广东省深圳市2015届中考数学模拟试卷(三)及答案解析
广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

某某省某某市宝安区2015届中考数学模拟试题一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.162.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m23.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB 交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a=.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= cm.15.在数据1,2,3,1,2,2,4中,众数是.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.18.先化简,再求值:,其中x=2.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.2015年某某省某某市宝安区中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m2【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于256520有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:256520m2=2.57×105m2,故选:C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,判断得出即可.【解答】解:A、一个游戏的中奖概率是,则做5次这样的游戏不一定会中奖,故此选项错误;B、为了解某某中学生的心理健康情况,应该采用抽样调查的方式,故此选项错误;C、事件“小明今年中考数学考95分”是可能事件,此选项正确;D、若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则甲组数据更稳定,故此选项错误;故选:C.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵ =,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.【点评】本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0及一次函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,一次函数y=ax+b数的图象过第一、二、三象限,反比例函数图象在第一三象限,选项C符合;(2)当a<0,b<0时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,即∠OBC的余弦值为.故选:C.【点评】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了特殊角的三角函数值的求法,要熟练掌握.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π【考点】弧长的计算;旋转的性质.【分析】先根据Rt△AB C中,∠C=90°,∠A=30°,AB=4求出BC及AC的长,再根据弧长的计算公式求出、的长,那么阴影部分的周长=AC+的长+A′C′+的长,将数值代入计算即可.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AB=4,∴∠ABC=60°,BC=AB=2,AC=BC=2,∴∠CBC′=∠ABA′=180°﹣60°=120°,∴的长==π,的长==,∴阴影部分的周长=AC+的长+A′C′+的长=2++2+π=4π+4.故选A.【点评】本题考查的是旋转的性质,弧长的计算,含30度角的直角三角形性质的应用,根据题意得出阴影部分的周长=AC+的长+A′C′+的长是解答此题的关键.12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= 2 cm.【考点】垂径定理;解直角三角形.【分析】过点O作OC⊥A B,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.【点评】本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.15.在数据1,2,3,1,2,2,4中,众数是 2 .【考点】众数.【分析】根据众数的定义就可以求解.【解答】解:众数是一组数据中出现次数最多的数据,本组数据中3和4各出现1次,1出现2次,2出现3次.出现次数最多的是2,所以众数是2.故填2.【点评】本题属于基础题,考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .【考点】勾股定理的逆定理;矩形的性质.【专题】几何综合题;压轴题;动点型.【分析】根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【解答】解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴当AM最短时,AM=AP÷2=2.4.【点评】解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】把()﹣1==3,tan45°=1代入计算,任何不等于0的数的0次幂都等于1.【解答】解:原式==3﹣(2﹣)+1=2+.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=,当x=2时,原式=1.【点评】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占的百分比及可求出A级和B级的学生人数.【解答】解:(1)读图可得:A类有10人,占总体的20%,所以总人数为10÷20%=50人,则D级的学生人数为50﹣10﹣23﹣12=5人.据此可补全条形图;(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%=10%;(3)读扇形图可得:A级占20%,所在的扇形的圆心角为360°×20%=72°;(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为500×66%=330人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是∠ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°∴AC是⊙O的切线;(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6,AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF==∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点评】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【考点】相似三角形的判定与性质;等腰直角三角形;矩形的性质;正方形的性质.【专题】证明题;动点型.【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即: =,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出PG=,MG=,PH=,NH=,根据S=S梯形MGHN﹣S△PMG﹣S△PNH=,利用二次函数的性质当x=1时,S有最大值是,即可解答;(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.【解答】解:(1)令x=0得,y=4,∴C(0,4)∴OB=OC=4,∴B(4,0)代入抛物线表达式得:16a﹣8a+4=0,解得a=∴抛物线的函数表达式为(2)如图2,过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,由抛物线得:A(﹣2,0),设P(x,0),△PMN的面积为S,则PG=,MG=,PH=,NH=∴S=S梯形MGHN﹣S△PMG﹣S△PNH===∵,∴当x=1时,S有最大值是∴△PMN的最大面积是,此时点P的坐标是(1,0)(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA由抛物线得:A(﹣2,0),对称轴为直线x=1,∴OA=2,OC=4,OD=1①若△DOE∽△AOC,则∴,解得OE=2∴点E的坐标是(0,2)或(0,﹣2)若点E的坐标是(0,2),则直线DE为:y=﹣2x+2解方程组得:,(不合题意,舍去)此时满足条件的点F1的坐标为(,)若点E的坐标是(0,﹣2),同理可求得满足条件的点F2的坐标为(,)②若△DOE∽△COA,同理也可求得满足条件的点F3的坐标为(,)满足条件的点F4的坐标为(,)综上所述,存在满足条件的点F,点F的坐标为:。
2024年广东省深圳市外国语学校中考模拟数学试题(解析版)

