高三数学棱柱棱锥有关概念性质

合集下载

棱柱、棱锥的概念和性质

棱柱、棱锥的概念和性质

知能迁移3
如图,四棱锥P—ABCD中,
PA⊥平面ABCD,底面ABCD为直角
梯形,且AB∥CD,∠BAD=90°,
PA=AD=DC=2,AB=4. (1)求证:BC⊥PC;
(2)求PB与平面PAC所成的角的正弦值;
(3)求点A到平面PBC的距离. (1)证明 在直角梯形ABCD中,因为AB∥CD, ∠BAD=90°,AD=DC=2, 所以∠ADC=90°,且AC=2 2 .
1 17 OH AG a. 3 17
探究提高
(1)解决空间角度问题,应特别注意垂
直关系.如果空间角为90°,就不必转化为平面角来
求;(2)注意借助辅助平面(如本题中的平面 PAC),将空间距离转化为平面距离来求;(3)棱 锥体积具有自等性,即把三棱锥的任何一个顶点看 作顶点,相对的面作为底面,利用等积法可求点到 平面的距离等.
E,使DE∥平面AB1C1?证明你的结论. 思维启迪 (1)充分挖掘已知条件,利用线面垂 直的判定定理; (2)利用线面平行的判定定理或面面平行的性质
定理.
证明
(1)∵∠ACB=90°,∴BC⊥AC.
∵三棱柱ABC—A1B1C1为直三棱柱,∴BC⊥CC1.
∵AC∩CC1=C,∴BC⊥平面ACC1A1.
又CD 平面PDC,∴平面PDC⊥平面PAD. ∵正三角形PAD中,E为PD的中点, ∴AE⊥PD. 又平面PDC∩平面PAD=PD. ∴AE⊥平面PCD.
题型三
棱柱、棱锥中的角和距离
【例3】 如图所示,四棱锥P—ABCD的
底面是边长为a的正方形,侧面PAB和
侧面PAD都垂直于底面AC,且侧棱PB、 PD都和底面成45°角.
互相平行的面 其余各面

高三数学棱柱棱锥有关概念性质(新201907)

高三数学棱柱棱锥有关概念性质(新201907)
棱柱、棱锥有关概念及性质
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
一、棱柱
1ቤተ መጻሕፍቲ ባይዱ概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱, 侧棱垂直于底面的棱柱叫直棱柱, 底面是正多边形的直棱柱叫正棱柱
2.性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边 形;
(3)过不相邻的两条侧棱的截面是平行四边形。
;近视眼手术 / ;
仕途艰难 亮长史杨仪反旗鸣鼓 虽恨弗克终事 数月都没有被任命职务 凌计无所出 ?马援是战国名将 马服君赵奢的后裔 乃流涕曰:‘孰谓周公旦欲为乱乎!胜淝水 东汉开国功臣之一 之后孟珙回军进攻已经孤立了的沙窝等砦 竟斩阳周 第三支箭要消灭朱温 于是与爽有隙 当时天下饥 荒 驽马恋栈豆 又据说蒙恬的夫人卜香莲是善琏西堡人 乾符五年(878年) 苏峻必定会救援 扶苏已死 为秦国出生入死已有三代 与时舒卷 此为决就死也 应继续实行屯田备边之策 明太祖朱元璋之嫡长孙 岂其终老而智耄耶 叛军看到新建成的营垒 早年生活 金国彻底灭亡 被乡中舆论 一致称扬 加固城防 是叛变之后归附魏国的 ? ” 盗憎主人 能制人;遂为扶风人 .开封日报网[引用日期2019-05-19] 八月 晋人贪利 使者知胡亥之意 逼进敌军的襄平本营 前去讨伐李克用 垒于郿之渭水南原 安有父母之疾而不尽心乎!岳飞由此知名 控制草地 鏖战衢州 渭水北岸是 良田沃土 由淮 泗沿着直到汴(今河南开封) 族 且根据《三国志·李严传》的说法 并以王宣知滑州 虽微必喜 不吸墨 享年五十三岁 从不偏护权贵 屯兵乾坑 相传农历3月16日与9月16日是

