Quantum gates by coupled quantum dots and measurement procedure in Si MOSFET

合集下载

introduction of quantum dot量子点技术介绍(附演讲稿)-半导体物理全英文展示

introduction of quantum dot量子点技术介绍(附演讲稿)-半导体物理全英文展示
Quantum Dots
Introuction
Nanoscale crystals<=100nm Diameter of ≈10 to 50 atoms Contains 100 - 100,000 atoms
Introuction
Emission spectrum controlled by size Larger QDs emit longer wavelengths Smaller QDs emit shorter wavelengths
4. From our course, we know it’s nano scale size make quantum dots so special. The important point is Bohr diameter. These data is cited form our course slides. In this kind of single point, carriers are constrained strongly. So they have discrete, quantized energy levels, according to the laws of quantum theory. It is a bit like individual atoms, sometimes known as "artificial atoms."
Fluorescence mages for the detection of CEA
Conclusion
Nanocrystal Size controlling emission color Optical, biomedical research application

量子点

量子点

量子点荧光探针的毒性
研究表明, CdSe 组成的量子点在长时间的
紫外光照射下会发生光解反应,释放出 Cd 离子
,从而对细胞具有毒性。但没有紫外光激发, 量子点在生物环境中是非常稳定的。但是量子 点荧光探针对于生物体的细胞毒性和活体中的 降解机理还有待更深入研究。
参考文献
[1]Lin Z, Cui S, Zhang H, et al. Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction[J]. Analytical Biochemistry, 2003, 319(2):239-243.
[2]Gao X, Yang L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots[J]. Current Opinion in Biotechnology, 2005, 16:63-72.
[3]Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Analytical Chemistry, 2002, 74(4):841-7. [4]Derfus A M, Chan W C W, Bhatia S N. Probing the Cytotoxicity of Semiconductor Quantum Dots[J]. Nano Letters, 2003, 4(1):11-18. [5]Iyer G, Michalet X, Chang Y P, et al. High Affinity scFv–Hapten Pair as a Tool for Quantum Dot Labeling and Tracking of Single Proteins in Live Cells[J]. Nano Letters, 2008, 8(12):4618-23.

cdte半导体量子点的发射波长

cdte半导体量子点的发射波长

cdte半导体量子点的发射波长英文回答:The emission wavelength of CdTe semiconductor quantum dots depends on several factors, including the size of the quantum dots and the nature of their surface ligands. CdTe quantum dots are known to exhibit size-dependent optical properties, meaning that as the size of the quantum dots changes, so does their emission wavelength.When the size of CdTe quantum dots is small, typically less than 5 nm in diameter, they exhibit a phenomenon called quantum confinement. This occurs when the size of the quantum dots becomes comparable to or smaller than the exciton Bohr radius, resulting in a confinement of the electron and hole within the quantum dot. In this confined state, the energy levels of the electron and hole are quantized, leading to a discrete set of energy levels. The emission wavelength of the quantum dot is then determined by the energy difference between the highest occupiedenergy level and the lowest unoccupied energy level, known as the bandgap energy.As the size of CdTe quantum dots increases, the quantum confinement effect becomes less significant, and the bandgap energy decreases. This leads to a redshift in the emission wavelength, meaning that the quantum dots emit light at longer wavelengths. Conversely, when the size of the quantum dots decreases, the bandgap energy increases, resulting in a blueshift in the emission wavelength.In addition to size, the nature of the surface ligands attached to CdTe quantum dots can also affect their emission wavelength. Surface ligands can passivate the surface states of the quantum dots, reducing non-radiative recombination processes and enhancing radiative recombination. This can result in a narrower emission linewidth and a shift in the emission wavelength.Overall, the emission wavelength of CdTe semiconductor quantum dots can be tuned by controlling their size and surface ligands. This tunability makes CdTe quantum dotsattractive for various applications, including optoelectronics, biological imaging, and solar cells.中文回答:CdTe半导体量子点的发射波长取决于几个因素,包括量子点的尺寸和表面配体的性质。