广东省深圳市外国语学校2023-2024学年九年级下学期数学3月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.2022的绝对值是()A.2022B.2022-C.12022D.12022-【答案】A【解析】【分析】根据绝对值的含义可得答案.【详解】解:2022的绝对值是2022;故选A【点睛】本题考查的是绝对值的含义,熟练的求解一个数的绝对值是解本题的关键.2.如图是一个正方体的展开图,则与“学”字相对的是()A.核B.心C.数D.养【答案】B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,据此解答即可.【详解】解:解:根据正方体展开图的特征,可知“数”与“养”是相对面,“素”与“核”是相对面,因此与“学”字相对的是“心”字.故选B .【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的特点是解题的关键.3.“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的60mate 系列低调开售.据统计,截至2023年10月21日,华为60mate 系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A.70.1610⨯ B.61.610⨯ C.71.610⨯ D.61610⨯【答案】B【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.【详解】解:1600000用科学记数法表示为61.610⨯.故选:B .4.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm )分别是23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【解析】【分析】本题考查众数、中位数,掌握众数、中位数的定义是正确解答的关键.根据众数、中位数的定义进行解答即可.【详解】这组数据中,出现次数最多的是23,因此众数是23,将这组数据从小到大排列,处在中间位置的一个数是24,由此中位数是24.故选C .5.下列运算中,正确的是()A.()232(3)6x x x -⋅-=- B.624x x x ÷=C.()32628x x -= D.222()x y x y -=+【答案】B【解析】【分析】本题考查了单形式乘以单项式,幂的运算,完全平方公式.根据单项式的乘法,同底数幂的除法,积的乘方,完全平方公式计算即可判定.【详解】解:A 、()2332(3)66x x x x -≠⋅-=-,本选项不符合题意;B 、624x x x ÷=,本选项符合题意;C 、()3266288x x x -=-≠,本选项不符合题意;D 、22222()2x y x xy y x y -=-+≠+,本选项不符合题意;故选:B .6.一把直尺和一个含30︒角的三角板按如图方式叠合在一起(三角板的直角顶点在直尺的边上),若128∠=︒,则2∠的度数是()A.62︒B.56︒C.45︒D.28︒【答案】A【解析】【分析】本题主要考查了平行线的性质,角的和差关系,熟练掌握平行线的性质是解题的关键.根据平行线的性质和角的和差关系可得答案.【详解】解:如图,由题意得:a b ,∴23∠∠=,128∠=︒,90ACB ∠=︒,∴3180162ACB ∠=︒-∠-∠=︒,∴2362∠=∠=︒,故选:A .7.下列命题是真命题的是()A.等边三角形是中心对称图形B.对角线相等的四边形是平行四边形C.三角形的内心到三角形三个顶点的距离相等D.圆的切线垂直于过切点的直径【答案】D【解析】【分析】本题考查了命题与定理的知识.利用中心对称图形、平行四边形的判定、切线的性质及三角形的内心的定义分别判断后即可确定正确的选项.【详解】解:A 、等边三角形不是中心对称图形,原说法错误,是假命题,不符合题意;B 、对角线互相平分的四边形是平行四边形,原说法错误,是假命题,不符合题意;C 、三角形的外心到三角形三个顶点的距离相等,原说法错误,是假命题,不符合题意;D 、圆的切线垂直于过切点的直径,故正确,是真命题,符合题意.故选:D .8.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30︒,底部C 的俯角为60︒,无人机与旗杆的水平距离AD 为6m ,则旗杆BC 的高为()A.(3m +B.12m C. D.(6m+【答案】C【解析】【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AD BC ⊥,然后分别在Rt △ABD 和Rt ACD △中,利用锐角三角函数的定义求出BD 和CD 的长,进而求出该旗杆的高度即可.【详解】解:根据题意可得:AD BC ⊥,在Rt △ABD 中,30BAD ∠=︒,6m AD =,∴3tan3063BD AD =⋅︒=⨯,在Rt ACD △中,60DAC ∠=︒,∴tan60CD AD =⋅︒=,∴BC BD CD =+==,故选:C .9.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有x 升,薄酒有y 升,根据题意列方程组为()A.1713193x y x y +=⎧⎪⎨+=⎪⎩ B.1913173x y x y +=⎧⎪⎨+=⎪⎩ C.1913173x y x y +=⎧⎪⎨+=⎪⎩ D.1713193x y x y +=⎧⎪⎨+=⎪⎩【答案】A【解析】【分析】本题主要考查了二元一次方程组的应用,解题的关键是找准等量关系,列出二元一次方程组.根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组即可.【详解】解:根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组得:1713193x y x y +=⎧⎪⎨+=⎪⎩故选:A .10.如图,将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,此时点B 恰在边AC 上,若2AB =,5AC =,则B C '的长为()A.2B.3C.4D.5【答案】B【解析】【分析】本题考查了旋转的性质,掌握旋转的性质是解题的关键.由旋转的性质可得2AB AB '==,即可求解.【详解】解:∵将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,2AB AB '∴==,∴==52=3B C AC AB''--.故选:B .二.填空题(共5小题,满分15分,每小题3分)11.分解因式:2233x y -=____.【答案】3()()x y x y +-【解析】【分析】先提公因式,再利用平方差公式因式分解即可得解.【详解】解:()()()2222333=3x y x yx y x y -=-+-,故答案为:3()()x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.在一个不透明的空袋子里,放入分别标有数字1,2,3,5的四个小球(除数字外其他完全相间),从中随机摸出2个小球,摸到的2个小球的数字之和恰为偶数的概率是_______________.【答案】12【解析】【分析】列出表格找出所有可能的情况,再找出其中符合题意的情况,最后利用概率公式计算即可.【详解】列表格如下:123511+2=31+3=41+5=622+1=32+3=52+5=733+1=43+2=53+5=855+1=65+2=75+3=8由表可知共有12种情况,其中摸到的2个小球的数字之和恰为偶数的有6种情况,故摸到的2个小球的数字之和恰为偶数的概率为61122P ==.【点睛】本题考查列表法或画树状图法求概率,正确的列出表格或画出树状图是解答本题的关键.13.已知关于x 的一元二次方程()21410m x x --+=有两个不相等的实数根,则m 的取值范围是_______.【答案】5m <且1m ≠【解析】【分析】由一元二次方程根的情况,根据根的判别式可得到关于m 的不等式,则可求得m 的取值范围.【详解】解:根据题意得:2416412040()=b ac m m ∆=-=--->,且10m -≠,解得:5m <且1m ≠.故答案为:5m <且1m ≠.【点睛】本题主要考查根的判别式,掌握一元二次方程根的个数与根的判别式的关系是解题的关键.14.如图,已知正方形ABCD 的面积为4,它的两个顶点B ,D 是反比例函数()0,0k y k x x=>>的图象上两点,若点D 的坐标是(),a b ,则a b -的值为______.【答案】2-【解析】【分析】利用正方形的性质求得点B 坐标是(a +2,b -2),根据点D 、点B 在反比例函数k y x =上,列式计算即可求解.【详解】解:∵正方形ABCD 的面积等于4,∴AB =BC =CD =DA =2,∵AD ∥BC ∥y 轴,CD ∥AB ∥x 轴,又点D 坐标是(a ,b ),∴点A 坐标是(a ,a -2),点B 坐标是(a +2,b -2),∵点D 、点B 在反比例函数k y x=上,∴()()22k ab k a b =⎧⎨=+-⎩,∴()()22ab a b =+-,∴2a b -=-.故答案为:2-.【点睛】本题考查了反比例函数的图象和性质,正方形的性质,解题的关键是灵活运用所学知识解决问题.15.如图,在Rt ABC 中,90ABC ∠=︒,边AC 的垂直平分线DE 交BC 于点D ,交AC 于点E ,BF AC ⊥于点F ,连接AD 交BF 于点G ,若6BC =,18GF BG =,则DE 的长为_______.【答案】103【解析】【分析】本题考查了相似三角形的判定与性质,角平分线的性质,等腰三角形的性质,解题的关键是掌握相似三角形的性质.证明AFG CFB ∽,得出19AG FG BC BF ==,AGF CBF ∠=∠,求出AG ,AD 的长,证明CDE CBF V V ∽,得出DE CD BF BC=,则可得答案.【详解】解: 18GF BG =,∴19GF BF =, DE 是的AC 垂直平分线,∴AD CD =,∴C DAC ∠=∠,BF AC ⊥,∴90BFC AFG ∠=∠=︒,∴AFG CFB ∽,∴19AG FG BC BF ==,AGF CBF ∠=∠,∴23AG =, AGFBGD ∠=∠,∴BGD DBG ∠=∠,∴GD BD =,设GD BD x ==,∴263x x -=+,∴83x =,∴83GD BD ==,∴103AD CD ==,∴2AB ===,∴AC ===, 1122ABC S AB BC AC BF == ,∴AB BC BF AC === , BF AC ⊥,DE AC ⊥,∴DE BF ∥,∴CDE CBF V V ∽,∴DE CD BF BC=,∴10336DE =,∴3DE =,故答案为:103.