第5课时 多边形的内角和

合集下载

教案多边形内角和

教案多边形内角和

教案:多边形内角和一、教学目标1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、操作、推理等活动,探索多边形内角和的计算方法。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 多边形内角和的定义及性质。

2. 多边形内角和的计算方法。

三、教学重点与难点1. 重点:多边形内角和的概念及计算方法。

2. 难点:多边形内角和的计算方法的推导和应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究多边形内角和的计算方法。

2. 利用图形软件,展示多边形的内角和,帮助学生直观理解。

3. 组织小组讨论,培养学生的合作交流能力。

五、教学准备1. 教学课件。

2. 图形软件。

3. 练习题。

六、教学过程1. 导入:通过展示生活中的多边形实例,引导学生关注多边形的内角和。

2. 探究:引导学生观察多边形的特征,引导学生发现多边形内角和的规律。

3. 讲解:讲解多边形内角和的概念,引导学生理解多边形内角和的性质。

4. 练习:设计不同难度的练习题,巩固学生对多边形内角和的掌握。

七、拓展与延伸1. 引导学生思考:多边形内角和与多边形的边数之间的关系。

2. 引导学生探究:如何利用多边形内角和解决实际问题。

八、课堂小结1. 回顾本节课所学内容,总结多边形内角和的概念及计算方法。

2. 强调多边形内角和在实际生活中的应用。

九、作业布置1. 巩固多边形内角和的计算方法。

2. 搜集生活中的多边形实例,了解多边形内角和在实际中的应用。

十、课后反思1. 总结本节课的教学效果,反思教学方法。

2. 针对学生的掌握情况,调整后续教学内容和方法。

十一、测试与评价1. 设计测试题,评估学生对多边形内角和的掌握程度。

2. 结合学生的课堂表现、作业完成情况,全面评价学生的学习效果。

十二、教学策略1. 针对不同学生的学习需求,给予个性化的指导。

2. 鼓励学生提问,充分调动学生的积极性。

十三、教学计划1. 后续课程安排:深入探究多边形的性质,实际应用多边形内角和解决生活中的问题。

人教版八年级数学上册七年级第十一章第五讲:多边形的内角和(教师版)

人教版八年级数学上册七年级第十一章第五讲:多边形的内角和(教师版)