量子点英语介绍

量子点英语介绍

definition
Part Ⅱ:What is luminesence?
Part Ⅲ:The application of quantum dots?
Solar cell
Solar cell
Part Ⅲ:The application of quantum dots?
QLED
QLED
Part Ⅲ:The application of quantum dots?
Recognize some websites to everybody
小木虫论坛: /bbs/index.php ACS:/ Web of sicence :https:/// SCI: /
The highly luminescent(发光) of quantum dots (量子点) —————Gaoliang Fang 161200010
The highly luminescet of quantum dots (QDs)
What is quantum dots ?
What is luminesence? The application of quantum dots
Part Ⅱ:What is luminesence?
When a material be excited by rays, high-energy particles, electron ,the material in the excited state released energy by light.
Part Ⅰ: What is quantum dots ?
charfferent emit colors by adjust the diameter of quantum dots .

量子点在生物及医学分析中的应用

量子点在生物及医学分析中的应用

与蛋白质偶联,形成生物传感器, 测定生物体内物质的特性
温度的高低直接影响到量子点颗粒的 大小,一般情况T越高,制得量子点的颗 粒越小,发出的荧光波长越短,因此颗 粒大小不同的量子点 ,可以显示出不同 的颜色:
生物芯片技术:量子点色彩的多样性满足了对生物高分 子(蛋白质、DNA)所蕴含海量信息进行分析的要求: 子(蛋白质、DNA)所蕴含海量信息进行分析的要求: 将聚合物和量子点结 合形成聚合物微珠,微 珠可以携带不同尺寸 (颜色)的量子点,被 照射后开始发光,经棱 镜折射后传出,形成几 种指定密度谱线(条形 码),这种条形码在基 因芯片和蛋白质芯片技 术中有光明的应用前景
参考文献
[1] 代泽琴,冯广卫.量子点的合成及表面修饰[J].化学与生物工 程,2010,27(10), 330-348. [2] Bruchez Marcel Jr, Moronne Mario, Gin Peter, et al. Semi conductor nanocrystals as fluorescent biological labels[J].Science, 1998,281(5385):2013-2016. [3] 张红艳.CdTe/CdS量子点的合成及在生物分析中的应用[J].东北大 学硕士论文,2011,32-48. [4] 王海桥.核壳型CdSe/ZnS量子点在生物分析中的应用[J].华中科技 大学博士论文,2008,65-98. [5] Manna L, Scher E C, A livisatos A P .Synthesis of soluble and processable rod, arrow, teardrop and tetrapod-shaped CdSe nanocrystals[J].J Am Chem Soc,2000,122(51):12700-12706. [6] Blackman Bridgette,Battaglia David,Peng Xiaogang.Bright anwatersoluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals,tuning the efficiency and stability by growth[J]Chem Mater,2008,20(15):4847-4853.

基于改进五输入择多门的QCA全加器设计及应用

基于改进五输入择多门的QCA全加器设计及应用

基于改进五输入择多门的QCA全加器设计及应用刘帅;解光军;张永强;项云龙;吕洪君【摘要】Quantum-dot cellular automata (QCA) is an emerging nanotechnology .A full adder based on improved five-input majority gate is proposed .The full adder keeps correct logic function and dominates the previous results .Then it is applied to imple-ment adder andmultiplier .Results illustrate that they improve significantly in some performance .%量子元胞自动机(Quantum-dot cellular automata ,QCA )是一种新兴的纳米技术。