三.解答题(共7小题,满分55分)16.2146tan303-⎛⎫-+︒- ⎪⎝⎭.【答案】5-【解析】【分析】本题考查特殊角的锐角三角函数值、负整数指数幂、实数的混合运算,掌握相关运算法则,即可解题.2146tan303-⎛⎫-+︒- ⎪⎝⎭34693=-⨯-49=-=5-.17.先化简再求值2344111x xxx x⎛⎫-++-÷⎪--⎝⎭,再从1,2,3中选取一个适当的数代入求值.【答案】22xx+-,5【解析】【分析】先因式分解,通分,去括号化简,再选值计算即可.【详解】2344111x xxx x⎛⎫-++-÷⎪--⎝⎭()224112x xx x⎛⎫--=⨯⎪--⎝⎭()()()222112x x xx x+--=⨯--x2x2+=-,当1x=,2x=时,分母为0,分式无意义,故不能取;当3x=时,2325232xx++==--.【点睛】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.18.为了解落实《陕西省大中小学劳动教育实践基地建设指导意见》的实施情况,某中学从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为五组:A组“3t<”,B组“35t≤<”,C组“57t≤<”,D组“79t≤<”,E组“9t≥”,将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是_______,B组所在扇形的圆心角的大小是_______,将条形统计图补充完整;(2)这次抽样调查中平均每周劳动时间的中位数落在_______组:(3)该校共有2000名学生,请你估计该校学生平均每周劳动时间不少于7h的学生人数.【答案】(1)100,108︒,统计图见解析(2)B(3)300【解析】【分析】(1)根据D组的人数除以占比得出样本的容量,根据B组的人数除以总人数乘以360︒得出B组所在扇形的圆心角的大小,进而根据总人数求得C组的人数,补全统计图即可求解;(2)根据中位数的定义即可求解;(3)根据样本估计总体,用2000乘以不少于7h的学生人数的占比即可求解.【小问1详解】解:这次抽样调查的样本容量是1010%=100÷,B组所在扇形的圆心角的大小是30360=108100︒⨯︒,C组的人数为1002530105=30----(人),故答案为:100,108︒.补充条形统计图如图所示,【小问2详解】解;∵253055+=,中位数为第50个与第51个数的平均数,∴中位数落在B 组,故答案为:B .【小问3详解】解:估计该校学生平均每周劳动时间不少于7h 的学生人数为1052000=300100+⨯(人).【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,AB 是O 的直径,AD 是O 的弦,C 是AB 延长线上一点,过点B 作BE CD ⊥交CD 于E ,交O 于F ,2EBC DAC ∠∠=.(1)求证:CD 是O 的切线;(2)若3cos 5ABF ∠=,O 的半径为5,求BC 的长.【答案】(1)见解析(2)103BC =【解析】【分析】(1)连接OD ,由等腰边对等角,三角形外角定理,可得2EBC DAC ∠∠=,于是DOC EBC ∠=∠,得到BE OD ∥,进而OD CD ⊥,即可得证,(2)由BE OD ∥,3cos cos 5DOC ABF ∠=∠=,根据余弦定义,可求OC ,进而可求BC ,本题考查了,切线的判定,平行线的性质与判定,解直角三角形,解题的关键是:熟练掌握相关性质定理.【小问1详解】解:连接OD ,∵OA OD =,∴DAO ADO ∠=∠,∴2DOC DAO ADO DAO ∠=∠+∠=∠,∵2EBC DAC ∠∠=,∴DOC EBC ∠=∠,∴BE OD ∥,∵BE CD ⊥,∴OD CD ⊥,∴CD 是O 的切线,【小问2详解】解:由(1)得BE OD ∥,∴DOC FBA ∠=∠,∵OD CD ⊥,∴3cos cos 5DOC ABF ∠=∠=,∴35OD OC =,即:535OC =,解得:253OC =,∴2510533BC OC OB =-=-=,故答案为:103BC =.20.某商店准备购进甲、乙两款篮球进行销售,若一个甲款篮球的进价比一个乙款篮球的进价多30元.(1)若商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.求每个甲款篮球,每个乙款篮球的进价分别为多少元?(2)若商店购进乙款篮球的数量比购进甲款篮球的数量的2倍少10个,且乙款篮球的数量不高于甲款篮球的数量;商店销售甲款篮球每个获利30元,商店销售乙款篮球每个获利为20元,购进甲款篮球的数量为多少时,商店获利最大?【答案】(1)每个甲款篮球的进价为150元,每个乙款篮球的进价为120元(2)购进甲款篮球的数量为10个时,商店获利最大【解析】【分析】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用.(1)设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.列出分式方程,解方程即可;(2)设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据乙款篮球的数量不高于甲款篮球的数量,列出关于m 的一元一次不等式组,解之求出m 的取值范围,再设商店共获利w 元,利用总利润=每个的利润×销售数量(购进数量),得出w 关于m 的函数关系式,然后利用一次函数的性质,即可解决最值问题.【小问1详解】解:设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据题意得:26000302400 xx =⨯+,解得:120x =,经检验,120x =是所列方程的解,且符合题意,3012030150x ∴+=+=,答:每个甲款篮球的进价为150元,每个乙款篮球的进价为120元;【小问2详解】解:设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据题意得:210m m -≤,解得:10m ≤,设商店共获利w 元,则()302021070200w m m m =+-=-,即70200w m =-,700> ,∴w 随m 的增大而增大,且10m ≤,∴当10m =时,w 取得最大值,答:购进甲款篮球的数量为10个时,商店获利最大.21.某排球运动员在原点O 处训练发球,MN 为球网,AB 为球场护栏,且MN ,AB 均与地面垂直,球场的边界为点K ,排球(看作点)从点O 的正上方点()0,2P 处发出,排球经过的路径是抛物线L 的一部分,其最高点为G ,落地点为点H ,以点O 为原点,点O ,M ,H ,K ,A 所在的同一直线为x 轴建立平面直角坐标系,相应点的坐标如图所示,点N 的坐标为()9,2.4(单位:米,图中所有的点均在同一平面内).(1)求抛物线L 的函数表达式;(2)通过计算判断发出后的排球能否越过球网?是否会出界?(3)由于运动员作出调整改变了发球点P 的位置,使得排球在点K 落地后立刻弹起,又形成了一条与L 形状相同的抛物线L ',且最大高度为1m .若排球沿L '下落时(包含最高点)能砸到球场护栏AB ,直接写出m 的最大值与最小值的差.【答案】(1)()216336y x =--+(2)发出后的排球能越过球网,不会出界,理由见解析(3)m 的最大值与最小值的差为6【解析】【分析】本题考查二次函数与实际问题,待定系数法求函数解析式,二次函数的图象及性质.(1)根据抛物线L 的最高点()6,3G 设抛物线L 的函数解析式为()263y a x =-+,把点()0,2P 代入即可求得a 的值,从而解答;(2)把9x =代入抛物线解析式中,求得排球经过球网时的高度,从而根据球网高度即可判断排球能否越过球网;把0y =代入抛物线解析式中,求得点H 的坐标,根据边界点K 的位置即可判断排球是否出界;(3)根据抛物线L '的形状与抛物线L 相同,且最大高度为1m .可设抛物线L '的解析式为:()21136y x k =--+,把点()18,0K 代入可求得抛物线L '解析式为()21018136k =--+,从而得到排球反弹后排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到,即24m ≥,在排球着地点A 处砸到护栏,把0y =代入解析式,求解可得到30m ≤,从而可解答.【小问1详解】∵排球经过的路径是抛物线L 的一部分,其最高点为()6,3G ,∴抛物线L 的顶点坐标为()6,3,设抛物线L 的解析式为:()263y a x =-+,∵抛物线L 过点()0,2P ,∴2363a =+,解得:136a =-,∴抛物线L 的函数表达式为()216336y x =--+;【小问2详解】∵当9x =时,()21963 2.75 2.436y =--+=>,∴发出后的排球能越过球网.∵当0y =时,()2163036x --+=,解得:16x =+,26x =-∴点H 的坐标为()6+,∵618+<∴不会出界.综上,发出后的排球能越过球网,不会出界;【小问3详解】∵抛物线L '的形状与抛物线L 相同,且最大高度为1m .设抛物线L '的解析式为:()21136y x k =--+,∵抛物线L '过点()18,0K ,∴()21018136k =--+.解得:112k =(不合题意,舍去),224k =,∴()2124136y x =--+,∴抛物线L '的最高点坐标为()24,1∵排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到.∴24m ≥;∵排球落地时,砸到点A .把0y =代入函数()2124136y x =--+,得()21024136x =--+,解得:118x =(不合题意,舍去),230x =.∴30m ≤.∴m 的最大值与最小值的差为:30246-=.22.