多边形的内角和人教八上初中数学试卷11-8一、学习目标能记住多边形的内角和、外角和的概念;能通过不同方法推导多边形的内角和与外角和公式,进一步体会数学化归思想;能熟练运用多边形的内角和与外角和公式进行有关计算.二、知识回顾1.三角形三个内角的和等于多少度?三角形三个内角的和等于180°2.n边形从一个顶点出发的对角线有n-3条,它们将n边形分成n-2 个三角形.3.你知道长方形和正方形的内角和是多少吗?其他四边形的内角和是多少?360°.三、新知讲解1.多边形的内角和公式n边形的内角和等于(n-2)·180°.2.多边形的外角和任意多边形的外角和等于360°.四、典例探究2.多边形的外角和【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12总结:正n边形的每个外角都相等,所以每个外角的度数等于360°/n.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.,9总结:根据题目蕴含的等量关系,利用内角和公式和外角和的不变性,列出方程即可求出边数.练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是______.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?A.540°B.360°C.300°D.240°5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.典例探究答案:【例1】(2015•惠山区一模)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10分析:n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得(n﹣2)•180°=1260°,解得n=9,故选C.点评:本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.练1.如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来多边形的边数是.解析:设原来多边形的边数为n,那么边数增加1倍后,多边形的边数变为2n,内角和为(2n-2)·180°.根据多边形内角和定理,可列出关于边数n的方程,即(2n-2)·180°=2160°,解得n=7.所以原多边形的边数为7.练2.(2013春•邢台期末)已知:如图,五边形ABCDE中,AB∥CD,求图形中∠AED的值.分析:先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠AED的值.解答:解:∵AB∥CD,∴∠B=180°﹣∠C=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠AED=540°﹣150°﹣120°﹣60°﹣160°=50°.点评:考查了平行线的性质,多边形内角和定理,注意对基础知识的熟练掌握及综合运用.【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12分析:根据正多边形的每一个外角都相等,可知多边形的边数=360°÷30°,计算即可求解.解答:解:这个正多边形的边数为360°÷30°=12,故选D.点评:本题考查了多边形外角和,熟记正多边形的边数与外角的关系是解题的关键.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.9分析:n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.解答:解:设多边形的边数为n,依题意,得(n﹣2)•180°=3×360°,解得n=8,故选:C.点评:此题根据多边形的内角和计算公式,利用内外角和的关系列出关于边数的方程,使问题得解..练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是.分析:根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和.解答:解:多边形的边数是:360÷60=6,则多边形的内角和是:(6﹣2)×180=720°.故答案为:720°.点评:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?分析:依题意,多边形的内角与外角和为2160°,多边形的外角和为360°,根据内角和公式求出多边形的边数.解答:解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.点评:考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.课后小测答案:一、选择题1.(2015春•建湖县校级月考)一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形D.十四边形解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选B.2.(2015春•新沂市校级月考)下列各度数不是多边形的内角和的是()A.1800°B.540°C.1700°D.10800°解:不是180的整数倍的选项只有C中的1700°.故选C.3.(2014•义乌市三模)正n边形的一个内角比一个外角大100°,则n为()A.7 B.8 C.9 D.10解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故选C.4.(2014•将乐县质检)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故选:C.5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得(n﹣2)•180°=2520°,解得:n=16,则多边形的边数是15,16,17.故选D.二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.解:设四边形四个内角分别是3x,3x,5x,7x,则3x+3x+5x+7x=360,解得x=20°.则它的最大角是7×20=140°.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2770°,180°•n=3130°+x,∵n为正整数,∴n=18.∴这个内角度数为180°×(18﹣2)﹣2770°=110°.故答案为110°.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.解:行走路线对应的多边形的边数是:=24,则经过的总路程是:24×20=480(米).故答案是:480.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.解:(1)360°÷36°=10.(2)(10﹣2)•180°=1440°.故答案为:10,1440°.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.解:由题意可得:90°+(2x+25)°+(3x﹣15)°+2x°+x°=(5﹣2)×180°,解得:x=55.——————————唐玲制作仅供学习交流——————————11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?解:(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°;(3)从一个顶点出发可做对角线的条数:12﹣3=9,.12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.解:设新多边形是n边形,则180(n﹣2)=2520解得:n=16.则原多边形的边数是:16﹣1=15.答:原多边形的边数是15.唐玲。

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

苏教版数学四年下册《多边形的内角和》说课稿及反思(共三篇)

苏教版数学四年下册《多边形的内角和》说课稿及反思(共三篇)

《多边形的内角和》说课稿及反思(一)一、说教材本课是在学生学过角的度量、三角形的特征和分类等知识的基础上,借助三角形内角和等于180°推导出多边形内角和等于(n-2)×180°。

四年级学生从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白、深入浅出地分析。

二、说教学目标1.掌握多边形内角和的计算方法,并能用内角和知识解决有关多边形的计算问题;通过多边形内角和公式的推导,培养学生探索与归纳的能力。

2.经历探索多边形内角和的过程,多角度、全方位考虑问题,培养学生对简单数学结论的探究方法,进而运用掌握的理论知识解决实际问题,进一步培养学生的数学推理能力,初步形成一定的推理思维。

3.通过经历数学知识的形成过程,体验转化、类比等数学思想方法的应用,体验猜想得到证实的成就感。

三、教学重难点重点:探究多边形的内角和公式。

难点:理解多边形的内角和公式。

四、说教学过程板块一、情境导入师:同学们,一个三角形的内角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生思考并作答,并由教师评价。

师:那么一个多边形的内角和是多少呢?我们能不能算出来呢?这就是本节课我们要研究的问题。

【设计意图:先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想】板块二、探究新知师:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?生1:我是先量出每个角的度数,再求和,结果是360°。

生2:我是把四边形的对角线连接,分成2个三角形,算出内角和是180°×2=360°。

苏教版四年级数学下册《多边形的内角和》教案

苏教版四年级数学下册《多边形的内角和》教案

苏教版四年级数学下册《多边形的内角和》教案一. 教材分析苏教版四年级数学下册《多边形的内角和》这一章节,主要让学生理解并掌握多边形的内角和的概念,学会用数学方法计算多边形的内角和。