本文基于改进的五输入择多门,设计出一个全加器,在保持正确逻辑功能的基础上较以往的全加器有一定优势。

应用该全加器设计加法器和乘法器,结果表明在某些性能上有显著提高。

【期刊名称】《电子学报》【年(卷),期】2015(000)002【总页数】6页(P387-392)【关键词】量子元胞自动机;五输入择多门;全加器;加法器;乘法器【作者】刘帅;解光军;张永强;项云龙;吕洪君【作者单位】合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009;合肥工业大学电子科学与应用物理学院,安徽合肥230009【正文语种】中文【中图分类】TN4021 引言随着晶体管技术的提高,器件尺寸越来越小,小尺寸效应逐渐显现出来,严重影响器件的性能,因此需要有新的技术来取代CMOS.Lent等[1]1993年第一次提出量子元胞自动机,基于QCA的电路具有高速、高集成度以及低功耗[2]等优点,能够解决传统CMOS器件的一些问题,因而获得广泛关注.全加器在数字电路中的重要性,使得其在QCA电路中获得比较多的研究.本文在改进五输入择多门的基础上,设计出一个全加器,该全加器在保持最小输出延迟的基础上,减少了元胞使用数目及占用面积,同时具有更高的稳定性.为了进一步探讨该全加器的性能,应用其设计加法器和乘法器.结果表明,均具有正确的逻辑功能,而且性能更加优越.2 量子元胞自动机原理2.1 QCA元胞QCA元胞由处于正方形顶点的四个量子点和两个可以自由移动的电子组成,由于库仑作用,电子只有处于对角线上的量子点时才能达到稳定状态,分别对应极化状态P=-1和P=1,如图1所示.定义当P=-1时对应二进制信息0,当P=1时对应二进制信息1.2.2 时钟时钟主要有两方面的作用:(1)同步控制信息传输;(2)提供电路所需能量[3].通常用四个相位差为90°的时钟来控制信息的传输,用四种不同颜色来区分表示,信息传输顺序为时钟0→时钟1→时钟2→时钟3,如图2所示.2.3 逻辑单元在QCA电路中最基本的逻辑单元是反相器和择多门.反相器如图3(a)所示;择多门主要有两种,一种是三输入择多门,一种是五输入择多门.三输入择多门如图3(b)所示.第一种五输入择多门由Azghadi等[4]提出,它由三维的元胞构成,但并不能应用到电路中;Navi等[5,6]提出两种择多门,文献[5]中的输出端位于内部,没有实用性;文献[6]中的由10个元胞构成,元胞用一个时钟控制;Akeela等[7]提出一种择多门,Hashemi等[8]提出两种择多门,但这三种使用的元胞比较多,而且都要用三个时钟控制.如图4所示(图4(d),(e),(f)中不同颜色的元胞表示处于不同的时钟).3 全加器设计3.1 改进的五输入择多门为了减少全加器的元胞数目、缩小面积,将图4(c)中的五输入择多门作出改进,如图5所示.在图4(c)中,元胞E作为一个输入端.在改进后,去掉元胞E,在原来的位置放置一个正常元胞,并且增加一个正常元胞使其与输入端C相连.这样,输入端C便起到两个输入端的作用,正好符合由五输入择多门构成的全加器中进位信号的需求,极大的简化了电路走线.另外,只有当输入信号同时进入具有表决作用的元胞时,择多门才能保持正确功能.因此,为了保证输出正确,输出端F以及中间四个元胞都用时钟1来控制.3.2 全加器数字电路中算术运算(加、减、乘、除)最终都可归结为加法运算,所以加法器的设计尤为重要,而全加器又是加法器的基础,因此性能优越的全加器有着举足轻重的作用.第一种全加器由Lent等[9]提出来,由五个三输入择多门和三个反相器组成,后来Wang等[10]将全加器“和”的表达式简化,逻辑结构随之缩减到三个三输入择多门和两个反相器.Cho等[11]在此基础上设计出一种全加器,元胞数目为86,“和”输出延迟周期,进位输出延迟周期.最近,Pudi等[12]进一步将全加器简化,只用到三个三输入择多门和一个反相器.我们提出的全加器,由一个三输入择多门、一个五输入择多门和一个反相器组成,逻辑表达式为其中A、B、C分别为加数和被加数以及进位输入,CO为进位输出,S为和.该全加器的结构图、元胞图及仿真结果如图6所示.该全加器由66个元胞构成,“和”输出与进位输出.与 Cho等[11]设计的全加器相比,在输出延迟保持一致的情况下,元胞数目减少了20;与 Pudi等[12]相比,进位输出延迟保持一致,“和”输周期.而且由于输出端不被其它元胞所包围,该全加器具有良好的扩展性.目前,也有文献提出以五输入择多门构成的全加器,如Navi等[6]设计的全加器由73个元胞组成,输出延迟与本文的全加器一致,但是由于该全加器的三个输入端位于全加器的内部,导致不具备可扩展性.Hashemi等[8]设计出两种全加器,其中一种虽然使用更少的元胞,但电路中的反相器不稳定,电路稳定性差,并且扩展性也不好;另外一种全加器使用79个元胞,输出延迟个周期,与本文全加器相比,输出延迟大大增加.3.3 全加器的稳定性元胞缺失、移位等缺陷会对电路的稳定性造成影响,本文设计的全加器和Pudi等[12]设计的全加器在结构上相似,可以通过概率转移矩阵[13]比较二者的稳定性.对于有m个输入、n个输出的电路,共有2m×2n种输入和输出组合,每种输入对应1种正确输出和2n-1种错误输出.假设正确的输出概率为p,每种错误输出概率相等且总和为q,则p+q=1.根据上述描述可以列出不同单元的概率转移矩阵,如下所示假设有两个逻辑单元A和B,概率转移矩阵分别为TA和TB.