杨氏模量
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量(Young's Modulus)杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式(T (正应力)=E£(正应变)成立,式中。
为正应力,£为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(Thomas You ng17791829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2X 1011N-m-2,铜的是X 1011N -m。
弹性模量(Elastic Modulus ) E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension ( 杨氏模量)、剪切弹性模量shear modulus of elasticity ( 刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G切变弹性模量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比v并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
其定义为:G=T / 丫,其中G(Mpa)为切变弹性模量;T为剪切应力(Mpa);Y为剪切应变(弧度)体积模量K(Bulk Modulus)体积模量可描述均质各向同性固体的弹性,可表示为单位面积的力,表示不可压缩性。
杨氏模量

杨氏模量杨氏模量(Young's modulus)是描述固体材料抵抗形变能力的物理量。
一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL。
F/S叫应力,其物理意义是金属数单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。
应力与应变的比叫弹性模量:即。
ΔL是微小变化量。
目录意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小说明:又称杨氏模量。
弹性材料的一种最重要、最具特征的力学性质。
是物体弹性变形难易程度的表征。
用E表示。
定义为理想材料有小形变时应力与相应的应变之比。
E以单位面积上承受的力表示,单位为N/m^2。
模量的性质依赖于形变的性质。
剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
模量的倒数称为柔量,用J表示。
拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:EA0式中A0为零件的横截面积。
由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
杨氏模量定义

杨氏模量定义杨氏模量定义引言杨氏模量是材料力学中的一个重要参数,它描述了材料在受到拉伸或压缩时的变形特性。
在工程和科学领域中,了解杨氏模量的概念和计算方法对于设计和制造高质量的产品至关重要。
一、什么是杨氏模量?杨氏模量是指在单位面积内施加一个正比于长度变化的应力时,单位长度内产生的应变。
它通常用符号E表示,单位为帕斯卡(Pa)或兆帕(MPa),其中1 MPa等于10^6 Pa。
二、如何计算杨氏模量?计算杨氏模量需要测定两个参数:应力和应变。
应力是指单位面积内受到的力,通常用符号σ表示,单位为N/m²或Pa。
应变是指物体在受到外部力作用下发生的形变程度,通常用符号ε表示。
当给定一个物体受到拉伸或压缩时的应力-应变曲线时,可以通过以下公式计算其杨氏模量:E = σ/ε其中E为杨氏模量,σ为物体所受到的拉伸或压缩应力值,ε为相对于初始长度而言所发生的形变值。
三、杨氏模量的意义杨氏模量是材料力学中的一个重要参数,它可以用来描述材料在受到拉伸或压缩时的变形特性。
通过计算杨氏模量,可以了解材料抵抗拉伸或压缩的能力以及其弹性特性。
对于工程师和科学家来说,了解杨氏模量对于设计和制造高质量的产品至关重要。
例如,在设计桥梁、建筑物或飞机等大型结构时,需要考虑到受力情况以及所使用的材料的强度和刚度。
通过计算杨氏模量,可以确定所使用的材料是否足够强硬并且具有足够的弹性来承受预期的应力。
四、不同类型材料的杨氏模量不同类型的材料具有不同的杨氏模量。
以下是一些常见类型材料及其典型值:1. 金属:金属通常具有高强度和高刚度,因此其杨氏模量也相对较高。
例如,钢铁通常具有200-210 GPa(吉帕帕斯卡)左右的值。
2. 塑料:塑料通常比金属柔软,因此其杨氏模量也相对较低。
例如,聚乙烯通常具有1.5-2 GPa左右的值。
3. 陶瓷:陶瓷通常比金属更脆弱,因此其杨氏模量也相对较高。
例如,氧化铝通常具有380-400 GPa左右的值。
杨氏模量的物理含义及测量方法

