2019版高考数学一轮复习第4章平面向量4.2平面向量基本定理及坐标表示课件文-文档资料

合集下载

高三理科数学第一轮复习§4.2:平面向量的基本定理及坐标表示

高三理科数学第一轮复习§4.2:平面向量的基本定理及坐标表示

第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
点拨
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向4.1:平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示课件-2025届高三数学一轮复习

平面向量的基本定理及坐标表示课件-2025届高三数学一轮复习
2
2
3
2

1
2
=
1

2
1=−

1

3

5
=
7
6
=−
7
,
6
6
2
8
所以= = + ,λ+μ= ,故B选项错误;
7
7
7
7
1
2
=-=- + ,
3
3
5
2
1
2
7
因为= ,所以= =- + ,故= ,C选项正确;
7
7
7
7
3
6
6
2
1
因为= ,所以S△ABM= S△ABF= S△ABC= S,故D选项正确.
(
,
).
3
3
2.如果对于一个基底 1 , 2 ,有a=λ1e1+λ2e2=μ1e1+μ2e2,那么可以得到λ1=μ1,λ2=μ2.
特别地,若λ1e1+λ2e2=0,则λ1=λ2=0.
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)在△ABC中,{,}可以作为基底.(
等分点,记=a,=b,则下列说法正确的是(
A.点M,N,E三点共线
9
B.若=λa+μb,则λ+μ=
7
7
C.=
3
1
D.S△ABM= S,S为平行四边形ABCD的面积
7
)
【解析】选ACD.如图所示:

第四章 第二节 平面向量的基本定理及坐标表示

第四章  第二节  平面向量的基本定理及坐标表示

个正交基底{e1,e2},e1,e2分别是与x轴和y轴同方向
的 单位向量,这个基底也叫做直角坐标系xOy的基底.
返回
在坐标平面xOy内,任作一向量 AB =a,由平面向量基 本定理知,存在唯一的有序实数对(a ,a )使得 a=a1e1+
1 2
a2e2,(a1,a2) 就是向量a在基底{e1,e2}下的坐标,即a = (a1,a2),显然,0= (0,0) ,e1=(1,0),e2= (0,1) . (2)在直角坐标系中,一点A的位置被点A的位置向量 OA 所唯一确定.设A(x,y),则 OA =xe1+ ye2=(x,y) .
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第二 节 平 面 向 量 的 基 本 定 理 及 坐 标 表示
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
提 能 力
返回
[备考方向要明了]
考 什 么 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及坐标表示.
1 n ∴m= ,n=-1.∴m=-4. 4
答案:-4
返回
返回
1.平面向量基本定理的理解 (1)平面内任意两个不共线的向量都可以作为这个平面的 基底.单位正交基底是进行向量运算最简单的一组基 底.
(2)平面内任一向量都可以表示为给定基底的线性组合,
并且表示方法是唯一的.但不同的基底表示形式是 不同的. (3)用基底表示向量的实质是向量的线性运算.
3.会用坐标表示平面向量的加法、减法与数乘运算.
4.理解用坐标表示的平面向量共线的条件.
返回
怎 么 考 1.平面向量基本定理的应用及坐标表示下向量共线条件的 应用是重点. 2.向量的坐标运算可能单独命题,更多的是与其他知识点