(1)【问题探究】如图1,正方形ABCD 中,点F 、G 分别在边BC 、CD 上,且AF BG ⊥于点P ,求证:AF BG =;(2)【知识迁移】如图2,矩形ABCD 中,4,8AB BC ==,点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,且EG FH ⊥于点P ,若48EG HF ⋅=,求HF 的长;(3)【拓展应用】如图3,在菱形ABCD 中,60ABC ∠=︒,6AB =,点E 在直线AB 上,4BE =,AF D E ⊥交直线BC 或CD 于点F ,请直接写出线段FC 的长.【答案】(1)见解析(2)HF 的长为(3)线段FC 的长为127或1213【解析】【分析】(1)由正方形的性质,同角的余角相等即可证明()ASA ABF BCG ≌,由全等三角形的性质即可得证;(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,根据四边形ABCD 是矩形,依次可证四边形EBCM 和四边形ABNH 是矩形,进而可证HNF EMG ∽,可得2EG HF =,再由48EG HF ⋅=,求解即可;(3)分两种情况讨论,当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,由四边形ABCD 是菱形,可得6AD CD AB ===,60ADC ABC ∠=∠=︒,由含30︒的直角三角形的性质,再结合勾股定理可求出AM ND ==,由同角的余角相等可证END AMF ∽,可得EN ND AM FM=,求出FM ,进而求解即可;当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,由四边形ABCD 是菱形,6AD AB BC ===,由含30︒的直角三角形的性质,再结合勾股定理可求出EJ AH ==,由同角的余角相等可证DJE AHF ∽,可得DJ EJ AH HF=,进而可求出97HF =,由线段的和差关系求解即可.【详解】1) 四边形ABCD 是正方形,90ABC C ∴∠=∠=︒,AB BC =,90ABP CBG ∴∠+∠=︒,AF BG ⊥ ,90APB ∴∠=︒,90BAF ABP ∴∠+∠=︒,BAF CBG ∴∠=∠,()ASA ABF BCG ∴ ≌,AF BG ∴=.(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,则=90EMC EMG HNB HNF ∠∠=∠=∠=︒,如图,四边形ABCD 是矩形,4,8AB BC ==,90A B C D ∴∠=∠=∠=∠=︒,90B C EMC ∠=∠=∠=︒ ,∴四边形EBCM 是矩形,8,EM BC EM BC ∴==∥,90HIJ HNF ∴∠=∠=︒,90A B HNB ∠=∠=∠=︒ ,∴四边形ABNH 是矩形,4,HN AB ∴==90HIJ ∠=︒ ,90NHF EJH ∴∠+∠=︒,EG FH ⊥ ,90EPJ ∴∠=︒,90MEG EJH ∴∠+∠=︒,NHF MEG ∴∠=∠,90EMG HNF ∠=∠=︒ ,HNF EMG ∴ ∽,4182HF HN EG EM ∴===,2EG HF ∴=,48EG HF ⋅= ,2248HF ∴=,HF ∴=,(3)当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,如图,则90N AMD AMC ∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,6AD CD AB ∴===,60ADC ABC ∠=∠=︒,AB CD ∥,60DAN ADC ∴∠=∠=︒,90EAM MAN AMC ∠=∠=∠=︒,∴四边形AMDN 是矩形,9030ADN DAN ∠=︒-∠=︒,132MD AN AD ∴===,46313EN BE AB AN ∴=++=++=,在Rt ADN △中,AM ND ====, AF D E ⊥,90EQA ∴∠=︒,90E EAQ ∴∠+∠=︒,90EAM ∠=︒ ,90MAF EAQ ∴∠+∠=︒,E MAF ∴∠=∠,90N AMC ∠=∠=︒ ,END AMF ∴ ∽,EN ND AM FM∴=,271313AM ND FM EN ⋅∴===,2712631313FC CD FM MD ∴=--=--=,当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,如图,AF D E ⊥,AH BC ⊥,EG BC ⊥,90AHB AHC AID BGE ∴∠=∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,AD BC ∴∥,6AD AB BC ===,90,90,60J BGE DAH AHB EAJ ∴∠=∠=︒∠=∠=︒∠=︒,2AE AB BE =-=,9030,9030JEA EAJ BAH ABC ∴∠=︒-∠=︒∠=︒-∠=︒,。
2023年广东省深圳市福田区中考数学模拟试卷及答案解析

2023年广东省深圳市福田区中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.(3分)函数y=中自变量x的取值范围是()A.x≥0B.x>1C.x≥1D.x≠02.(3分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为()A.3.51×105B.3.51×106C.3.51×107D.0.351×107 4.(3分)下列所给方程中,没有实数根的是()A.x2+2x=0B.x2﹣x﹣2=0C.3x2﹣4x+1=0D.4x2﹣3x+2=0 5.(3分)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.(3分)在平面直角坐标系中,将抛物线y=﹣x2﹣1先向右平移1个单位长度,再向下平移3个单位长度,得到的新抛物线的解析式为()A.y=﹣(x﹣1)2﹣4B.y=﹣(x+1)2﹣4C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+37.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高BH=()A.4.6B.4.8C.5D.5.28.(3分)如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为()A.B.C.1D.29.(3分)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=bx﹣a在坐标系内的大致图象为()A.B.C.D.10.(3分)如图,反比例函数图象经过正方形OABC的顶点A,BC边与y 轴交于点D,若正方形OABC的面积为12,BD=2CD,则k的值为()A.3B.C.D.二、填空题(本大题共5小题,共15.0分)11.(3分)分解因式:2ab2﹣8ab+8a=.12.(3分)二次函数y=(x+1)2﹣1的图象的顶点坐标为.13.(3分)已知是方程ax+4y=2的一个解,那么a=.14.(3分)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=14.8m.则建筑物CD的高是m.15.(3分)如图,在Rt△ABC中,BC=4,∠ABC=90°,以AB为直径的⊙O交AC于点D,弧AD沿直线AD翻折后经过点O,那么阴影部分的面积为.三、解答题(本大题共7小题,共55.0分。
(中考数学)中考热身模拟试卷数学(三)

2022年中考热身模拟试卷数学(三)(满分150分时间120分钟)考生注意:1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分。
考试时间 120分钟。
2.请将各题答案填在答题卡上,答在试卷上无效。
3.本试卷考查范围:中考范围。
一、选择题:本题共12个小题,每小题3分,共36 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列运算正确的是()A. a2+2a2=3a4B. a6÷a3=a2C. a3+a3=2a6D. (a2)3=a62.下列不等式3-x的非负整数解是()+(2<)33A. 0B. 1C. 2D. 33.下图中的几何体是由六个完全相同的小正方体组成的,它的俯视图是()A. B. C. D.4.某市图书馆和山区小学建立帮扶关系,一年五次向该小学赠送书籍的数量分别如下(单位:本):300,200,300,300,400这组数据的众数、中位数、平均数分别是()A. 300,150,300B. 300,200,200C. 600,300,200D. 300,300,3005.高度每增加1 km,气温大约下降5 ℃,现在地面温度是20 ℃,某飞机在该地上空5 km处,则此时飞机所在高度的气温为( )A. -9 ℃B. -6℃C. -5 ℃D. 5℃6.如果a<b,那么下列结论不正确的是()A. a+3<b+3B. a﹣3<b﹣3C. ma>mbD. B. −2a>−2b7.数轴上一动点A 向左移动3个单位长度到达点B ,再向右移动7个单位长度到达点C ,若点 C 表示的数是2,则点 A 表示的数为()A. -1B. 3C. -3D. -28.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠BDE的度数为()A. 50°B. 77.5°C. 60°D.第8题第9题第12题9.小芳将贵州健康码打印在面积为16dm2的正方形纸上,为了估计图中健康码部分的面积,在纸内随机掷点,经过大量重复试验,发现点落入健康码外部分的频率稳定在0.4左右,据此可以估计健康码部分的面积约为()A. 2.4dm2B. 4dm2C. 6.4dm2D. 9.6dm210.关于x的一元二次方程x2-4x+a=0的两实数根分别为x1、x2,且x1+2x2=3,则a的值为()A. 4B. 5C. -5D. 011.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问买5只羊总共是多少?()A. 800钱B. 775钱C. 750钱D. 725钱12.