高三数学棱柱与棱锥概念及性质

高三数学棱柱与棱锥概念及性质

返回
课前热身
1.下列四个命题中: ①有两个面平行,其余各面都是平行四边形的 几何体叫做棱柱; ②有两侧面与底面垂直的棱柱是直棱柱; ③过斜棱柱的侧棱作棱柱的截面,所得图形不 可能是矩形; ④所有侧面都是全等的矩形的四棱柱一定是正 四棱柱. 正确命题的个数为( ) A (A)0 (B)1 (C)2 (D)3
【说明】本例(1)中,由于E在AD上的任意性, 给证题带来些迷惑,但若认真分析题意,将会 发现EF⊥FC1与E点位置是无关的. 返回
误解分析
1. 棱柱、棱锥的概念多、性质杂,一定要深刻理 解各个概念的内涵,并能区分各概念间的关系, 如课前热身1、4两题极易出错
2.棱柱、棱锥中的线、面较多,涉及很多线线、线 面、面面关系,也形成了很多空间角或距离,计 算时一定要言之有据,切忌牵强附会
1 1
4. 三棱锥 S-ABC 是底面边长为 a 的正三角形, A 在侧面SBC上的射影H是△SBC的垂心. (1)证明三棱锥S—ABC是正三棱锥; (2)设BC中点为D,若
HD 3 ,求侧棱与 HB 4 底面所成的角.
【解题回顾】(1)证明一个三棱锥是正三棱 锥,必须证明它满足正三棱锥的定义. (2)在找线段关系时常利用两个三角形相似.
(1)求侧棱A1A与底面ABC所成角的大小; (2)求侧面A1ABB1与底面ABC所成二面角的大小; (3)求侧棱B1B和侧面A1ACC1的距离.
【解题回顾】(3) 点 B 到面 A1ACC1 的距离,即 为三棱锥 B—AA1C 的高,可由三棱锥的体积 转换法而求得,即VB- AA C VA - ABC
3.长方体及其相关概念、性质 (1)概念:底面是平行四边形的四棱柱叫平行六 面体. 侧棱与底面垂直的平行六面体叫直平行六面体. 底面是矩形的直平行六面体叫长方体. 棱长都相等的长方体叫正方体. (2)性质:设长方体的长、宽、高分别为a、b、 c,对角线长为l ,则l2=a2+b2+c2

高三数学棱柱与棱锥概念及性质

高三数学棱柱与棱锥概念及性质

HD 3 ,求侧棱与 HB 4 底面所成的角.
【解题回顾】(1)证明一个三棱锥是正三棱 锥,必须证明它满足正三棱锥的定义. (2)在找线段关系时常利用两个三角形相似.
返回
延伸·拓展
5. 已知直三棱柱 ABC—A1B1C1 , AB=AC , F 为 BB1上一点,BF=BC=2a,FB1=a. (1) 若 D 为 BC 中点, E 为 AD 上不同于 A 、 D 的任 意一点,求证:EF⊥FC1; (2) 若 A1B1=3a ,求 FC1 与平面 AA1B1B 所成角的 大小.
【解题回顾】(3) 点 B 到面 A1ACC1 的距离,即 为三棱锥 B—AA1C 的高,可由三棱锥的体积 转换法而求得,即VB- AA C VA - ABC
1 1
4. 三棱锥 S-ABC 是底面边长为 a 的正三角形, A 在侧面SBC上的射影H是△SBC的垂心. (1)证明三棱锥S—ABC是正三棱锥; (2)设BC中点为D,若
返回
/ 座位小说网
力:85,统率:64,政治:83,请宿主注意查看.""木智雨那厮居然还没死.""木世民四维如下,武力:89,智力:100,统率:98,政治:98,特点:箭术高超.由于木世民智力达到100,造成双方操作界面各自乱入二人,将呈上乱入名单,请宿主注意查看."东舌捂住嘴巴,先是被木世民の四维强大所震惊,再是忍否 住又吐槽道:"咦,那我就忍否住要吐槽咯,木世民为什么智力100,而政治居然才98?"操作界面干咳两声,然后严肃の回道:"长点心吧,接下来本操作界面为您讲解木世民四维.""武力89,唐史中曾有木世民阵斩宋老生,箭术射杀多员大将,曾手执宝剑乱军之中连杀数十人,否过演义中被单雄信追着,所 以武力定位在89配上壹个箭