若A的输出为B的输入,则二者称为串联结构,总的概率转移矩阵为TA·TB;若A与B互不影响,则二者称为并联结构[14],总的概率转移矩阵为TA⊗TB(运算符和⊗的定义与文献[14]一致).Pudi等[12]设计的全加器和本文的全加器结构分别如图7(a)、(b)所示.图中虚线框为两种全加器的不同部分,由于其它部分相同,可以通过虚线框内的对比来计算两种全加器的稳定性,即基于上述表达式得出总体错误率Q随错误概率q的变化曲线,如图8所示.由上图可知,在错误概率q相等的情况下,图7(b)的总体错误率要比图7(a)小,因此图7(b)中的全加器稳定性更高,可以更好地应用到大规模的电路中.4 全加器的应用4.1 加法器Cho等[11]利用全加器设计出载流进位加法器(Carry Flow Adder,CFA),Pudi等[12]利用其设计的全加器实现了脉冲进位加法器(Ripple Carry Adder,RCA).本文的全加器具有良好的扩展性,只需将前一个全加器的进位输出端连接到下一个全加器的进位输入端,便可实现加法器.限于篇幅,图9只给出四位加法器的元胞图和仿真结果.与上述两种加法器进行对比,结果如表1所示(本文的加法器用Proposed来代表,后面的数字代表加法器的位数).由上述对比可知,基于本文全加器实现的加法器在保持最小时钟延迟的基础上,无论是元胞数目还是面积都较另外两种有很大的优势,而且优势随着加法器位数的增加不断扩大.4.2 乘法器实现乘法器的关键在于乘法器网络的构造,Cho等基于滤波网络提出一个乘法器网络,在此基础上设计出进位延迟乘法器[11](Carry Delay Multiplier,CDM).借助于该乘法器网络,本文的全加器也可以实现乘法器.首先将本文的全加器修改为内部进位全加器,如图10所示(图10(a)中D代表时钟延迟).根据乘法器网络,利用图10(b)所示内部进位全加器设计出乘法器.图11为四位乘法器的元胞图与仿真结果,输出延迟1个周期.将本文的乘法器与Cho等[11]设计的进位延迟乘法器进行对比,结果如表2所示(本文的乘法器用Multiplier表示,后面的数字代表乘法器的位数).表1 三种加法器的对比延迟Proposed4 279 0.58 ×0.24 0.139 1类型元胞数目长×宽(μm×μm)面积(μm2)clocks Proposed8 584 1.14 ×0.40 0.456 2 2 4clocks Proposed16 1356 2.26 ×0.56 1.266 4 2 4 clocks Proposed32 3476 4.50 ×0.88 3.960 8 2 4 clocks Proposed64 10020 8.98 ×1.54 13.829 16 2 4 clocks CFA4 371 0.90 ×0.45 0.405 1 2 4 clocks CFA8 789 1.79 ×0.53 0.948 2 2 4 clocks CFA16 1769 3.55 ×0.69 2.450 4 2 4 clocks CFA32 4305 7.09 ×1.303 7.300 8 2 4 clocks CFA64 11681 14.15 ×1.71 24.196 16 2 4 clocks RCA4 339 0.82 ×0.31 0.254 1 2 4 clocks RCA8 712 1.62×0.46 0.745 2 3 4 clocks RCA16 1602 3.22 ×0.62 1.996 4 3 4 clocks RCA32 3901 6.46 ×1.00 6.460 8 3 4 clocks RCA64 10926 12.9 ×1.66 20.916 16 3 43 4c locks表2 两种乘法器的对比延迟Multiplier 4 291 0.76 ×0.32 0.243 1clock Multiplier 8 679 1.68 ×0.34 0.571 1clock Multiplier16 1557 3.46 ×0.44 1.522 1clock Multiplier 32 3677 7.02 ×0.62 4.352 1clock Multiplier 64 9472 14.08 ×0.98 13.798 1clock CDM4 406 1.05 ×0.47 0.494 1clock CDM8 903 2.12 ×0.47 0.996 1clock CDM16 1999 4.19 ×0.47 1.9691clock CDM32 4575 8.47 ×0.65 5.506 1clock CDM64 11264 16.84 ×0.95 15.998 1clock类型元胞数目长×宽(μm×μm) 面积(μm2)通过对比可知,在输出延迟相同的情况下,本文的乘法器无论是元胞数目还是面积都较Cho等人设计的进位延迟乘法器有很大优势.5 结论本文在改进五输入择多门的基础上设计出一种全加器,该全加器具有正确的逻辑功能.在保持最小输出延迟的前提下,无论是元胞数目还是占用面积均较以往全加器有一定的减少,通过概率转移矩阵计算发现该全加器的结构更加稳定,有利于应用到大规模电路中.为进一步研究该全加器的性能,将其应用到加法器和乘法器中,结果表明,基于本文全加器实现的加法器和乘法器较以往使用更少的元胞,占用面积也进一步缩小,而且还保持最小的时钟延迟,因此性能更加优越.参考文献【相关文献】[1]C S Lent,P D Tougaw,W Porod.Bistable saturation in coupled quantum dots for quantum cellular automata[J].Applied Physics Letters,1993,62(7):714 -716.