如图,在四边形ABCD中,AB//CD,AB=CD,∠B=60°,AD=83,分别以B和C为圆心,以大于1BC的长为半径作弧,两弧相交于点P和Q,直线PQ与BA2延长线交于点E,连接CE,则ΔBCE的内切圆圆心到B点距离是()A. 4B. 43C. 8D. 23一、填空题(每小题5分,共20分)13.若分式2x+2有意义,则x的取值范围为________.x2−114.关于x的方程(m+2)x|m|+2mx+2=0是一元一次方程,则m的值为________.15.已知实数a在数轴上的位置如图所示,则化简|1-a|﹣a2的结果为________.16.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF 是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为 .第15题第16题三、解答题(本大题共9小题,共94分)17.(本题满分6分)已知=3,3a+b﹣1的平方根是±2,c是的整数部分,求2a+b+6c的算术平方根.18.(本题满分10分)九年级将要参加体育中考,某校领导非常重视,决定对九年级年级学生体育体育达标测试,来了解学生的中考体育成绩,在九年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(A级:45分~50分;B级:40分~45分;C级:35分~40分;D级:35分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:第18题(1)学校在九年级各班共随机调查了 名学生;(2)在扇形统计图中,A级所在的扇形圆心角是 ;(3)请把条形统计图补充完整;(4)若该校九年级有1000名学生,请根据统计结果估计全校九年级体育测试中B 级和C 级学生各约有多少名.19.(本题满分10分)如图,AB 是⊙O 的弦,点D 是⊙O 内一点,连接AD ,圆心O 在AD 上,AD ⊥BC ,垂足为D ,BD 交⊙O 于点C 若AD =6cm ,AD =2BD .(1)求弦BC 的长;(2)求⊙O 半径的长.第19题20.(本题满分10分)如图:某地打算建立一个信号站在居民房A 和居民房B 之间的C 处,信号站C 在居民房A 的北偏东60°方向上,居民房A 距离信号站C 有20米,信号站C 处在居民房B 处西北方向上。
2023年广东省深圳市宝安重点学校中考数学三模试卷(含解析)

2023年广东省深圳市宝安重点学校中考数学三模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2023的相反数是( )A. 12023B. −12023C. 2023D. −20232. 剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 下列式子正确的是( )A. a3⋅a2=a5B. (a2)3=a5C. 2a2+3a3=5a5D. (a−1)2=a2−14. 如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB//DE,则∠AFD的度数是( )A. 15°B. 30°C. 45°D. 60°5. 如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:EO=2:1,则△ABC 与△DEF的周长比是( )A. 4:1B. 3:1C. 2:1D. 3:26. 有四张完全相同的卡片,上面分别写着−1、0、1、2,从中一次抽取两张卡片,这两张卡片上的数字的和为正数的概率是( )A. 12B. 13C. 14D. 237. 在反比例函数y =−k 2−3x (k 为常数)的图象上有三个点(−3,y 1),(−1,y 2),(13,y 3),则函数值y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3B. y 1<y 3<y 2C. y 2<y 3<y 1D. y 3<y 1<y 28. 下列命题是假命题的是( )A. 两条直线被第三条直线所截,同位角相等B. 对顶角相等C. 邻补角一定互补D. 三角形中至少有一个角大于或等于60°9.如图,在矩形ABCD 中,AB =1,在BC 上取一点E ,连接AE 、ED ,将△ABE 沿AE 翻折,使点B 落在B′处,线段EB′交AD 于点F ,将△ECD 沿DE 翻折,使点C 的对应点C′落在线段EB′上,若点C′恰好为EB′的中点,则线段EF 的长为( )A. 12B.22C. 76D. 34 210. 如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE−ED−DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm /秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE∽△QBP ;其中正确的结论是( )A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共15.0分)11. 分式方程x−2023x +2023=0的解是______ .12. 2021年5月21日,国新办举行新闻发布会,介绍第七次全国人口普查情况,全国人口总数约为14.12亿人.用科学记数法表示14.12亿人,可以表示为______ 人.13. 设a ,b 是方程x 2+x−2022=0的两个实数根,则a 2−a−2b 的值为______.14.如图,在菱形ABCD 中,∠C =60o ,AB =4,点E 为BC 的中点,EF ⊥AE 交CD 于点F ,连接AF ,则线段AF 的长为______ .15.如图,在正方形ABCD 中,点P 在对角线BD 上,点E ,F 分别在边AB 和BC 上,且∠EPF =45°,若CF = 2DP =4,AE =12,则AB 的长度为______ .三、解答题(本大题共7小题,共56.0分。
广东省深圳市2015年中考数学试题(解析版)(附答案)

2015年中考真题精品解析 数学(深圳卷)一、选择题:1.15-的相反数是( )A 、15B 、15-C 、151 D 、151- 【答案】A考点:相反数的求法.2.用科学计数法表示316000000为( )A 、71016.3⨯B 、81016.3⨯C 、7106.31⨯D 、6106.31⨯【答案】B【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 考点:科学计数法.3.下列说法错误的是( )A 、2a a a =∙B 、a a a 32=+C 、523)(a a =D 、413a a a =÷- 【答案】C考点:幂的计算.4.下列图形既是中心对称又是轴对称图形的是( )考点:轴对称图形、中心对称图形.5.下列主视图正确的是( )【答案】A【解析】试题分析:从三视图的法则可得:下面为3个正方形,上面为1个正方形,且上面的正方形在中间.由前面往后面看,主视图为A考点:三视图6.在一下数据75,80,80,85,90中,众数、中位数分别是( )A 、75,80B 、80,80C 、80,85D 、80,90【答案】B考点:众数、中位数的计算.7.解不等式12-≥x x ,并把解集在数轴上表示( )【答案】B试题分析:解不等式,得:1x ≥-,在数轴上有等于号的要用实心点,故选B考点:解不等式.8.二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法正确的个数是( )○10>a ;○20>b ;○30<c ;○4042>-ac b 。
A 、1B 、2C 、3D 、4【答案】B考点:二次函数的性质.9.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A 、50°B 、20°C 、60°D 、70°【答案】D【解析】试题分析:根据AB 为⊙O 直径可得:∠ACB=90o ,则∠ACD=∠ACB -∠DCB=90°-20°=70°,根据同弧所对的圆周角相等可得:∠DBA=∠ACD=70°.考点:圆的基本性质.10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。
2024年广东省深圳市宝安区文汇学校中考模拟数学试题

深圳市2024年初三年级中考适应性模拟试卷数 学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。
2.全卷共6页。
考试时间90分钟,满分100分。
3.作答选择题1-10,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。
写在本试卷或草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
第一部分 选择题一.选择题(本大题共10小题。
每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.下列图形中,主视图和左视图一样的是( )A. B.C. D.2.已知关于t 的一元二次方程2320t t m +−=的一个根是1t =,则m 的值为( ) A. 2B. 0C.1−D. 13.如图,在菱形ABCD 中,120ABC ∠=°,对角线4BD =,则菱形ABCD 的面积是( )A. 16B. C. D.4.用配方法解方程2640x x ++=时,原方程变形为( ) A.()239x +=B.()2313x +=C.()235x +=D.()234x +=5.某生物学家想通过随机抽取的方式来估计50只小白鼠中雄鼠的个数,这些小白鼠被抓取后能够清晰地判断性别。