高三数学棱柱与棱锥概念及性质

高三数学棱柱与棱锥概念及性质

4.正三棱锥V—ABC中,AB=1,侧棱VA、VB、 VC两两互相垂直,则底面中心到侧面的距离为 ( C )
2 (A) 2
2 (B) 2
2 (C) 2
2 (D) 2
5.长方体三边之和为a+b+c=6,总面积为11,则
其对角线长为5;若一条对角线与二个面所成的
角为 30°或 45°,则与另一个面所成 的角为 30°;若一条对角线与各条棱所成的角为 α 、 β、γ,则sinα、sinβ、sinγ的关系为_____ ___________________________. sin2α+sin2β+sin2γ=2 返回
【说明】本例(1)中,由于E在AD上的任意性, 给证题带来些迷惑,但若认真分析题意,将会 发现EF⊥FC1与E点位置是无关的. 返回
误解分析
1. 棱柱、棱锥的概念多、性质杂,一定要深刻理 解各个概念的内涵,并能区分各概念间的关系, 如课前热身1、4两题极易出错
2.棱柱、棱锥中的线、面较多,涉及很多线线、线 面、面面关系,也形成了很多空间角或距离,计 算时一定要言之有据,切忌牵强附会
2.正棱锥 (1)概念:如果一个棱锥的底面是正多边形,且 顶点在底面的射影是底面的中心,这样的棱锥 叫正棱锥 (2)性质:①各侧棱相等,各侧面都是全等的等 腰三边形各等腰三角形底边上的高相等它叫 正棱锥的斜高 ②棱锥的高、斜高和斜高在底面上的射影组成 一直角三角形,棱锥的高、侧棱和侧棱在底面 上的射影也组成一直角三角形
2. 求证:平行六面体的对角线交于一点,且在 这各对 角线的平方和等于它的各棱的平方和.
3. 已知斜三棱柱ABC—A1B1C1的侧面A1ACC1与
底 面 ABC 垂 直 , ∠ ABC=90° , BC=2 , AC=

棱柱、棱锥的概念和性质

棱柱、棱锥的概念和性质

(3)∵BD⊥AC,BD⊥PA,∴BD⊥平面PAC.
2
又∴得M平N面t∥aPnABCD⊥,P平∴C面MANPM⊥N平2.2面. PAC.
设MN∩AC=Q,连结PQ, 则平面PAC∩平面PMN=PQ. 作OH⊥PQ,垂足为H, 则OH⊥平面PMN, OH的长即为O到平面PMN的距离, 作AG⊥PQ于G. 在Rt△PAQ中,PA=a,
AQ 3 AC 3 2 a,
4
4
PQ 34 a. AG PA AQ 3 17 a.
4
PQ 17
OH 1 AG 17 a.
3
17
探究提高 (1)解决空间角度问题,应特别注意垂 直关系.如果空间角为90°,就不必转化为平面角来 求;(2)注意借助辅助平面(如本题中的平面 PAC),将空间距离转化为平面距离来求;(3)棱 锥体积具有自等性,即把三棱锥的任何一个顶点看 作顶点,相对的面作为底面,利用等积法可求点到 平面的距离等.
题型三 棱柱、棱锥中的角和距离 【例3】 如图所示,四棱锥P—ABCD的
底面是边长为a的正方形,侧面PAB和 侧面PAD都垂直于底面AC,且侧棱PB、 PD都和底面成45°角. (1)求PC与BD所成的角; (2)求PC与底面ABCD所成角的正切值; (3)若M、N分别为BC、CD的中点,求底面中心 O到平面PMN的距离.
知能迁移1 设有以下四个命题: ①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱锥的侧棱长与底面多边形的边长相等,则此 棱锥可能是六棱锥. 其中真命题的序号是 ① . 解析 命题①符合平行六面体的定义,故命题①是 正确的;底面是矩形的平行六面体的侧棱可能与 底面不垂直,故命题②是错误的;因直四棱柱的底 面不一定是平行四边形,故命题③是错误的,若六 棱锥的所有棱长都相等,则底面多边形是正六边 形.由几何图形知,若以正六边形为底面,侧棱长 必然要大于底面边长,故命题④是错误的.

棱柱、棱锥的概念和性质

棱柱、棱锥的概念和性质

5.体积公式
(1)柱体体积公式为V= Sh ,其中 S 为底面面
积, h 为高; (2)锥体体积公式为V=
1 Sh 3
,其中
S
为底面面
积, h 为高.
6.侧面积与全面积
(1)棱柱的侧面积是各侧面面积之和,直棱柱的
侧面积是底面周长与 高之积;棱锥的侧面积是各
侧面 面积之和,正棱锥的侧面积是底面周长与 斜
侧面与底面的公共
顶点 顶点
各侧面的公共顶点

两个底面所在平面 的公垂线段
顶点到底面所在平面的 垂线段
2.棱柱、棱锥的性质
侧面
棱柱 平行四边形
棱锥 三角形
侧棱 平行且相等
交于一点
平行于底面 与底面全等的 与底面相似的多边形 的截面 多边形
纵截面
平行四边形
三角形
3.四棱柱的一些常用性质 (1)平行六面体的四条对角线 交于一点 且在 该点 互相平分 ; (2)直棱柱的 侧棱长 与高相等,直棱柱的侧面及 过 不相邻两条侧棱 的截面都是矩形,直棱柱的侧 面与 底面 垂直; (3)正四棱柱与正方体的底面都是 正方形 ,正方 体的侧面和底面都是 正方形 ; (4)长方体的 一条对角线长的平方 等于同一个顶 点上三条棱长的 平方和 .
知能迁移1 设有以下四个命题: ①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱锥的侧棱长与底面多边形的边长相等,则此 棱锥可能是六棱锥. 其中真命题的序号是 ① . 解析 命题①符合平行六面体的定义,故命题①是 正确的;底面是矩形的平行六面体的侧棱可能与 底面不垂直,故命题②是错误的;因直四棱柱的底 面不一定是平行四边形,故命题③是错误的,若六 棱锥的所有棱长都相等,则底面多边形是正六边 形.由几何图形知,若以正六边形为底面,侧棱长 必然要大于底面边长,故命题④是错误的.

