“因式分解”单元教学实施方案
《因式分解》教学设计范文(精选3篇)

《因式分解》教学设计《因式分解》教学设计范文(精选3篇)作为一名无私奉献的老师,时常需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
那么问题来了,教学设计应该怎么写?下面是小编为大家整理的《因式分解》教学设计范文(精选3篇),仅供参考,希望能够帮助到大家。
《因式分解》教学设计1教学准备教学目标知识与能力1.了解多项式公因式的意义,初步会用提公因式法分解因式;2.通过找公因式,培养观察能力.过程与方法1.了解因式分解的概念,以及因式分解与整式乘法的关系;2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.情感态度与价值观1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;2.培养观察、联想能力,进一步了解换元的思想方法;教学重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:识别多项式的公因式.教学过程一、新课导入请同学们想一想?993-99能被100整除吗?解法一:993-99=970299-99=970200解法二:993-99=99(992-1)=99(99+1)(99-1)=100×99×98=970200(1)已知:x=5,a-b=3,求ax2-bx2的值.(2)已知:a=101,b=99,求a2-b2的值.你能说说算得快的原因吗?解:(1) ax2-bx2=x2(a-b)=25×3=75.(2) a2-b2=(a+b)(a-b)=(101+99)(101-99)=400二、新知探究1、做一做:计算下列各式:①3x(x-2)= __3x2-6x②m(a+b+c)= ma+mb+mc③(m+4)(m-4)= m2-16④(x-2)2= x2-4x+4⑤a(a+1)(a-1)= a3-a根据左面的算式填空:①3x2-6x=(_3x__)(_x-2__)②ma+mb+mc=(_m_)(a+b+c_)③m2-16=(_m+4)(m-4_)④x2-4x+4=(x-2)2⑤a3-a=(a)(a+1)(a-1)左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?总结:把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式乘法因式分解与整式乘法是互逆过程因式分解在am+bm=m(a+b)中,m叫做多项式各项的公因式.公因式:即每个单项式都含有的相同的因式.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.确定公因式的方法:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取多项式各项中都含有的相同的字母;(3)相同字母的指数取各项中最小的一个,即最低次幂.三、例题分析例1 把12a4b3+16a2b3c2分解因式.解:12a4b3+16a2b3c2=4a2b3·3a2+ 4a2b3 ·4c2= 4a2b3 (3a2 + 4c2)提公因式后,另一个因式:①项数应与原多项式的项数一样;②不再含有公因式.例2 把2ac(b+2c)- (b+2c)分解因式.解:2ac(b+2c) -(b+2c)= (b+2c)(2ac-1)公因式可以是数字、字母,也可以是单项式,还可以是多项式.例3 把-x3+x2-x分解因式.解:原式=-(x3-x2+x)=-x(x2-x+1)多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).四、当堂训练1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.(2)5x2-25x的公因式为 5x .(3)-2ab2+4a2b3的公因式为-2ab2.(4)多项式x2-1与(x-1)2的公因式是x-1.2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2课后小结1.分解因式把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.2.确定公因式的方法一看系数二看字母三看指数3.提公因式法分解因式步骤(分两步)第一步找出公因式;第二步提公因式.4.用提公因式法分解因式应注意的问题(1)公因式要提尽;(2)某一项全部提出时,这一项除以公因式时的商是1,这个1不能漏掉;(3)多项式的首项取正号.板书一、因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.am+bm=m(a+b)二、例题分析例1、例2、例3、三、当堂训练《因式分解》教学设计2一、内容和内容解析1.内容用因式分解法解一元二次方程.2.内容解析教材通过实际问题得到方程,让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外,是否还有更简单的方法解方程,接着思考为什么用这种方法可以求出方程的解,从而引出本节课的教学内容.解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的乘积为零,是解某些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.二、目标和目标解析1.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.2.目标解析(1)学生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步骤,会利用因式分解求解特殊的一元二次方程;(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.三、教学问题诊断分析学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的.方法解决一元二次方程.本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.四、教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么物体经过x s离地面的高度(单位:m)为.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程(1)(2)师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1,2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五 (1)因式分解法的一般步骤是什么?