【课件】-平面向量基本定理及坐标表示课件-2025届高三数学一轮复习

【课件】-平面向量基本定理及坐标表示课件-2025届高三数学一轮复习
(1)用 a 和 b 表示向量O→C,D→C; (2)若O→E=λO→A,求实数 λ 的值.
【解】 (1)由题意知,A 是 BC 的中点,且O→D=23O→B,由平行四边形法则,得O→B+O→C
=2O→A,所以O→C=2O→A-O→B=2a-b,
D→C=O→C-O→D=(2a-b)-23b=2a-53b.
解法二:因为 a=(3,2),若 e1=(0,0),e2=(1,2),不存在实数 λ,μ,使得 a=λe1+μe2, 排除 A,同理排除 C,D;若 e1=(-1,2),e2=(5,-2),设存在实数 λ,μ,使得 a=λe1 +μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以32= =- 2λ-λ+25μμ,, 解得λμ==21,, 所以 a=2e1+e2. 故选 B.
【解析】 解法一:由 O,P,B 三点共线,可设O→P=λO→B=(4λ,4λ),则A→P=O→P-O→A =(4λ-4,4λ).
又A→C=O→C-O→A=(-2,6), 由A→P与A→C共线,得(4λ-4)×6-4λ×(-2)=0, 解得 λ=34,所以O→P=34O→B=(3,3),
所以点 P 的坐标为(3,3). 解法二:设点 P(x,y),则O→P=(x,y),因为O→B=(4,4), 且O→P与O→B共线,所以4x=4y,即 x=y. 又A→P=(x-4,y),A→C=(-2,6),且A→P与A→C共线, 所以(x-4)×6-y×(-2)=0,解得 x=y=3,所以点 P 的坐标为(3,3).
【解析】 ∵A→P=tA→B, ∴O→P=O→A+A→P=O→A+tA→B =O→A+t(O→B-O→A)=O→A+tO→B-tO→A=(1-t)O→A+tO→B.
易错易混 5.设向量 a=(x,1),b=(4,x),且 a,b 方向相反,则 x 的值是( B ) A.2 B.-2 C.±2 D.0

高考理科第一轮复习课件(4.2平面向量的坐标运算)

高考理科第一轮复习课件(4.2平面向量的坐标运算)
向量的坐 若起点A(x1,y1),终点B(x2,y2),则 AB =
(λ x,λ y) 设a=(x,y),λ ∈R,则λ a=____________

(x2-x1,y2-y1) _______________
4.向量平行的坐标表示 设a,b是非零向量且a=(x1,y1),b=(x2,y2),y1,y2≠0,则 x1y2-x2y1=0 a∥b⇔__________. 定理1:若两个向量(与坐标轴不平行)平行,则它们相应的 成比例 坐标_______.
【互动探究】在本例题(2)图中,连接CD交AM于点P,若
AP AM,CP CD 求λ ,μ 的值. ,
【解析】CD AD AC 2 AB AC 2 a b,
3 3 1 1 AM (AB AC) (a b). 2 2 AC AP PC AP CP AM CD
则向量 MN =______. CM 3CA CN 2CB , ,
【思路点拨】(1)利用向量坐标运算的法则求解即可.
(2)根据向量的共线及向量坐标运算的法则逐一验证即可.
(3)利用平面向量的基本概念及其坐标表示求解.
【规范解答】(1)选B.设b=(x,y),则2b-a=(2x-3,2y-3)= (-1,1), 故

)
(4)平面向量的基底不唯一,只要基底确定后,平面内的任 何一个向量都可被这组基底唯一表示.( )
(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示 成 x1 = y1 . (
x2 y2
)
【解析】(1)错误.只有不共线的两个向量才能作为平面的一 组基底.

4.2 平面向量的坐标运算

4.2    平面向量的坐标运算

(0,2)-(1,0)=(-1,-2)-(x,y),
即(-1,2)=(-1-x,-2-y),
1 x 1, x 0, y 4. 2 y 2.
∴D点的坐标为(0,-4)(如图中的D1).[4分] (2)若是ADBC,则由AD=CB得 (x,y)-(1,0)=(0,2)-(-1,-2),
中点P的坐标为 ( x1 x2 , y1 y2 ). 2 2 △ABC中,若A(x 1,y 1),B(x2 ,y2),C(x 3,y 3),则 △ABC的重心G的坐标为 (
x1 x2 x3 y1 y2 y3 , ). 3 3
定时检测
一、填空题
1.(2009·天津汉沽一中模拟)已知平面向量a=
【例4】(14分)已知点A(1,0)、B(0,2)、
C (-1,-2),求以A、B、C为顶点的平行四
边形的ቤተ መጻሕፍቲ ባይዱ四个顶点D的坐标.
分析 “以A、B、C为顶点的平行四边形”可以 有三种情况:(1)ABCD;(2)ADBC;
(3)ABDC.
解题示范
解 设D的坐标为(x,y). (1)若是ABCD,则由AB=DC得
2.借助于向量可以方便地解决定比分点问题.
在处理分点问题,比如碰到条件“若P是线段AB 的分点,且|PA|=2|PB|”时,P可能是AB的内
分点,也可能是AB的外分点,即可能的结论有:
AP=2PB或AP=-2PB. 3.中点坐标公式:P 1 (x 1 ,y 1 ),P 2 (x 2 ,y 2 ),则P 1 P 2 的
2 1 (1,1),b=(1,-1),则向量 a- b= (-1,2) . 3 2 解析 1 a 3 b 1 (1,1) 3 (1,1) 2 2 2 2 1 1 3 3 ( , ) ( , ) 2 2 2 2 1 3 1 3 ( , ) (1,2). 2 2 2 2