目录一杨氏模量的物理含义及测量方法 .............. 错误!未定义书签。
1.1杨氏模量的物理含义....................... 错误!未定义书签。
1.2杨氏模量的测量方法........................ 错误!未定义书签。
二杨氏模量的测定(拉伸法) .................. 错误!未定义书签。
2.1实验目的.................................. 错误!未定义书签。
2.2实验仪器.................................. 错误!未定义书签。
2.3.实验原理.................................. 错误!未定义书签。
............................................ 错误!未定义书签。
............................................ 错误!未定义书签。
2.4实验仪器介绍.............................. 错误!未定义书签。
............................................ 错误!未定义书签。
............................................ 错误!未定义书签。
............................................ 错误!未定义书签。
............................................ 错误!未定义书签。
2.5实验内容.................................. 错误!未定义书签。
2.6实验步骤................................. 错误!未定义书签。
............................................ 错误!未定义书签。
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度、柔度、刚性、柔性、泊松比、剪切应变、体积应变“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。
弹性模量和杨氏模量很相似,弹性模量有拉伸和剪切的两个方向,杨氏主要指的是拉伸的。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
弹性模量(Elastic Modulus):弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
杨氏模量概念

杨氏模量概念杨氏模量(Young's modulus),也称为弹性模量或纵向模量,是用来描述材料在拉伸或压缩过程中产生的弹性变形的物理量。
杨氏模量是在弹性范围内应力-应变关系的斜率,表示单位面积内受力物体相对于单位长度的变形。
杨氏模量由英国科学家托马斯·杨于1807年提出。
他的研究表明,当一个材料受到拉伸或压缩时,其长度会发生变化,而材料的形状和体积可能会发生变化。
杨氏模量描述了材料在单位面积内受力时的形变程度,即纵向变形相对于纵向应力的比例关系。
为了计算杨氏模量,需要使用弹性应力-应变关系。
弹性应力是材料受到外力拉伸或压缩时产生的内部应力,而弹性应变是物体的长度变化相对于原始长度的比例。
若在材料的弹性范围内变形,弹性应变与应力之间存在线性关系,可以用Hooke's Law来描述:应力 = 弹性模量 ×弹性应变。
杨氏模量通常用大写字母E表示,单位为帕斯卡(Pa)。
对于各种材料,弹性模量的数值不同,可以用来评估材料的强度和刚度。
一般来说,杨氏模量越大,材料越硬,越能够抵抗拉伸和压缩力。
杨氏模量在工程学中有重要的应用。
例如,在建筑设计中,需要了解结构材料的刚度和强度,以保证建筑的稳定性和安全性。
在机械设计中,对材料的杨氏模量进行合理选择可以保证零件的可靠性和性能。
不同材料的杨氏模量差别很大。
例如,金属材料通常有高的弹性模量,而塑料和橡胶等弹性材料的弹性模量则较低。
钢的弹性模量约为210 GPa,铝的弹性模量约为69 GPa,橡胶的弹性模量约为0.01 GPa。
这些数值的差异使得这些材料在不同的应用领域中具有各自的优势。
虽然杨氏模量是描述材料弹性性质的重要参数,但它只能适用于弹性范围内。
当应力超过材料的弹性极限时,杨氏模量就不再有效了,材料可能发生塑性变形或折断。
因此,在工程设计中,还需要考虑材料的屈服强度、断裂强度等其他力学性质,以确保材料的可靠性。
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