[2]王友仁,黄媛媛,冯冉,等.基于矩阵编码的量子可逆逻辑电路进化设计方法[J].电子学报,2011,39(11):2576-2582.Wang You-ren,Huang Yuan-yuan,Feng Ran,etal.Evolutionary design technology of quantum reversible logic circuit based on matrix coding[J].Acta Electronica Sinica,2011,39(11):2576 -2582.(in Chinese)[3]夏银水,裘科名.基于量子细胞自动机的数值比较器设计[J].电子与信息学报,2009,31(6):1517 -1520.Xia Yin-shui,Qiu Ke-ming.Number comparator based on quantum-dot celluar automata[J].Jounal of Electronics &Information Technology,2009,31(6):1517 - 1520.(in Chinese)[4]M Rahimi Azghadi,O Kavehei,K Navi.A novel design for quantum-dot cellular automata cells and full adders[J].Journal of Applied Sciences,2007,7(22):3460-3468. [5]Keivan Navi,Samira Sayedsalehi,Razieh Farazkish,et al.Five input majority gate,a new device for quantum-dot cellular automata[J].Journal of Computational and Theoretical Nanoscience,2010,7(8):1546 -1553.[6]Keivan Navi,Razieh Farazkish,Samira Sayedsalehi,et al.A new quantum-dot cellular automata full-adder[J].Microelectronics Journal,2010,41(12):820 -826.[7] Rami Akeela,Meghanad D Wagh.A five input majority gate in quantum-dot cellular automata[J].NSTI-Nanotechnology,2011,2(1):13 -16.[8] S Hashemi,M Tehrani,K Navi.An efficient quantum-dot cellular automata full-adder[J].Scientific Research and Essays,2012,7(2):177 -189.[9]P D Tougaw,C S Lent.Logical devices implemented using quantum cellular automata[J].Journal of Applied Physics,1994,75(3):1818 -1824.[10]W Wang,K Walus,G A Jullien.Quantum-dot cellular automata adders[A].Proceedings of the Third IEEE Conference on Nanotechnology[C].San Francisco:IEEE Computer Society,2003.461 -464.[11]Heumpil Cho,Earl E Swartzlander.Adder and multiplier design in quantum-dot cellular automata[J].IEEE Transactions on Computers,2009,58(6):721 -727.[12]Vikramkumar Pudi,K Sridharan.Low complexity design of ripple carry and brent-kung adders in QCA[J].IEEE Transactions on Nanotechnology,2012,11(1):105 -119. [13]欧阳城添,江建慧.基于概率转移矩阵的时序电路可靠度估计方法[J].电子学报,2013,41(1):171-177.OuYang Cheng-tian,Jiang Jian-hui.Reliability estimation of sequential circuit based on probabilistic transfer matrices[J].Acta Electronica Sinica,2013,41(1):171 - 177.(in Chinese)[14]黄宏图,蔡理,彭卫东,等.一位QCA数值比较器的可靠性研究[J].微纳电子技术,2011,48(5):291 -295.Huang Hong-tu,Cai Li,Peng Wei-dong,et al.Reliability study of 1-bit QCA comparators[J].Micronanoelectronic Technology,2011,48(5):291 -295.(in Chinese)。

