin =- ,∴sin = .故选C.
5.已知在△ABC中,cos =- ,那么sin +cosA=()
A. B.-
C. D.
答案:B
解析:因为cos =- ,即cos =- ,所以sin =- ,则sin +cosA=sinAcos +cosAsin +cosA= sin =- .故选B.
2.化简 cosx+ sinx等于()
A.2 cos B.2 cos
C.2 cos D.2 cos
答案:B
解析: cosx+ sinx=2 =2
=2 cos .故选B.
3.(2018·黄冈质检)已知α+β= ,且 (tanαtanβ+2)+2tanα+3tanβ=0,则tanα=()
A.- B.
C.- D.3
6.已知3cos2α=4sin ,α∈ ,则sin2α=()
A. B.-
C. D.-
答案:D
解析:由题意知3(cos2α-sin2α)=2 (cosα-sinα),由于α∈ ,因而cosα≠sinα,则3(cosα+sinα)=2 ,那么9(1+sin2α)=8,sin2α=- .故选D.
7.(2018·江门一模)已知函数f(x)= sinωxcosωx+cos2ωx(ω>0)在区间 上的值域是 ,则常数ω所有可能的值的个数是()
A.0 B.1C.2 D.4 Nhomakorabea答案:C
解析:函数f(x)= sinωxcosωx+cos2ωx,化简可得f(x)= sin2ωx+ cos2ωx+ =sin + ,因为x∈ ,f(x)∈ ,所以-1≤sin ≤0,则 ≤ - ≤ ,又T= = ,所以 ≤ ≤ ,即 ≤ω≤3,sin =0的结果必然是x= 或 .当x= 时,解得ω= 满足题意,当x= 时,解得ω= 满足题意.所以常数ω所有可能的值的个数为2.故选C.
∴cos(α+β)=- .
三、解答题
12.(2018·江西六校联考)在△ABC中,角A,B,C所对的边分别为a,b,c,a=4 ,b=4,cosA=- .
(1)求角B的大小;
(2)若f(x)=cos2x+ sin2(x+B),求函数f(x)的单调递增区间.
解:(1)在△ABC中,由cosA=- ,得sinA= .
由 = ,得sinB= .又由b<a,得B<A,所以B= .
(2)由余弦定理a2=b2+c2-2bccosA,得48=16+c2+4c,
解得c=4,c=-8(舍去).
所以f(x)=cos2x+2sin2 =cos2x+1-cos2 =cos2x+1- cos2x+ sin2x=1+sin .
由- +2kπ≤2x+ ≤ +2kπ(k∈Z),得
答案:
解析:sin46°·cos16°-cos314°·sin16°=sin46°·cos16°-cos46°·sin16°=sin(46°-16°)=sin30°= .
10.(2017·江苏卷,5)若tan = ,则tanα=________.
答案:
解析:本题考查两角和的正切公式.
因为tan = ,
- +kπ≤x≤ +kπ(k∈Z).
所以函数f(x)的单调递增区间为 ,k∈Z.
相关文档
最新文档