将小白鼠随机放置在实验箱后,从中随机抽出一只小白鼠,记下它的性别后再放回实验箱中,不断重复这一过程,通过大量重复的试验后,发现抽到雌鼠的频率稳定在0.4,则实验箱中雄鼠的个数约为( ) A. 25 B. 30C. 20D. 356.如图,直线////a b c ,分别交直线m ,n 于点A ,B ,C ,D ,E ,F .若:5:2AC BC =,4EF =,则DE 的长为( )A. 4B. 5C. 6D. 107.图1是《墨经》中记载的“小孔成像”实验图,图2是其示意图,其中物距2m BF =,像距1m CE =.若像的高度CD 是0.9m ,则物体的高度AB 为( )图1 图2 A. 1.2mB. 1.5mC. 1.8mD. 2.4m8.电影《飞驰人生2》讲述了传奇车手张驰重回巴音布鲁克赛场为自己证明的故事,一上映就获得全国人民的追捧,影片第一天票房约4亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x ,则方程可以列为( )A.()417x +=B.()2417x +=C.()24417x ++=D.()()2441417x x ++++=9.如图,小胡在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小胡与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m.若小胡的眼睛与地面的距离为1.6m ,则旗杆的高度为(单位:m )( )A. 12.4B. 12.5C. 12.8D. 1610.如图,已知菱形ABCD 中,过AD 中点E 作EF BD ⊥,交对角线BD 于点M ,交BC 的延长线于点F .连接DF ,若2CF =,4BD =,则DF 的长是( )A.B.C. 4D.第二部分 非选择题二.填空题(本大题共5小题。
深圳市初三中考数学一模模拟试题【含答案】

深圳市初三中考数学一模模拟试题【含答案】一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是A.2B. -2C. 3D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3) 4.如图,在四边形ABCD 中,点E 在线段DC 直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠B=1800,(4)∠A+∠D=1800,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是 A.9cm B.12cm C.9cm 或12cm D. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是A.6cmB.24cmC. 27cmD. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个 8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是 图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0, b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是 A.0,1 B.0,1,2 C. 1,2 D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F 是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则 ⊙O 直径的长是 A. m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少A. 4cmB. 3cmC.23cmD.43cm12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少A. 1.5B. 2C. 2D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年广东省深圳市中考数学模拟试卷(三)一、选择题:(本大题共12题,每小题3分,共36分)1.﹣9的绝对值是()A.9 B.﹣9 C.±9 D.2.将x2﹣16分解因式正确的是()A.(x﹣4)2B.(x﹣4)(x+4)C.(x+8)(x﹣8)D.(x﹣4)2+8x3.下列计算正确的是()A.b2•b3=b6B.(﹣a2)3=a6C.(ab)2=ab2D.(﹣a)6÷(﹣a)3=﹣a34.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5﹣﹣﹣66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.根据下列图形提供的信息,一定能得到∠1>∠2的是()A.B. C.D.6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元7.下列四个事件中,是随机事件(不确定事件)的是()A.小明上学经过十字路口时遇到绿灯B.通常加热到100℃,水会沸腾C.明天我市最高气温为60℃D.深圳去年数学中考时间为6月8日8.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF的度数是()A.50°B.60°C.80°D.100°9.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.对角线互相垂直且相等的四边形是矩形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的菱形是正方形11.如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y 轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=x B.y=x+1 C.y=x+2 D.y=x+312.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.192二、填空题:(本大题共12题,每小题3分,共36分)13.已知x=﹣2是关于x的方程x2﹣x+c=0的一个根,则c的值是.14.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是.15.正整数按如图的规律排列,写出第n行、第n+1列的数字为16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.三、解答题:(共52分)17.计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°.18.先化简,再求值:,其中,x为方程x2+2x﹣15=0的实数根.19.2011年日本核电站泄漏事件使我国电子产品出口受到严重影响,在这种情况下,有两个电子仪器厂仍然保持着良好的增长执着势头.(1)下面两幅统计图反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填充:①一厂、二厂的技术人员占厂内总人数的百分比分别是和(结果精确到1%)②一厂、二厂五月份的产值比四月份分别增长了万元和万元(2)下面是一厂、二厂五月份的销售额占当月产品销售总额的百分率统计表,则五月份一厂国外销售产值为万元,二厂在国内销往外地的产值为万元20.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)21.某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?22.如图,平面直角坐标系中,直线y=x+3与坐标轴分别交于A、B两点.动点P从A点出发沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为,1,2(长度单位/秒),点E同时从O点出发沿OB以(长度单位/秒)的速度运动,直线EF∥x轴交BA于点F,设运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,点P和点E同时停止运动.请解答下列问题(1)求A、B两点的坐标;(2)作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F是菱形,则t的值是多少?(3)当t=2时,是否存在点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.23.已知,函数y=ax2+x﹣1(a≠0)的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图1,平行于x轴的直线交抛物线于E、F两点,若以线段EF为直径的圆M经过点B,求线段MA的长;(3)如图2,设二次函数y=ax2+x﹣1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(4)在(3)中,若圆与x轴另一交点点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2﹣x﹣1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.2015年广东省深圳市中考数学模拟试卷(三)参考答案与试题解析一、选择题:(本大题共12题,每小题3分,共36分)1.﹣9的绝对值是()A.9 B.﹣9 C.±9 D.【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣9的绝对值是9,故选:A.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.将x2﹣16分解因式正确的是()A.(x﹣4)2B.(x﹣4)(x+4)C.(x+8)(x﹣8)D.(x﹣4)2+8x【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:x2﹣16=(x+4)(x﹣4).故选:B.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.3.下列计算正确的是()A.b2•b3=b6B.(﹣a2)3=a6C.(ab)2=ab2D.(﹣a)6÷(﹣a)3=﹣a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为b2•b3=b5,故本选项错误;B、应为(﹣a2)3=﹣a6,故本选项错误;C、应为(ab)2=a2b2,故本选项错误;D、(﹣a)6÷(﹣a)3=(﹣a)6﹣3=﹣a3,正确.