高考数学一轮复习 4.2 平面向量的基本定理及坐标表示课件 理 新人教A版

高考数学一轮复习 4.2 平面向量的基本定理及坐标表示课件 理 新人教A版
第三十三页,共59页。
解得 x=4+
5 5
或 x=4-
5 5
.
y=1+2 5 5
y=1-2
5 5
∴d=20+5 5,5+52 5或 d=20-5 5,5-52 5.
第三十四页,共59页。
(2013·北京西城期末)已知向量 a=(1,3),b=(-2,1),c= (3,2).若向量 c 与向量 ka+b 共线,则实数 k=________.
第九页,共59页。
问题探究 1:平面内任一向量用两已知不共线向量 e1、e2 表 示时,结果唯一吗?平面内任何两个向量 a、b 都能作一组基底 吗?
提示:表示结果唯一.平面内只有不共线的两个向量才能作 基底.
问题探究 2:向量的坐标与点的坐标有何不同? 提示:向量的坐标与点的坐标有所不同,相等向量的坐标是 相同的,但起点、终点的坐标却可以不同,以原点 O 为起点的向 量O→A的坐标与点 A 的坐标相同.
第三页,共59页。
考情分析
平面向量的坐标表示是通过坐标运算将几何问题转化为代 数问题来解决.特别地,用坐标表示的平面向量共线的条件 是高考考查的重点,属中低档题目,如 2013 年辽宁卷 3、 重庆卷 10,常与向量的数量积、运算等交汇命题.注重对 转化与化归、函数与方程思想的考查,如 2013 年江苏卷 15、 天津卷 12 等.
则x<0 y>0
且(x,y)=(1,2)+t(3,3),
∴xy==12++33tt ,∴12++33tt<>00 ,∴-23<t<-13.
第二十八页,共59页。
(2)因为O→A=(1,2),P→B=O→B-O→P=(3-3t,3-3t), 若四边形 OABP 为平行四边形,则O→A=P→B. ∵33--33tt==12 ,无解, ∴四边形 OABP 不可能为平行四边形.