(2)请大家总结三种解法的联系与区别.师生活动:学生积极思考,归纳因式分解法的一般步骤.总结各种解题方法的特点,体会各种方法的利弊,在交流的过程中加深对解一元二次方程方法的理解,教师对学生的发言给予鼓励和肯定,对于小结交流中的出现的问题及时进行引导纠正,帮助学生深入理解问题.【设计意图】学生通过小结反思,深化对问题的理解,体会到配方法需要将方程进行配方降次,公式法需要将方程化为一般形式后利用求根公式求解;而因式分解法需要将一元二次方程化为两个一次项乘积为零的形式;另在还让学生体会到配方法和公式法适用于所有方程,但有时计算量比较大,因式分解法适用于一部分一元二次方程,但是三种方法都体现了降次的基本思想.五、目标检测设计解下列方程1.【设计意图】利用提取公因式法解方程.2.【设计意图】利用平方差公式解方程.3.【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4.【设计意图】选用适当的方法解方程.《因式分解》教学设计3教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解教案5篇

式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
因式分解教案15篇

因式分解教案15篇因式分解教案1一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:(1)7/9 ×13-7/9 ×6+7/9 ×2= ;(2)-2.67×132+25×2.67+7×2.67= ;(3)992–1= 。
设计意图:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的.困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题P165的探究(略);2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
因式分解教案

因式分解教案关于因式分解教案四篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y -x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。
因式分解教案【借鉴8篇】

因式分解教案【优秀8篇】作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。
我们应该怎么写教案呢?读书破万卷下笔如有神,下面本文为您精心整理了8篇《因式分解教案》,如果能帮助到您,本文将不胜荣幸。
因式分解教案篇一课型复习课教法讲练结合教学目标(知识、能力、教育)1、了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。
2、通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1、分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式。
2、分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
⑴运用公式法:平方差公式: ;完全平方公式: ;3、分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解。
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4、分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准。
若有一项被全部提出,括号内的项1易漏掉。
分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1、下列各组多项式中没有公因式的是( )A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与nynxD.aba c与abbc2、下列各题中,分解因式错误的是( )3、列多项式能用平方差公式分解因式的是()4、分解因式:x2+2xy+y2-4 =_____5、分解因式:(1) ;(2);(3) ;(4);(5)以上三题用了公式二:【经典考题剖析】1、分解因式:(1);(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
因式分解教案4篇

因式分解教案4篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.2-4=()();3.2-2y+y2=()2.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究(1)下列各式从左到右的变形是否为因式分解:①(+1)(-1)=2-1;②a2-1+b2=(a+1)(a-1)+b2;③7-7=7(-1).(2)在下列括号里,填上适当的项,使等式成立.①92(______)+y2=(3+y)(_______);②2-4y+(_______)=(-_______)2.四、随堂练习,巩固深化课本练习.计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知下列从左到右的变形是否是因式分解,为什么?(1)22+4=2(2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)2+4y-y2=(+4y)-y2;(4)m(+y)=m+my;(5)2-2y+y2=(-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式42-和y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在42-中的公因式是,在y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法多项式42-86,16a3b2-4a3b2-8ab4各项的公因式是什么?提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学把-42yz-12y2z+4yz分解因式.