故选D.【点评】本题主要考查同底数幂的乘法,同底数幂的除法,积的乘方,熟练掌握运算性质是解题的关键.4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5﹣﹣﹣66.5这组的频率是()A.0.4 B.0.5 C.4 D.5【考点】频数(率)分布表.【分析】首先正确数出在64.5﹣﹣﹣66.5这组的数据;再根据频率、频数的关系:频率=,进行计算.【解答】解:其中在64.5﹣﹣﹣66.5组的有65,66,64,65四个,则64.5﹣﹣﹣66.5这组的频率是=0.4.故选A.【点评】本题考查频率、频数的关系:频率=.5.根据下列图形提供的信息,一定能得到∠1>∠2的是()A.B. C.D.【考点】三角形的外角性质;对顶角、邻补角;直角三角形的性质;圆周角定理.【分析】分别根据对顶角的性质、两角互余的性质、三角形外角的性质及圆周角定理对各选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,故本选项错误;C、∵∠1是三角形的外角,∴∠1>∠2,故本选项正确;D、∵∠1与∠2是同弧所对的圆周角,∴∠1=∠2,故本选项错误.故选C.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角大于和它不相邻的任何一个内角是解答此题的关键.6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.下列四个事件中,是随机事件(不确定事件)的是()A.小明上学经过十字路口时遇到绿灯B.通常加热到100℃,水会沸腾C.明天我市最高气温为60℃D.深圳去年数学中考时间为6月8日【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【解答】解:A、小明上学经过十字路口时遇到绿灯是随机事件,故A正确;B、通常加热到100℃,水会沸腾是必然事件,故B错误;C、明天我市最高气温为60℃是不可能事件,故C错误;D、深圳去年数学中考时间为6月8日是不可能事件,故D错误;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF的度数是()A.50°B.60°C.80°D.100°【考点】翻折变换(折叠问题).【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=50°,则∠BDF即可求.【解答】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=50°∴∠EDF=∠ADE=50°∴∠BDF=180°﹣50°﹣50°=80°.故选:C.【点评】本题考查了全等三角形的性质及中位线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.9.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.【考点】概率公式;专题:正方体相对两个面上的文字.【专题】压轴题.【分析】让朝上一面上的数恰好等于朝下一面上的数的的情况数除以总情况数即为朝上一面上的数恰好等于朝下一面上的数的的概率.【解答】解:根据图看出只有6和3是对面,1和4是对面,2和5是对面;并且只有3在上面时6在下面,朝上一面上的数恰好等于朝下一面上的数的,抛掷这个立方体,朝上一面上的数恰好等于3的概率是.故选A.【点评】本题考查了统计与概率中概率的求法,要善于观察把图折成立方体时各个面是什么数字.用到的知识点为:概率=所求情况数与总情况数之比.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.对角线互相垂直且相等的四边形是矩形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】利用等边三角形的判定、矩形的判定、平行四边形及正方形的判定分别判断后即可确定正确的选项.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,正确;B、对角线互相垂直且相等的四边形是矩形,错误;C、一组对边平行且一组对角相等的四边形是平行四边形,正确;D、对角线相等的菱形是正方形,正确,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解等边三角形的判定、矩形的判定、平行四边形及正方形的判定,属于基础题,比较简单.11.如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y 轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=x B.y=x+1 C.y=x+2 D.y=x+3【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(﹣3,﹣1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用待定系数法确定PQ的解析式.【解答】解:分别把点A(a,1)、B(﹣1,b)代入双曲线y=﹣得a=﹣3,b=3,则点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(﹣3,﹣1),D点坐标为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,设直线CD的解析式为y=kx+b,把C(﹣3,﹣1),D(1,3)分别代入,解得,所以直线CD的解析式为y=x+2.故选C.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题.12.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.192【考点】一次函数综合题.【专题】规律型.【分析】首先求得点A与B的坐标,即可求得∠OAB的度数,又由△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,易求得OB1=OA=,A1B1=A1A,A2B2=A2A,则可得规律:OA n=(2n﹣1).根据A5A6=OA6﹣OA5求得△A5B6A6的边长,进而求得周长.【解答】解:∵点A(﹣,0),点B(0,1),∴OA=,OB=1,∴tan∠OAB==,∴∠OAB=30°,∵△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠A1B2A=∠A2B3A=∠OAB=30°,∴OB1=OA=,A1B2=A1A,A2B3=A2A,∴OA1=OB1=,OA2=OA1+A1A2=OA1+A1B2=+2=3,同理:OA3=7,OA4=15,OA5=31,OA6=63,则A5A6=OA6﹣OA5=32.则△A5B6A6的周长是96,故选C.【点评】此题考查了一次函数的性质、等边三角形的性质、等腰三角形的判定与性质以及三角函数的知识.此题难度较大,注意掌握数形结合思想的应用.二、填空题:(本大题共12题,每小题3分,共36分)13.已知x=﹣2是关于x的方程x2﹣x+c=0的一个根,则c的值是﹣6.【考点】一元二次方程的解.【分析】将x=﹣2代入已知方程,列出关于c的新方程,通过解新方程即可求得c的值.【解答】解:根据题意,得(﹣2)2﹣(﹣2)+c=0,解得c=﹣6.故答案是:﹣6.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32.【考点】垂径定理;勾股定理.【分析】连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.【解答】解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.正整数按如图的规律排列,写出第n行、第n+1列的数字为n2+n【考点】规律型:数字的变化类.【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【解答】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第n行第1列的数为:n2.则第n+1行第1列的数为:(n+1)2.又每行的数个数与对应列的数的个数相等.所以第n+1行第n+1列的数为(n+1)2﹣(n+1)+1=n2+n+1.根据如图,n2+n+1上面一个数是n2+n,即第n行第n+1列的数.故答案为:n2+n.【点评】此题考查数字的变化规律,解答此题的关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;圆周角定理;锐角三角函数的定义.【专题】压轴题.【分析】由题意可知,OE为对角线AC的中垂线,则CE=AE,S△AEC=2S△AOE=10,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.【解答】解:如图,连接EC.由题意可得,OE为对角线AC的垂直平分线,∴CE=AE,S△AOE=S△COE=5,∴S△AEC=2S△AOE=10.∴AE•BC=10,又BC=4,∴AE=5,∴EC=5.在Rt△BCE中,由勾股定理得:BE===3.∵∠EBC+∠EOC=90°+90°=180°,∴B、C、O、E四点共圆,∴∠BOE=∠BCE.另解:∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°﹣∠OBC=90°﹣(∠BCE+∠ECO)∴∠BOE+[90°﹣(∠BCE+∠ECO)]+∠EAO=90°,化简得:∠BOE﹣∠BCE﹣∠ECO+∠EAO=0∵OE为AC中垂线,∴∠EAO=∠ECO.代入上式得:∠BOE=∠BCE.∴sin∠BOE=sin∠BCE==.故答案为:.【点评】本题是几何综合题,考查了矩形性质、线段垂直平分线的性质、勾股定理、圆周角、三角函数的定义等知识点,有一定的难度.