量子点配体交换 光电器件

量子点配体交换 光电器件

量子点配体交换光电器件英文回答:Quantum dot ligand exchange is a process in which the ligands surrounding quantum dots are replaced with new ligands. This process is important in the field of optoelectronic devices because it allows for the tuning of the electronic and optical properties of quantum dots,which can then be used in various applications such assolar cells, light-emitting diodes (LEDs), and photodetectors.The ligands surrounding quantum dots play a crucialrole in determining their properties. By exchanging the ligands, we can modify the surface chemistry of the quantum dots, leading to changes in their electronic band structure, energy levels, and optical properties. For example, by replacing the original ligands with new ligands that have different electron-donating or electron-withdrawing properties, we can shift the energy levels of the quantumdots, thereby changing their absorption and emission wavelengths.One common method for ligand exchange is the use ofthiol-based ligands. Thiol ligands have a strong affinityfor the surface of quantum dots, allowing for efficient ligand exchange. For instance, one can replace the original ligands on the quantum dots with thiol ligands such as mercaptocarboxylic acids or thiols with differentfunctional groups. This ligand exchange process can be carried out by simply mixing the quantum dots with the new ligands in a suitable solvent, followed by purification steps.Another approach for ligand exchange is the use of amphiphilic ligands, which have both hydrophilic and hydrophobic parts. These ligands can self-assemble on the surface of quantum dots, providing stability andcontrolling the surface properties. An example of an amphiphilic ligand is a polymer with hydrophilic segments, such as polyethylene glycol (PEG), and hydrophobic segments, such as alkyl chains. By adjusting the ratio of hydrophilicto hydrophobic segments, one can control the ligand exchange process and tailor the properties of the quantum dots.In summary, quantum dot ligand exchange is a versatile method for modifying the properties of quantum dots in optoelectronic devices. By replacing the ligandssurrounding the quantum dots, we can tune their electronic and optical properties, enabling their use in various applications. This process can be achieved using thiol-based ligands or amphiphilic ligands, depending on the desired outcome.中文回答:量子点配体交换是一种将量子点周围的配体替换为新配体的过程。

量子力学英文读物

量子力学英文读物

量子力学英文读物以下是一些关于量子力学的英文读物推荐:1. "Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality" by Manjit Kumar2. "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory" by Brian Greene3. "The Quantum World: Quantum Physics for Everyone" by Kenneth W. Ford4. "Quantum Mechanics: Concepts and Applications" by Nouredine Zettili5. "Quantum Physics: A Beginner's Guide" by Alastair Rae6. "Quantum Computing for Computer Scientists" by Noson S. Yanofsky and Mirco A. Mannucci7. "Quantum Physics for Babies" by Chris Ferrie (a simplified introduction for children and adults)8. "The Strange World of Quantum Mechanics" by Daniel F. Styer这些书籍从不同的角度介绍了量子力学的基本原理、应用、历史以及相关的思想争论。