2019年高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第3节平面向量的数量积及其应

2019年高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第3节平面向量的数量积及其应

第三节平面向量的数量积及其应用[考纲传真]1.理解平面向量数量积的含义及其物理意义 2 了解平面向量的数量积与向量投影的关系3掌握数量积的坐标表达式,会进行平面向量数量积的运算4能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题6会用向量方法解决简单的力学问题与其他一些实际问题.双基自主测评I基础知识环能力全面巩固■(对应学生用书第61页)[基础知识填充]1. 向量的夹角(1)定义:已知两个非零向量a和b,如图4-3-1 ,作0A= a, 0B= b,则/ AOB=0 (0 °w 0 < 180° )叫作a与b的夹角.0 b B图4-3-1(2)当0 = 0°时,a与b共线同向.当0 = 180°时,a与b共线反向.当0 =90°时,a与b互相垂直. '—2•平面向量的数量积(1) 定义:已知两个非零向量a和b,它们的夹角为0,则数量| a|| b| • cos 0叫做a与b的数量积(或内积).规定:零向量与任一向量的数量积为0.(2) 几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积Jk 曜或b的长度| b|与a在b方向上射影| a|cos 0的乘积.3. 平面向量数量积的运算律(1) 交换律:a • b= b • a;(2) 数乘结合律:(入a) • b=入(a • b) = a •(入b);(3) 分配律:a •( b+ c) = a • b+ a • C.4. 平面向量数量积的性质及其坐标表示122结论几何表示坐标表小2| a || b |cos 0夹角a - bcos 0 — . [[ i .|a || b |X 1X 2+ y 1y 2cos 0 — . y, ------------------------------- .,,V X 2 + y2^/X 2 + y 2a 丄ba -b — 0X 1X 2+ y 1y 2— 0|a • b | 与 | a || b | 的关系|a - b | w| a || b || X 1X 2+ y 1y 2| w 寸X 1 + y 2 •寸 X 2+ y ;[知识拓展]1两个向量a , b 的夹角为锐角? a •b >0且a , b 不共线;两个向量a ,b 的夹角为钝角? a •b <0且a , b 不共线. 2 •平面向量数量积运算的常用公式 (1)( (2)( (3)(2 2a +b ) •( a -b ) = a — b .2 2 2a +b ) = a + 2a • b + b .a -b )2= a 2-2a • b + b 2.3.当a 与b 同向时,a •b = | a||b1.当a 与b 反向时,a ・b = — |a||b |.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X” (1) 两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.由 a - b = 0,可得 a = 0 或 b = 0.()由a - b = a - c 及a ^0不能推出b = C.()2. 在四边形 ABCDh AB- DC &AC- BD= 0,则四边形 ABCD 为矩形•( [答案](1) V (2) X (3) V(2016 -全国卷川)已知向量BA=A . 30° ,1,则/ ABC=(3.C. 60°D. 120°A [因为BA=2, -2 , BC > 三3, 1,所以 E3A- £=¥+石3=_23.又因为 B A- B <> I B AII 航cos / ABC= 1X 1X cos / ABC 所以 cos / 又 0°<Z ABCc 180°,所以/ABC= 30° .故选 A .](2015 •全国卷 n )向量 a = (1 , - 1), b = ( — 1,2),则(2a + b ) - a =()A . - 1 B. 0 C. 1D. 22C [法: T a = (1 , — 1) , b = ( — 1,2) ,.•. a = 2, a • b =— 3, 从而(2a + b ) • a = 2a 2 + a • b = 4 — 3= 1. 法二:T a = (1 , — 1) , b = ( — 1,2), .2a + b = (2 , — 2) + ( — 1,2) = (1,0),从而(2a + b ) • a = (1,0) • (1 , — 1) = 1,故选 C.]4. ______________ (教材改编)已知|a | = 5, | b | = 4, a 与b 的夹角0 = 120° ,则向量b 在向量a 方向上的 投影为 __ .—2 [由数量积的定义知, b 在a 方向上的投影为| b |cos 0 = 4x cos 120 ° =— 2.]5. (2017 •全国卷I)已知向量 a = ( — 1,2) , b = (m,1).若向量 a + b 与a 垂直,则 m=7 [ T a = ( — 1,2) , b = (m,1), ••• a + b = ( — 1 + m,2 + 1) = ( m- 1,3). 