解题要点有两个:(1)求出线段AE的长度;(2)证明∠BOE=∠BCE.三、解答题:(共52分)17.计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用立方根定义计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣2++3﹣=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中,x为方程x2+2x﹣15=0的实数根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先化简分式,再求出x2+2x=15代入求解即可.【解答】解:=•,=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题主要考查了分式的化简求值及解一元二次方程,解题的关键是正确的化简分式.19.2011年日本核电站泄漏事件使我国电子产品出口受到严重影响,在这种情况下,有两个电子仪器厂仍然保持着良好的增长执着势头.(1)下面两幅统计图反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填充:①一厂、二厂的技术人员占厂内总人数的百分比分别是20%和8.3%(结果精确到1%)②一厂、二厂五月份的产值比四月份分别增长了1500万元和1000万元(2)下面是一厂、二厂五月份的销售额占当月产品销售总额的百分率统计表,则五月份一厂国外销售产值为1750万元,二厂在国内销往外地的产值为500万元【考点】条形统计图;折线统计图.【分析】(1)①由一厂和二厂和总人数和技术员的人数,可求得对应的技术员占的比例,②从折线图中可得出五月份的产值比四月份增长数;(2)利用五月份一厂国外销售产值=五月份一厂销售总产值×50%求解,二厂在国内销往外地的产值=五月份二厂销售总产值×20%求解即可.【解答】解:(1)从条形统计图中得出,一厂的人数=500+200+100+200=1000人,一厂技术员占的比例=200÷1000=20%,二厂的人数=700+100+150+250=1200人,二厂技术员占的比例=100÷1200≈8.3%,从折线图中得出一厂五月份的产值比四月份增长数=3500﹣2000=1500万元,二厂五月份的产值比四月份增长数=2500﹣1500=1000万元;故答案为:20%,8.3%,1500,1000.(2)五月份一厂国外销售产值为3500×50%=1750万元,二厂在国内销往外地的产值为2500×20%=500万元.故答案为:1750,500.【点评】本题考查的是条形统计图,折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】(1)已知看台有四个台阶组成,由图可看出DH由三个台阶组成,看台的总高度已知,则DH的长不难求得;(2)过B作BM⊥AH于M,则四边形BCHM是矩形,从而得到BC=MH,再利用三角函数可求得AD,AB的长.那么所用不锈钢材料的总长度l就不难得到了.【解答】解:(1)DH=1.6×=1.2(米);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH=BC=1∴AM=AH﹣MH=1+1.2﹣1=1.2.在Rt△AMB中,∠A=66.5°.∴AB=(米).∴l=AD+AB+BC≈1+3.0+1=5.0(米).答:点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【点评】此题主要考查学生对坡度坡角的理解及解直角三角形的综合运用能力.21.某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?【考点】一次函数的应用.【专题】压轴题;方案型;图表型.【分析】(1)用待定系数法求解析式;(2)设这次批发A种文具a件,根据题意求出取值范围,结合实际情况取特殊解后求解;(3)运用函数性质求解.【解答】解:(1)由图象知:当x=10时,y=10;当x=15时,y=5.设y=kx+b,根据题意得:,解得,∴y=﹣x+20.(2)当y=4时,得x=16,即A零售价为16元.设这次批发A种文具a件,则B文具是(100﹣a)件,由题意,得,解得48≤a≤50,∵文具的数量为整数,∴有三种进货方案,分别是①进A种48件,B种52件;②进A种49件,B种51件;③进A种50件,B种50件.(3)w=(x﹣12)(﹣x+20)+(x﹣10)(﹣x+22),整理,得w=﹣2x2+64x﹣460=﹣2(x﹣16)2+52.当x=﹣=16,w有最大值,即每天销售的利润最大.答:A文具零售价为16元,B文具零售价为14元时利润最大.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.22.如图,平面直角坐标系中,直线y=x+3与坐标轴分别交于A、B两点.动点P从A点出发沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为,1,2(长度单位/秒),点E同时从O点出发沿OB以(长度单位/秒)的速度运动,直线EF∥x轴交BA于点F,设运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,点P和点E同时停止运动.请解答下列问题(1)求A、B两点的坐标;(2)作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F是菱形,则t的值是多少?(3)当t=2时,是否存在点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)分别令x、y为0,求出点A、B的坐标;(2)此题需要分三种情况分析:点P在线段OA上,在线段OB上,在线段AB上;根据菱形的判定可知:在线段EF的垂直平分线上与x轴的交点,可求得一个;当点P在线段OB上时,形成的是三角形,不存在菱形;当点P在线段BA上时,根据对角线互相平分且互相垂直的四边形是菱形也可求解;(3)当t=2时,可求得点P的坐标,即可确定△BEP,根据相似三角形的判定定理即可求得点Q的坐标,解题时要注意答案的不唯一性.【解答】解:(1)当y=0时,x+3=0,解得:x=3,即A(3,0),当x=0时,y=3,即B(0,3);(2)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1),∵OE=FG,EP=FP,∠EOP=∠FGP=90°∴△EOP≌△FGP,∴OP=PG﹒又∵OE=FG=t,∠A=30°,∴AG==t,而AP=t,∴OP=3﹣t,PG=AP﹣AG=t﹣t=t,由3﹣t=t,解得:t=;②当点P在线段OB上时,形成的是三角形,不存在菱形;③当点P在线段BA上时,过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2),∵OE=t,∴BE=3﹣t,∴EF==3﹣t,∴MP=EH=EF=﹣t,又∵BP=2(t﹣6),在Rt△BMP中,BP•sin60°=MP即2(t﹣6)•=﹣t,解得:t=;(3)存在;理由如下:∵t=2,∴OE=,AP=2,OP=,将△BEP绕点E顺时针方向旋转90°,得到△B'EC(如图3),∵OB⊥EF,∴点B'在直线EF上,∵C点横坐标绝对值等于EO长度,C点纵坐标绝对值等于EO﹣PO长度,∴C点坐标为(﹣,﹣),过F作FQ∥B'C,交EC于点Q,则△FEQ∽△B'EC,由===,可得Q的坐标为(﹣,﹣);根据对称性可得,Q关于直线EF的对称点Q'(﹣,)也符合条件.【点评】本题考查了一次函数综合题,还考查了菱形的判定与性质以及相似三角形的判定与性质,解题的关键要注意数形结合思想的应用,还要注意答案的不唯一性,不要漏解.23.已知,函数y=ax2+x﹣1(a≠0)的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图1,平行于x轴的直线交抛物线于E、F两点,若以线段EF为直径的圆M经过点B,求线段MA的长;(3)如图2,设二次函数y=ax2+x﹣1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(4)在(3)中,若圆与x轴另一交点点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2﹣x﹣1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.【考点】二次函数综合题.【分析】(1)a≠0,此函数是二次函数,可由根的判别式求出a的值,以此确定其解析式;(2)由抛物线对称轴为x=2,设满足条件的圆的半径为R,点E在对称轴左侧,则E的坐标为(2﹣R,﹣R),而E点在抛物线y=﹣x2+x﹣1上,代入解析式中求出R即可解决问题;(3)设圆与x轴的另一个交点为C,连接PC,由圆周角定理知PC⊥BC;由于PB是圆的直径,且AB切圆于B,得PB⊥AB,由此可证得△PBC∽△BAO,根据两个相似三角形的对应直角边成比例,即可得到PC、BC的比例关系,可根据这个比例关系来设P点的坐标,联立抛物线的解析式即可求出P点的坐标;(4)连接CM,设CM与PB的交点为Q,由于C、M关于直线PB对称,那么PB垂直平分CM,即CQ=QM;过M作MD⊥x轴于D,取CD的中点E,连接QE,则QE是Rt△CMD的中位线;在Rt△PCB中,CQ⊥OB,QE⊥BC,易证得∠BQE、∠QCE都和∠CPQ相等,因此它们的正切值都等于(在(2)题已经求得);由此可得到CE=2QE=4BE,(2)中已经求出了CB的长,根据CE、BE的比例关系,即可求出BE、CE、QE的长,由此可得到Q点坐标,也就得到M点的坐标,然后将点M代入抛物线的解析式中进行判断即可.【解答】解:(1)当a≠0时,△=1+4a=0,a=﹣,此时,图象与x轴只有一个公共点.∴函数的解析式为:y=﹣x2+x﹣1;(2)由(1)知,抛物线的解析式为y=﹣x2+x﹣1.则y=﹣x2+x﹣1=﹣(x﹣2)2.点A的坐标是(0,﹣1).∵以线段EF为直径的圆M经过点B,EF∥x轴,。