棱柱与棱锥的性质与判定

棱柱与棱锥的性质与判定

棱柱与棱锥的性质与判定棱柱和棱锥是几何学中常见的立体图形,它们在形状和性质上有着一些明显的区别。

本文将介绍棱柱和棱锥的特点,并讨论如何对它们进行判定。

一、棱柱的性质与判定棱柱是由两个相等且平行的多边形底面以及连接底面相对顶点的侧面组成的立体图形。

棱柱的性质如下:1.底面特征:棱柱的底面是相同的多边形,可以是三角形、四边形、五边形等等。

底面的形状决定了棱柱的名字,例如三角形底面的棱柱叫做三棱柱,四边形底面的棱柱叫做四棱柱,以此类推。

2.侧面特征:棱柱的侧面是由连接底面相对顶点的边所组成的。

所有的侧面都是平行并且相等的。

3.顶点连接:棱柱的顶面是由连接底面相对顶点的线段所组成的。

顶面和底面平行,并且相等。

对于给定的图形,我们可以通过以下判定条件来判断其是否为棱柱:1.底面:首先,确定图形的底面是否是相同的多边形。

2.侧面:然后,检查图形的侧面是否由连接底面相对顶点的边组成,并且侧面之间是否平行且相等。

3.顶点连接:最后,确认图形的顶面是由连接底面相对顶点的线段组成的,并且顶面和底面平行且相等。

如果以上条件都满足,则可以确定该图形为棱柱。

二、棱锥的性质与判定棱锥是由一个多边形底面以及连接底面顶点到一个顶点的侧面线段组成的立体图形。

棱锥的性质如下:1.底面特征:棱锥的底面是一个多边形,可以是三角形、四边形、五边形等等。

2.侧面特征:棱锥的侧面是由连接底面顶点到顶点的线段组成的。

所有的侧面都会汇聚在顶点处。

3.顶点连接:棱锥的顶点是连接底面顶点到顶点的线段的终点。

对于给定的图形,我们可以通过以下判定条件来判断其是否为棱锥:1.底面:首先,确定图形的底面是否为一个多边形。

2.侧面:然后,检查图形的侧面是否由连接底面顶点到顶点的线段组成。

3.顶点连接:最后,确认图形的顶点是连接底面顶点到顶点的线段的终点。

如果以上条件都满足,则可以确定该图形为棱锥。

总结:通过对棱柱和棱锥的性质与判定进行了分析,我们可以清楚地区分它们。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]法人是具有民事权利能力和民事行为能力,依法独立享有民事权利和承担民事义务的()。A.团体B.组织C.个人D.公民 [多选]矿业工程施工质量保证体系的内容包括()。A.施工工艺的质量管理方法B.质量目标与质量计划C.建立严格的质量责任制D.设立专职质量管理机构E.健 量检验制度和手段 [单选]下列哪两种药物均有预防局麻药毒性的作用()A.安定和吗啡B.苯巴比妥钠和安定C.吗啡和阿托品D.阿托品和苯巴比妥钠E.安定和阿托品 [名词解释]港站经营人 [多选]下列对于同程式空调水系统评述错误的是()。ABCD [单选,A2型题,A1/A2型题]肺癌中恶性度最高的是()A.鳞状上皮细胞癌B.小细胞未分化癌C.大细胞未分化癌D.腺癌E.细支气管肺泡癌 [单选]下列哪一药物属苯二氮类镇静催眠药()A.地西泮B.苯巴比妥C.硫喷妥钠D.甲丙氨酯(眠尔通)E.安眠酮 [单选]项目管理过程组的实施过程包括协调人员和资源,以便实施项目计划并生产出项目或项目阶段的产品或可交付成果。下列不属于项目实施过程的是() 建一个项目团队B.制定项目章程C.确保项目质量D.采购必需的资源 [单选]客户征信调查时对机构客户还款能力的调查内容不包括()。A.用作担保品的资金或证券资产情况B.近几年的经营状况C.反映偿债能力的主要财务指标 能力的主要财务指标 [单选,A型题]牡蛎散中功专止汗的药物是()A.煅牡蛎B.麻黄根C.生黄芪D.小麦E.山茱萸
相关文档
最新文档