教材通过生动的图片和具体的多边形例子,引导学生发现多边形内角和的规律,从而培养学生的观察能力、思考能力和动手能力。

二. 学情分析四年级的学生已经掌握了基本的图形知识,对多边形有一定的认识。

但他们对于多边形的内角和可能还没有清晰的概念,需要通过实例和操作来理解和掌握。

此外,学生的观察能力、思考能力和动手能力参差不齐,需要在教学过程中给予不同程度的学生适当的引导和帮助。

三. 教学目标1.让学生理解并掌握多边形的内角和的概念。

2.培养学生观察、思考和动手能力,提高他们解决实际问题的能力。

3.培养学生的合作意识和团队精神。

四. 教学重难点1.重点:掌握多边形的内角和的概念,学会计算多边形的内角和。

2.难点:理解并掌握多边形内角和的规律,能运用规律解决实际问题。

五. 教学方法1.情境教学法:通过生动的图片和具体的多边形例子,引发学生的兴趣和好奇心,激发他们的学习欲望。

2.动手操作法:让学生亲自动手剪贴多边形,观察和测量内角,培养学生的动手能力和观察能力。

3.小组合作法:引导学生分组讨论和合作,培养学生的团队精神和沟通能力。

4.引导发现法:教师引导学生发现多边形内角和的规律,培养学生的思考能力。

六. 教学准备1.教学课件:制作多媒体课件,包括多边形的图片、动画和实例。

2.教学素材:准备各种多边形的图片和实物,如正方形、三角形、五边形等。

3.测量工具:准备量角器、直尺等测量工具。

4.记录表格:制作记录多边形内角和的表格。

七. 教学过程1. 导入(5分钟)利用多媒体课件展示各种多边形的图片,如正方形、三角形、五边形等,引导学生观察并思考:这些多边形有什么共同的特点?它们有什么不同的地方?2. 呈现(10分钟)教师呈现多边形的内角和的概念,并用生动的例子解释多边形的内角和。

四年级下册第五单元《多边形的内角和》人教版

四年级下册第五单元《多边形的内角和》人教版

三角形的内角和:(3-2)×180°
180°+360°四=540边°。 形的内角和:(4-2)×180°
有一个直角,有两条边相等。
五边形的内角和:(5-2)×180° 在三角形中,一个是直角,另两个可能各是多少度?
这节课你有什么收获?还有什么问题? 1.理解并掌握四边形的内角和是360°的结论。
六边形的内角和:(6-2)×180° 下面图形中各有个三角形?有什么规律?
这一结论,求多边形的内角和的度数。 在三角形中,一个是直角,另两个可能各是多少度?
探索多边形的内角和。
导入新知
同学们,你们知道四边形的内角 和是多 识。
合作探究
我们已知正方形和长方形的四个角都是直角, 它们的内角和为360°,那么任意四边形的 内角和是多少度?
小结:从n边形的一个顶点出发,可以引 ((2)13)+多4=边7形(厘的米内) 角和与三角形内角和有什么关系?
这第节几课 个你图有形什的么三收角获形?的还个有数什等么于问从题1到?几的连续的自然数的相加。 1我8们0°+已3知60正°=方5形40和°。长方形的四个角都是直角,它们的内角和为360°,那么任意四边形的内角和是多少度? 在三角形两中条,边一分个别是是直角3cm,和另4两cm个,另可一能条各边是可多能少是度多?少厘米?
答18:0(°1×)4另=两72个0°角可能各是40度和50度。 (在2三)角多形边两形条的边边分数别与是内3c角m和和有4c什m,么另关一系条?边可能是多少厘米? (在3三)角从形多中边,形一的个一是个直顶角点,引另到两对个角可线能分各成是三多角少形度的?个数与多边形的边数有什么关系? ((1)21)80多-边90形=的90边(度数) 与内角和有什么关系?
4.下面图形中各有个三角形?有什么规律?