又 a + b 与 a 垂直,二(a + b ) • a = 0, 即(m-1) x ( — 1) + 3X 2= 0, 解得m= 7.]题型分类突破I 高琴题型烦律方法逐-突砸■(对应学生用书第62页)心 ......平面向量数量积的运算■■■I (1)(2016 •天津高考)已知△ ABC 是边长为1的等边三角形,点D, E 分别是边AB,BC 的中点,连接 DE 并延长到点F ,使得DE= 2EF,则AF- BC 勺值为()A . 11D -S'已知正方形 ABCD 勺边长为1,点E 是AB 边上的动点,则DE- CB 勺值为C.;DE ・DC的最大值为 【导学号: 00090135】AF = AM DF又D, E 分别为AB BC 的中点,(1) B (2) 1 1 [(1)如图所示,f 1 f f 1 ・_且DE=2EF所以AD= 1A B DF=2AC+;AC=4AC1f2当E 运动到B 点时,DE^DC 方向上的投影最大,即为 DC = 1, 所以(DE' Dg =| DC - 1= 1.][规律方法]1.求两个向量的数量积有三种方法: 利用定义;利用向量的坐标运算; 利用数量积的几何意义.~T 1 -T 3 ~T 所以 AF = 2AB+ 4AC又 BC= AC- AB3T-4AC-又 | AB =|AQ = 1,z BAO 60°,故AF- E3C = 4-2 — 4X 1X 1X 2= 1.故选 B.4 2 4 2 8⑵ 法一:以射线AB AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),巳1,0),C (1,1) ,D (0,1),设E (t, 0) , t € [0,1],则DE = (t , - 1),(t , -1) - (0,- 1) = 1.因为 DC = (1,0),所以 DE- DC = (t ,- 1) - (1,0) = t w 1, 故D E- DC 的最大值为1.法二:由图知,无论E 点在哪个位置,DE 在CB^向上的投影都是 CB= 1,所以DE- CB= | CB则 AF- BC= -(AC-AB 3 T T2. (1)要有“基底”意识,关键用基向量表示题目中所求相关向量. (2)注意向量夹角的大小,以及夹角0 = 0°, 90°, 180°三种特殊情形.2[变式训练1] ⑴ 已知AB= (2,1),点C ( — 1,0) , D (4,5),则向量AB 在 C [方向上的投影为(1) C (2)C [(1)因为点 C ( —1,0) , Q4,5),所以 C* (5,5),又AB= (2,1),所以向量 AB 在CD?向上的投影为|AB |cos 〈 AB C D =磊=芈I CD%2⑵ 由 AB- AF = 3 得AB ・(AM DF = AB- DF= 3,所以 |DF = 1, |CF = 2,BE • BC= — 6 + 2 = — 4.](1)(2017 •合肥二次质检)已知不共线的两个向量a ,b 满足|a — b | = 2且a 丄(a—2b ),则 | b | =( )A . 2 C. 2 2⑵(2018 •西安模拟)已知平面向量a , b 的夹角为 卡,且|a | = .3, | b | = 2,在厶ABC 中,AB= 2a + 2b , AC= 2a — 6b , D 为 BC 的中点,贝U |AQ = ______ .(1)B (2)2[(1)由 a 丄(a — 2b )得 a - (a — 2b ) = | a | — 2a - b = 0.又•/ | a — b | = 2,「. | a(2)(2018 •榆林模拟)已知在矩形ABCD 中 AB= 3, BC = 3, BE = 2EC 点 F 在边 CD 上.若AB- AF = 3,则 A E- 'BF 的值为()【导学号:00090136】A . 0B 育C.— 4D. 42B.- 3 5 D. 3 5C. 所以 AE - BF = ( AB+ BE ) •( BC+ CF ) =AB- BC+ AB- CF + BE- BC + BE- CF = AB- CF +ISfifl... ......... . ............................ j平面向量数量积的性质角度1平面向量的模MBB. 2 D. 4—b| 2= | a|2—2a - b+ | b|2= 4,则| b|2= 4, | b| = 2,故选B.■ ■ ~9 1 ~> (2)因为 A[> 2(AB+ AC 1=2(2a + 2b + 2a — 6b ) =2a — 2b ,所以 |AD 2= 4(a — b )2= 4(a 2— 2b •a + b 2)—e 2的夹角为B ,贝U cos 3 =⑵ 若向量a = (k, 3) , b = (1,4) , c = (2,1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取2=I — 2X 3X 2X1 X cos a + 4= I ,所以|a | = 3,i i222因为 b = (3e 1 — e 2) = I — 2X 3X 1 XI X cos a + 1 = 8, 所以 | b | = 2 2,a •b = (3 e 1 — 2e 2)- (3 e 1 — e ?)2 21 =9e 1 — 9e 1 • e2 + 2e 2= I — I X 1 X 1 X + 2 = 8,3 所以cos 3= rOi 占=3^=弩.