解:-42yz-12y2z+4yz=-(42yz+12y2z-4yz)=-4yz(+3y-1)分解因式,3a2(-y)3-4b2(y-)2观察所给多项式可以找出公因式(y-)2或(-y)2,于是有两种变形,(-y)3=-(y-)3和(-y)2=(y-)2,从而得到下面两种分解方法.解法1:3a2(-y)3-4b2(y-)2=-3a2(y-)3-4b2(y-)2=-[(y-)23a2(y-)+4b2(y-)2]=-(y-)2 [3a2(y-)+4b2]=-(y-)2(3a2y-3a2+4b2)解法2:3a2(-y)3-4b2(y-)2=(-y)23a2(-y)-4b2(-y)2=(-y)2 [3a2(-y)-4b2]=(-y)2(3a2-3a2y-4b2)用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学把下列各式分解因式:(投影显示或板书)(1)2-9y2;(2)164-y4;(3)12a22-27b2y2;(4)(+2y)2-(-3y)2;(5)m2(16-y)+n2(y-16).在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.分四人小组,合作探究.解:(1)2-9y2=(+3y)(-3y);(2)164-y4=(42+y2)(42-y2)=(42+y2)(2+y)(2-y);(3)12a22-27b2y2=3(4a22-9b2y2)=3(2a+3by)(2a-3by);(4)(+2y)2-(-3y)2=[(+2y)+(-3y)][(+2y)-(-3y)] =5y (2-y);(5)m2(16-y)+n2(y-16)=(16-y)(m2-n2)=(16-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知1.分解因式:(1)-92+4y2;(2)(+3y)2-(-3y)2;(3) 2-0.01y2.因式分解教案篇2学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。
因式分解教案9篇

因式分解教案9篇因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:运用平方差公式分解因式。
教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述把上述公式反过来就得到_____,如何用语言描述2、下列多项式能用平方差公式分解因式吗若能,请写出分解过程,若不能,说出为什么①-2+y2 ②-2-y2 ③4-92④ (+y)2-(-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么4、仿照例4的分析及旁白你能把3y-y因式分解吗5、试总结因式分解的步骤是什么师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -2+y2能用平方差公式分解,可分解为(y+)(y-)生2: -2+y2=-(2-y2)=-(+y)(-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-92 也能用平方差公式分解,可分解为(2+9)(2-9)生4:不对,应分解为(2+3)(2-3),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗为什么可能效果会更好。
关于因式分解教案4篇

•••••••••••••••••因式分解教案关于因式分解教案4篇作为一名辛苦耕耘的教育工作者,时常需要用到教案,借助教案可以提高教学质量,收到预期的教学效果。
快来参考教案是怎么写的吧!以下是小编精心整理的因式分解教案4篇,欢迎阅读与收藏。
因式分解教案篇1第1课时1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.自主探索,合作交流.1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.2.通过对因式分解的教学,培养学生“换元”的意识.【重点】因式分解的概念及提公因式法的应用.【难点】正确找出多项式中各项的公因式.【教师准备】多媒体.【学生准备】复习有关乘法分配律的知识.导入一:【问题】一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.解法1:这块场地的面积=×+×+×=++==2.解法2:这块场地的面积=×+×+×=×=×4=2.从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.导入二:【问题】计算×15-×9+×2采用什么方法?依据是什么?解法1:原式=-+==5.解法2:原式=×(15-9+2)=×8=5.解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.一、提公因式法分解因式的概念思路一[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c 的乘积,从左边到右边的过程是因式分解.由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.思路二[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.多项式ab+ac中,各项都含有相同的因式吗?多项式3x2+x呢?多项式b2+nb-b呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.二、例题讲解[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.(教材例1)把下列各式因式分解:(1)3x+x3;(2)7x3-21x2;(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.〔解析〕首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.解:(1)3x+x3=x3+xx2=x(3+x2).(2)7x3-21x2=7x2x-7x23=7x2(x-3).(3)8a3b2-12ab3c+ab=ab8a2b-ab12b2c+ab1=ab(8a2b-12b2c+1).(4)-24x3+12x2-28x=-(24x3-12x2+28x)=-(4x6x2-4x3x+4x7)=-4x(6x2-3x+7).【学生活动】通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.