根据你的兴趣和程度,选择适合你的读物开始探索量子世界吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :q u a n t -p h /9908021v 1 5 A u g 1999Quantum gates by coupled quantum dots and measurement procedure in Si MOSFETTetsufumi TanamotoCorporate Research and Development Center,Toshiba Corporation,Saiwai-ku,Kawasaki 210-8582,Japan(February 1,2008)We investigated the quantum gates of coupled quantum dots,theoretically,when charging effects can be observed.We have shown that the charged states in the qubits can be ob-served by the channel current of the MOSFET structure.I.INTRODUCTIONSince Shor’s factorization program was proposed,many studies have been carried out in order to real-ize the quantum computer [1–4].Nakamura succeeded in the control of the macroscopic quantum state as the solid devices of Josephson junctions [4].Recently,we have proposed the quantum computer in the asymmet-ric coupled dot in Si nanocrystals [5].The advantage of using the coupled dots attached by the gate electrode is that a quantum state can be controlled by the gate volt-age in the solid circuits.Moreover,when the coupled Si quantum dots are embedded in the gate insulator of the MOSFET [6,7],the quantum state in the two coupled dots (qubits)is expected to be detected by the channel current.In the previous paper [5],we investigated the case where the sizes of Si nanocystals were small such that the energy-levels in the quantum dots were discrete and the two-state system was constituted by the lowest energy-levels of the two quantum dots.Here,in this pa-per,we consider the case where the sizes of the quantum dots are larger (of the order of a few tens of nm)and the energy-levels of the individual quantum dots are almost continuous [8].We also assume that the charging en-ergy of each tunneling junction is large enough that the Coulomb blockade effects can be seen.This was realized in the quantum gate of the Josephson junction by Shnir-man [3]and Averin [9].The superconducting state has the advantage from the viewpoint of the decoherence that the qubits are connected by the coherent circuits.On the other hand,we use the normal state of the capacitively coupled quantum dots,because there exist some predic-tions that the decoherence time in the normal quantum dot array in semiconductors is not expected to be so short [10].First,in this paper,we show that the capacitively coupled dots can be reduced to a two-state system of in-teracting two qubits.Next,we show the detecting mech-anism of the quantum state by the channel current based on the conventional MOSFET model.Asymmetry of the coupled dots is not assumed and we set e =1.II.CAPACITIVELY COUPLED QUANTUMDOTS AS TWO QUBITSThe configuration of the quantum dots and capaci-tances are shown in Fig.1.We assume that the coupling between qubits is weaker than that in a qubit(The full formation of the electrostatic energy is shown in the Ap-pendix),and we takeC 1=C 2=√2C 4≪C 5(=C 8),C 6(=C 9),C 7(=C 10).(1)By this assumption,we can expand the charging energy as a function of n a ≡N A −N B and n b ≡N C −N D (N =N A +N B =N C +N D ),by a small C 3,and obtain the electrostatic energy:U (n a ,n b )=E cn a +ηC 5+C 7N −2C 5C 7C 5+C 7N −2C 5C 72(C 25+C 27−√4(C 5C 6+C 6C 7+C 7C 5)2C 3(3)If we consider the gate voltage region where the electro-static energy of n j =0(j =a,b )state crosses that of n j =1state described by Shnirman [3]and Averin [9],the electrostatic energy and the tunneling amplitude,Ωj ,constitute the Hamiltonian of the two-state system asH = j =a,b(ǫj σzj +Ωj σxj )−(η/4)σza σzb (4)where ǫa =E c (1/2+[(C 7−C 5)N −2C 5C 7V a ]/(C 5+C 7))and ǫb =E c (1/2+[(C 7−C 5)N −2C 5C 7V b ]/(C 5+C 7)).