(2) •/ 2a — 3b 与c 的夹角为钝角, ••• (2 a — 3b ) - c v 0, 即(2 k — 3, — 6) - (2,1) v 0,• 4k — 6— 6v 0, • k v 3.9又若(2a — 3b ) // c ,贝U 2k — 3 =— 12,即卩 k =—》 当 k =— I 时,2a — 3b = ( — 12,— 6) = — 6c ,=4X (3 — 2X 2X3 X cos n + 4) = 4,所以 | AD = 2.]角度2平面向量的夹角2-2 1(1)已知单位向量 e 1与e 2的夹角为 a ,且cos a = 3 向量 a = 3e i — 2e 2与 b = 3e i值范围是 (1)弩(2)[(1)因为 a 2= (3 e 1 — 2e 2)2△in 2 x — ¥cos x = 2,2 2即2a -3b 与c 反向. 综上,k 的取值范围为 一R, 角度3平面向量的垂直 (2016 •山东高考)已知向量a = (1 , - 1), b = (6 , - 4).若a 丄(ta + b ),则实 数t 的值为 _________ —5 [ - a = (1 , — 1), b = (6 , — 4),…ta + b = (t + 6, — t — 4). 又 a 丄(ta + b ),则 a •( ta + b ) = 0,即 t + 6 +1 + 4= 0,解得 t =— 5.] a • b [规律方法]1.求两向量的夹角:cos 0 = ,要注意0 c [0 , n ]. 丨a l •丨b | 2.两向量垂直的应用: 两非零向量垂直的充要条件是: a 丄b ? a • b = 0? | a — b | = |a + b |. 3 •求向量的模:利用数量积求解长度问题的处理方法有: (1) a 2= a • a = | a |2 或 | a | = a • a . (2) | a ± b | = a ± b 2= a ±2a • b + b . ⑶若 a = (x , y ),则 | a | = x 2 + y 2. |U3[ 平面向量与三角函数的综合 (2018 •佛山模拟)在平面直角坐标系 xOy 中,已知向量m = ^2, — 2小=(sin cos x ) , x c (1)若 miL n ,求 tan x 的值; n ⑵若m 与n 的夹角为—,求x 的值. 【导学号:00090137】所以 sin x = cos x ,所以 tan x = 1. n 1⑵因为 | m = I n | = 1,所以 m-n = cos —=-,3 2x . 所以 m-n = 0, x , cos x ), n Ln . 即承n cos x(1)因为m = n = (sin所以sin 12因为 O v x v n ,所以—n_< x — n_<n n , 一 n n 5 n 所以x —才=6,即x =〒2. [规律方法]平面向量与三角函数的综合问题的解题思路得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题 sin x x= -------cos x •- tan 2 x = —=1 — tan x 53⑵•/ a = sin ^, , b = (cos x , — 1),3 2 2 2 2••• a •b = sin x cos x — ?, b = cos x + ( — 1) = cos x + 1,23 2 1 1 1• f (x ) = (a + b ) - b = a •b + b = sin x cos x — ~ + cos x + 1 = 2sin 2x + 尹 + cos 2x ) — ?⑴ 题目条件给出向量的坐标中含有三角函数的形式, 运用向量共线或垂直或等式成立等, 思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018 •郴州模拟)已知向量a = sin x , | , b = (cos X , (1)当a //b 时,求tan 2 x 的值; (2)求函数f (x ) = (a + b ) - b 在|—-2 , 0上的值域. (1) ■/ a //b , a = sin x , | , b = (cos x , 3 x - ( — 1) — 2 • cos 即sin 3 X + 2C0S x = 0, 得sin 3 x = — 2C0S x , 二tan -32,匕2tan x 12 x = 0,1 n 1 sin 2x+ 才.I nT x€ |—— , 0••• sin 2x+4 € —1 ,n故函数 f (X ) = (a + b ) • b 在 | — , 0 • •• f(X)= 刍n -弓,2上的值域为•—, 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.e1=(0,0),e2=(1,2) B.e1=(-1,2),e2=(5,-2) C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2=(-2,3)
解析 设 a=k1e1+k2e2, A 选项,∵(3,2)=(k2,2k2),∴k22k=2=3,2, 无解. B 选项,∵(3,2)=(-k1+5k2,2k1-2k2), ∴-2k1k-1+25k2k=2=2,3, 解之得kk12==21,. 故 B 中的 e1,e2 可把 a 表示出来. 同理,C,D 选项同 A 选项,无解.故选 B.