教案多边形内角和

教案多边形内角和

教案:多边形内角和一、教学目标:1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。

3. 培养学生的观察能力、思考能力和动手实践能力。

二、教学重点:1. 多边形内角和的概念。

2. 多边形内角和的计算规律。

三、教学难点:1. 理解并掌握多边形内角和的计算方法。

2. 应用多边形内角和的知识解决实际问题。

四、教学准备:1. 课件或黑板。

2. 多边形的模型或图片。

3. 剪刀、彩笔等手工工具。

五、教学过程:1. 导入:利用课件或黑板,展示一些多边形的图片,让学生观察并说出多边形的名称。

引导学生思考:多边形有什么特征?它们有什么共同点?2. 新课导入:介绍多边形内角和的概念,解释多边形内角和的定义。

引导学生理解:多边形内角和指的是多边形所有内角的总和。

3. 探究活动:让学生分组进行探究,每组用剪刀和彩笔制作一个多边形,并测量其内角和。

学生可以自由选择制作三角形、四边形、五边形等多种多边形。

4. 发现规律:引导学生总结探究结果,发现多边形内角和的计算规律。

教师引导学生归纳:多边形的内角和等于(n-2)×180°,其中n为多边形的边数。

5. 巩固练习:出示一些多边形的图片,让学生计算它们的内角和。

教师可以让学生在课堂上完成练习,也可以作为课后作业。

6. 总结:对本节课的内容进行总结,强调多边形内角和的概念和计算规律。

鼓励学生在日常生活中观察多边形,运用所学知识。

7. 拓展延伸:引导学生思考:多边形的内角和与边数有什么关系?它们之间是如何相互影响的?8. 课堂作业:布置一些有关多边形内角和的练习题,让学生巩固所学知识。

9. 课后反思:教师对本节课的教学进行反思,总结教学过程中的优点和不足,为下一节课的教学做好准备。

10. 教学评价:对学生在本节课的学习情况进行评价,包括对多边形内角和的概念理解、计算方法掌握等方面。

六、教学延伸:1. 让学生尝试证明多边形内角和等于(n-2)×180°的公式。

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]教学重点:多边形的内角和。

的应用。

教学难点:探索多边形的内角和与外角和公式过程。

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。

n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。

)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。

五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5单元三角形
第5课时多边形的内角和
【教学目标】
1.知识目标:探究并了解四边形的内角和。

2.能力目标:通过引导学生自主探究四边形内角和,培养学生探究问题的方法与能力;让学生尝试从不同角度寻求探究问题的方法并能有效地解决问题,训练学生的发散性思维和培养他们的创新精神。

3.情感目标:通过实例引入,使学生体验数学来源于生活,又服务于生活,唤起学生学数学的兴趣和应用数学的意识。

在自主探究、合作交流的过程中,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情和合作意识。

【教学重难点】
重点:四边形的内角和。

难点:如何引导学生参与到探索四边形的内角和的过程;探索多边形内角和时,如何把多边形转化成三角形。

【教学过程】
课堂
教学
环节
问题情境与
教师活动
学生活动
媒体
应用
设计意图
目标达成导入
新课
一、复习引入
1、出示一个三角形:这个三角形的内角和是多
少度?
2、如果剪掉一个角,剩下的图形是什么图形?
内角和是多少度呢?这节课我们来研究四边形
的内角和。








路学


知环
节二、新课探究
1、我们学过的四边形有哪些?
2、出示长方形、正方形、平行四边形、梯形。

师:长方形和正方形的内角和都是多少度?你是怎么知道的?
长方形和正方形的4个角都是直角,它们的内角和是360°。

那么平行四边形和梯形的内角和是否和长方形和正方形一样呢?你有办法验证一下吗?
3、验证:
(1)用量角器量一量平行四边形和梯形的四个角。

(2)如果是任意一个四边形呢?
A:把这个四边形的4个角剪下来,拼成一个周角。

B:把这个四边形分成两个三角形。

(3)总结:四边形的内角和都是360度
三、拓展延伸:
1、你有办法求出五边形、六边形的内角和吗?
2、你有什么发现?
四、回顾总结
师:这节课你有什么收获?我们是怎样研究三角。

相关文档
最新文档