总结:提取公因式的步骤:(1)找公因式;(2)提公因式.容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.教师提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;(2)因式分解后括号内的多项式的项数与原多项式的项数相同;(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.1.提公因式法分解因式的一般形式,如:a+b+c=(a+b+c).这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式的关键在于发现多项式的公因式.3.找公因式的一般步骤:(1)若各项系数是整系数,则取系数的最大公约数;(2)取各项中相同的字母,字母的指数取最低的;(3)所有这些因式的乘积即为公因式.1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.2.下列用提公因式法分解因式正确的是( )A.12abc-9a2b2=3abc(4-3ab)B.3x2-3x+6=3(x2-x+2)C.-a2+ab-ac=-a(a-b+c)D.x2+5x-=(x2+5x)解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.3.下列多项式中应提取的公因式为5a2b的是( )A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b2解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.4.填空.(1)5a3+4a2b-12abc=a( );(2)多项式32p2q3-8pq4的公因式是 ;(3)3a2-6ab+a= (3a-6b+1);(4)因式分解:+n= ;(5)-15a2+5a= (3a-1);(6)计算:21×3.14-31×3.14= .答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.45.用提公因式法分解因式.(1)8ab2-16a3b3;(2)-15x-5x2;(3)a3b3+a2b2-ab;(4)-3a3-6a2+12a.解:(1)8ab2(1-2a2b).(2)-5x(3+x).(3)ab(a2b2+ab-1).(4)-3a(a2+2a-4).第1课时一、教材作业【必做题】教材第96页随堂练习.【选做题】教材第96页习题4.2.二、课后作业【基础巩固】1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .2.(20xx淮安中考)因式分解:x2-3x= .3.分解因式:12x3-18x22+24x3=6x .【能力提升】4.把下列各式因式分解.(1)3x2-6x;(2)5x23-25x32;(3)-43+162-26;(4)15x32+5x2-20x23.【拓展探究】5.分解因式:an+an+2+a2n.6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.【答案与解析】1.2ab2.x(x-3)3.(2x2-3x+42)4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).5.解:原式=an1+ana2+anan=an(1+a2+an).6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.随堂练习(教材第96页)解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3).(6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).习题4.2(教材第96页)1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1).(3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7.(3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的`逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.已知方程组求7(x-3)2-2(3-x)3的值.〔解析〕将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.解:7(x-3)2-2(3-x)3=(x-3)2[7+2(x-3)]=(x-3)2(7+2x-6)=(x-3)2(2x+).由方程组可得原式=12×6=6.因式分解教案篇2知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解》单元教学实施方案
主题单元名称因式分解
作者姓名董文伟学科初中数学学生年级、班级初一(3)班学生人数30
专题1:4.1因式分解
实施前确定教学环境多媒体教室
准备教学资源
多媒体课件、投影仪、黑板、粉笔、单元评价表、
草稿纸、笔。
落实前需技能学过整式的乘法,乘法分配率。
实施中教学导入阶段
复习引入:
运用所学的知识填空:
(1)m(a+b+c)=___________________;
(2)(a+b)(a-b)=_________________;
(3)(a+b)2=_______________________。
教学思路:复习旧知,为引入新课做准备,便于学
生在学习过程中进行类比
新课教学阶段
一、探索问题,导入新知:
你会做下面的填空吗?
(1)ma+mb+mc=()();
(2)a2+2ab+b2=()2.
教学设想:提出问题,引导探索,学生合作学习
概括:把一个多项式化为几个整式的乘积形式,
这就是因式分解。
[试一试] 对下列多项式进行因式分解:
(1)3a+3b=_________;(2)5x-5y+5z
=______________;(3)x2-4 y2=_____________;
(4)m2+6mn+9n2=_________________;
教学设想:运用多项式乘法的逆向思维来探索
出因式分解的新知识。
二、举例应用:
例1、判断下列因式分解是否正确:
(1)x2-4y2=(x+4y)(x-4y);
(2)6a2-9ab+3a=3a(2a-3b);
(3)x2-5x+6=(x-2)(x-3)
例2 、计算:19992-2000×1998
四.巩固练习:教材作业题第1题和第2题
活动评价阶段1、组织学生进行课堂总结.