3.小题热身
(1)已知向量 a=(1,2),b=(1,0),c=(3,4).若 λ 为实数,
(a+λb)∥c,则 λ=( )
1 A.4
1 B.2
C.1
D.2
解析 a+λb=(1+λ,2),由(a+λb)∥c,得(1+λ)×4 -3×2=0,∴λ=12.故选 B.
(2)(2014·福建高考)在下列向量组中,可以把向量 a= (3,2)表示出来的是( )
经典题型冲关
题型 1 平面向量基本定理及应用 典例 (2015·北京高考)在△ABC 中,点 M,N 满足A→M
1 =2M→C,B→N=N→C.若M→N=xA→B+yA→C,则 x=____2____,y=
___-__16___. 运用向量的线性运算对待求向量不断进
行转化,直到用基底表示.
解析 由A→M=2M→C知 M 为 AC 上靠近 C 的三等分点, 由B→N=N→C,知 N 为 BC 的中点,作出草图如下:
方程组法.
解析 设 P(x,y),由点 P 在线段 AB 的延长线上,且A→P =32B→P,得(x-2,y-3)=32(x-4,y+3),
即x-2=32x-4, y-3=23y+3.
解得xy==8-,15.
则有A→N=12(A→B+A→C),所以 M→N =A→N -A→M=12(A→B+ A→C)-23·A→C=12A→B-16A→C,又因为M→N=xA→B+yA→C,所以 x =12,y=-16.
方法技巧 应用平面向量基本定理的关键点
1.平面向量基本定理中的基底必须是两个不共线的向 量.
2.选定基底后,通过向量的加、减、数乘以及向量平 行的充要条件,把相关向量用这一组基底表示出来.
2.平面向量的坐标运算 设 a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) , a-b= (x1-x2,y1-y2) ,λa= (λx1,λy1) ,|a|= x21+y21,
|a+b|= x2+x12+y2+y12.
3.平面向量共线的坐标表示 设 a=(x1,y1),b=(x2,y2),则 a∥b⇔ x1y2-x2y1=0 .
解析 解法一:由已知条件可得 ma+nb=(2m,3m)+(- n,2n)=(2m-n,3m+2n),a-2b=(2,3)-(-2,4)=(4,-1).∵ ma+nb 与 a-2b 共线,∴2m4-n=3m-+12n,即 n-2m=12m +8n,∴mn =-12.
解法二:注意到向量 a=(2,3),b=(-1,2)不共线,因 此可以将其视为基底,因而 ma+nb 与 a-2b 共线的本质是 对应的坐标(系数)成比例,于是有m1 =-n2⇒mn =-12.
3.强调几何性质在向量运算中的作用,用基底表示未 知向量,常借助图形的几何性质,如平行、相似等.如典例.
冲关针对训练 设 D,E 分别是△ABC 的边 AB,BC 上的点,AD=12AB, BE=23BC.若D→E=λ1A→B+λ2A→C(λ1,λ2 为实数),则 λ1+λ2 的值
1 为____2____.
1 A.3
B.3
3 C. 3
D. 3
解析 依题意,以 O 为原点,OA、OB 分别为 x,y 轴 建立平面直角坐标系,则 A(1,0),B(0, 3),设 C(x,y), 由O→C=mO→A+nO→B得 x=m,y= 3n,又∠AOC=30°,知yx = 33,故mn =3,选 B.
(2)(必修 A4P101A 组 T5)已知向量 a=(2,3),b=(-1,2), 若 ma+nb 与 a-2b 共线,则mn =__-__12____.
[诊断自测] 1.概念思辨 (1)平面内的任何两个向量都可以作为一组基底.( × ) (2)平面向量的基底不唯一,只要基底确定后,平面内 的任何一个向量都可被这组基底唯一表示.( √ )
(3)设 a,b 是平面内的一组基底,若实数 λ1,μ1,λ2,μ2 满足 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( √ )
第4章 平面向量
4.2 平面向量基本定理及坐标表示
基础知识过关
[知识梳理]
1.平面向量基本定理 如果 e1,e2 是同一平面内的两个 不共线 向量,那么 对于这一平面内的任意向量 a, 有且只有 一对实数 λ1, λ2,使 a=λ1e1+λ2e2.其中,不共线的向量 e1,e2 叫做表示这 一平面内所有向量的一组 基底.把一个向量分解为两个 互相垂直 的向量,叫做把向量正交分解.
解析 D→E=D→B+B→E=12A→B+23B→C=12A→B+23(A→C-A→B) =-16A→B+23A→C,∵D→E=λ1A→B+λ2A→C,∴λ1=-16,λ2=23, 故 λ1+λ2=12.
题型 2 平面向量共线的坐标表示及应用 角度 1 求点的坐标 典例 已知 A(2,3),B(4,-3),点 P 在线段 AB 的延 长线上,且|AP|=32|BP|,则点 P 的坐标为__(_8_,__-__1_5_)__.
(4)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可 表示成xx12=yy12.( × )
2.教材衍化
(1)(必修 A4P119T11)已知|O→A|=1,|O→B|= 3,O→A⊥O→B,
点 C 在线段 AB 上,∠AOC=30°.设O→C=mO→A+nO→B
相关文档
最新文档