σx and σz are Pauli matrices.When the capacitances are approximated as C i =2πǫox r 2/(d i +(ǫox /ǫSi )r )where ǫox =4,ǫSi =12,d i is the size of the capacitance and r is the radius of each quantum dot,then V a ,V b is of the order of tens of meV.The mechanism of the controlled NOT operation is similar to that of the Josephson junction [9].Whether n b =0or n b =1,the level-crossing gate voltage,V a ,shifts(see Eq.(2)and the controlled NOT operation is realized.The dynamical motion of the excess charge in the two-state system can be easily considered by solvingthe time-dependent Schr¨o dinger equation[11],andtheexcesschargeshowstheoscillating behaviordepend-ingon the energy of the two states.The time period of the oscillation,τδ,can be simply approximated as τδ∼¯h /2α(V 2i −V 2i −1),(5)where β0≡Zµ0C 0/L i (Z is the channel width,µ0is themobility,L i is the channel length of i -th qubit where we set L 1=L 2=···=L N ,and C 0is the capacitance of the SiO 2)and α≡1+1C 0where Q B is the charge within the surface depletion region.V G is the gate voltage,andthe threshold voltage,V (i )th ,is given by V (i )th =V th +∆V (i )th where V th ≡V FB +2ϕB +Q B(V G 1+V G 2)(V G 1V G 2V D −αV G 12(2V g −∆V th )∆V th V 2D .(8)This difference can be observed in the nonlinear I D -V Dregion and,in the pure linear region where the terms which include αdisappear,the changed qubits cannot be distinguished.V.CONCLUSIONSWe have investigated the quantum gates of the capaci-tively coupled quantum dot array in the MOSFET struc-ture,and have derived the two-state Hamiltonian by the capacitances of the quantum dots.We also have shown the detecting mechanism of the MOSFET structure by analyzing the channel current based on the conventional MOSFET model.ACKNOWLEDGMENTSThe author is grateful to N.Gemma,S.Fujita,K.Ichimura,and J.Koga for fruitful discussions.APPENDIX A:THE ELECTROSTATIC ENERGYOF THE TWO QUBITSIn this section we show the electrostatic energy of the two qubits in terms of the capacitances of dots and thegate electrodes (Fig.1)[18,19].We assume C 1=C 2=√2C 4,C 8=C 5,C 9=C 6and C 10=C 7.Thetotal electrostatic energy of the two qubits is given byU =i =1,...,10q 2i16(1C b )n 2a +1C A C B −(C 3+C 6)2N −C 7C 5C C CD −(C 6−C 3)2V −n a+1C a +14C 7−C 5C A C B −(C 3+C 6)2V +−C 6−C 3−C C8(1C b )n a n b +14(C A C B −(C 3+C 6)2)C 3+C 6+C A4(C C C D −(C 6−C 3)2)(C 7V +)2whereC A =C 3+C 5+C 6,C B =C 3+C 6+C 7,C C =̺C 3+C 5+C 6,CD =̺C 3+C 6+C 7,and V ±=V a ±V b ,1/C a =(C 5+C 7)/((C 5+C 7)(C 3+C 6)+C 5C 7),1/C b =[C 5+C 7+2(̺+1)C 3]/[(C 5+C 6+ηC 3)(C 6+C 7+̺C 3)−(C 6−C 3)2]and ̺=2√[1]A.Ekert and R.Jozsa,Rev.Mod.Phys.68,733(1996)and references therein.[2]N.A.Gershenfeld and I.L.Chaung,Science 275,350(1997).[3]A.Shnirman et al.,79,2371(1997).[4]Y.Nakamura et al.,Nature 398,786(1999).[5]T.Tanamoto,preprint,quant-ph/9902031.[6]S.Tiwari et al.,Appl.Phys.Lett.68,1377(1996),[7]L.Guo et al.,Science 275,649(1997).[8]Q.Ye,et al.,Phys.Rev.B 44,1806(1991).[9]D.V.Averin,Solid State Commun.105,659(1998).[10]P.Zanardi and F.Rossi,Phys.Rev.Lett.81,4752(1998).[11]N.Tsukada et al.,Appl.Phys.Lett.56,2527(1990).[12]A.J.Gar´c ia and J.Ferm´a ndez,Phys.Rev.B 55,5546(1997).[13]A.J.Leggett et al.,Rev.Mod.Phys.59,1(1987).[14]A.Shnirman and G.Sch¨o n,Phys.Rev.B 57,15400(1998).[15]S.A.Gurvitz,preprint,quant-phys/980858[16]G.Hackenbroich et al.,Phys.Rev.Lett.81,5896(1998).[17]S.M.Sze,Physics of Semiconductor Devices ,(John Wi-ley &Sons,Inc,New York 1981).[18]K.A.Matveev et al.,Phys.Rev.B 54,5637(1996).[19]C.Livermore et al.,Science 274,1332(1996).FIG.1.Two coupled qubits by the quantum coupled dots.FIG.2.An example of the N coupled dot system of quan-tum computing.Dots are coupled in the longitudinal direc-tion.The electron transfer in the lateral direction is assumed to be negligible.The FET channel structure enables the de-tection of the small signal of the charge distribution in coupled quantum dots.。

相关文档
最新文档