利用单元评价量规,引导学生对因式分解的定义、判断是否因式分解进行自评。
2、组织学生汇报小组学习的结果。
根据量规要求学生对探讨结果打分,对其他小组学习进行评价。
实施后学生学习常规要求要求学生整理桌椅的摆放,保持教室整洁。
上交单元评价量规进行教师评价。
作业布置书面作业及下一专题的导学案
专题2:4.2提取公因式法
实施前确定教学环境多媒体教室
准备教学资源课件、投影仪、黑板、粉笔、评价表、草稿纸、笔。
落实前需技能
学习了因式分解的定义、乘法分配律、单项式与多
项式的乘法。
实施中教学导入阶段创设情境,提出问题
如图,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,,宽都是3.7 m,如何计算这块菜园的面积呢?
3.8
3.7
3.7
6.2
列式:3.7×3.8+3.7×6.2 (学生思考后列式)
有简便算法吗?
=3.7×(3.8+6.2)
=3.7×10=37(m2)
在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)
(使学生初步意识到因式分解可以使运算简便,同时引出新内容。
)
新课教学阶段(一)观察分析,探究新知
让学生观察多项式:ma+mb (让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知)各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式
(二)独立练习,巩固新知
指出下列各多项式中各项的公因式(以抢答的形式)
⑴ax+ay-a ⑵5x2y3-10x2y⑶24abc-9a2b2 ⑷m2n+mn2 ⑸x(x-y)2-y(x-y)
【让学生积极参与教学进程,争做课堂的主人】
提取公因式法的关键是如何正确地寻找确定公因式的方法:(由学生讨论,教师归纳)
⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)
⑵字母取各项的相同字母,且各字母的指数取最低次幂定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法.
(三)例题教学,运用新知
例1:把3pq3+15p3q分解因式
通过上面的练习,学生会比较容易地找出公因式,所以这一步还是让学生来操作.然后在黑板上正确规范地书写。
课堂练习:教材上作业题第1题和第2题
例2.把4x2-8ax+2x分解因式(让学生做,教师下去观察并选择有代表性的解答)
学生可能出现多种不同的解答,教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都是以后学生练习中的常犯错误,接着由教师总结,这样做比教师直接给出可能会更有效。
例3:把-3ab+6abx-9aby分解因式
【让学生自己观察找出此例与前面两例的不同点】
学生可能会指出字母的个数不同(只要学生说得合理,教师应及时给予肯定与鼓励)。
他们很快就会发现第一项的系数是“-”的,那么如何转化呢?【由学生各述己见,教师不加评定,然后集体总结学生思维中的闪光点】课堂练习:教材【巩固添括号法则】作业题
说明:通过此例可看出应用提取公因式法分解因式时,应先观察第一项系数的符号,如果符号是负的则运用添括号法则要提出负因数,此时一定要把各项变号。
由此总结出提取公因式法的一般步骤。
例4.探索:2(a-b)2-a+b能分解因式吗?
把问题先交给学生进行小组讨论(四人一小组),鼓励学生进行交流探索。
可能有学生会提出好象有公因式?
此时教师可以适当地点拨一下。
比如可降低难度改为:2(a-b)2-(a-b),然后启发学生如何转化?从而解决问题。
(a-b)2-(b-a)3呢?让学生积极思考,讨论回答。
(四)强化训练,巩固新知
把下列各式分解因式:
⑴2ax+2ay ⑵x2y-xy2⑶a3+2a2-a
⑷-ab2c+2a2b-5ac2 ⑸x(a+b)-y(a+b)【让学生板演,检查学生对提取公因式法的应用】
活动评价阶段1、组织学生汇报小组探讨的结果。
教师根据量规要求对学生的探讨结果打分。
2、小组活动展示。
指导学生进行自我评价和对其他小组学习进行评价。
3、组织学生进行课堂总结.
利用单元评价量规,引导学生对公因式的概念、如何确定公因式、添括号法则、提取公因式的基本步骤进行自评。
实施后学生学习常规要求要求学生整理桌椅的摆放,保持教室整洁。
上交单元评价量规进行教师评价。
作业布置书面作业及下一专题导学案
提出下一专题要求建立与下一专题学习的关联。