羇截面模量:
莄截面模量是构件截面的一个力学特性。是表示构件截面抵抗某种变形能力的指标,如抗弯截面模 量、抗扭截面模量等。它只与截面的形状及中和轴的位置有关,而与材料本身的性质无关。在有 些书上,截面模量又称为截面系数或截面抵抗矩等。
莀
蒈强度 :
莈强度是指某种材料抵抗破坏的能力,即材料抵抗变形 (弹性 塑性 )和断列的能力 (应力 )。一般只是 针对材料而言的。它的大小与材料本身的性质及受力形式有关。可分为:屈服强度、抗拉强度、 抗压强度、抗弯强度、抗剪强度等。
模量等。
蚁
蝿剪切模量 G(Shear Modulus):
莅
膃剪切模量是指剪切应力与剪切应变之比。剪切模数 G=剪切弹性模量 G=切变弹性模量 G 切变弹 性模量 G,材料的基本物理特性参数之一,与杨氏 (压缩、拉伸 )弹性模量 E、泊桑比 ν 并列为材料 的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
袂如某种材料的抗拉强度、抗剪强度是指这种材料在单位面积上能承受的最大拉力、剪力,与材料 的形状无关。
莃
薇例如拉伸强度和拉伸模量的比较:他们的单位都是 MPa 或 GPa。拉伸强度是指材料在拉伸过程
中最大可以承受的应力,而拉伸模量是指材料在拉伸时的弹性。对于钢材,例如
45 号钢,拉伸模
量在 100MPa 的量级,一般有 200-500MPa,而拉伸模量在 100GPa量级,一般是 180- 210Gpa。
蒅
薄
膂刚度 :
薇刚度 (即硬度 )指某种构件或结构抵抗变形的能力,是衡量材料产生弹性变形难易程度的指标,主 要指引起单位变形时所需要的应力。一般是针对构件或结构而言的。它的大小不仅与材料本身的 性质有关,而且与构件或结构的截面和形状有关。
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011N·m-2。
弹性模量(Elastic Modulus)E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨氏模量的测量
【实验目的】
1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】
杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图3
3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以
消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】
1、胡克定律和杨氏弹性模量
固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S )。
应变:是指在外力作用下的相对形变(相对伸长∆L/L )它反映了物体形变的大小。
用公式表达为:24F L FL Y S L d L π=⋅=∆∆ (1)
2、光杠杆镜尺法测量微小长度的变化
在(1)式中,在外力的F 的拉伸下,钢丝的伸长量∆L 是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
标尺通过平面镜反射后,在望远镜中呈像。
则望远镜可以通过平面镜观察到标尺的像。
望远镜中十字线处在标尺上刻度为0x 。
当钢丝下降∆L 时,平面镜将转动θ角。
则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为i x 处。
由于平面镜转动θ角,进入望远镜的光线旋转2θ角。
从图中看出望远镜中标尺刻度的变化0n n n i -=∆。
因为θ角很小,由上图几何关系得:
b L ∆=≈θθtan R
n ∆=≈θθ2tan 2
则:n R
b L ∆=
∆2 (2) 由(1)(2)得:
n b d FLR Y ∆=28π
【实验内容及步骤】
1、调杨氏模量测定仪底角螺钉,使工作台水平,要使夹头处于无障碍状态。
2、放上光杠杆,T 形架的两前足置于平台上的沟槽内,后足置于方框夹头的平
面上。
微调工作台使T 形架的三足尖处于同一水平面上,并使反射镜面铅直。
3、望远镜标尺架距离光杠杆反射平面镜1.2~1.5m 。
调节望远镜光轴与反射镜
中心等高。
调节对象为望远镜筒。
4、初步找标尺的像:从望远镜筒外侧观察反射平面镜,看镜中是否有标尺的像。
如果没有,则左右移动支架,同时观察平面镜,直到从中找到标尺的像。
5、调节望远镜找标尺的像:先调节望远镜目镜,得到清晰的十字叉丝;再调节
调焦手轮,使标尺成像在十字叉丝平面上。
6、调节平面镜垂直于望远镜主光轴。
7、记录望远镜中标尺的初始读数0n (不一定要零),再在钢丝下端挂0.320kg
砝码,记录望远镜中标尺读数1n ,以后依次加0.320kg ,并分别记录望远镜中标尺读数,直到7块砝码加完为止,这是增量过程中的读数。
然后再每次减少0.320kg 砝码,并记下减重时望远镜中标尺的读数。
数据记录表格见后面数据记录部分。
8、取下所有砝码,用卷尺测量平面镜与标尺之间的距离R ,钢丝长度L ,测量
光杠杆常数b (把光杠杆在纸上按一下,留下三点的痕迹,连成一个等腰三角形。
作其底边上的高,即可测出b )。
9、用螺旋测微器测量钢丝直径6次。
可以在钢丝的不同部位和不同的经向测
量。
因为钢丝直径不均匀,截面积也不是理想的圆。
【实验注意事项】
1、加减砝码时一定要轻拿轻放,切勿压断钢丝。
2、使用千分尺时只能用棘轮旋转。
3、用钢卷尺测量标尺到平面镜的垂直距离时,尺面要放平。
4、杨氏模量仪的主支架已固定,不要调节主支架。
5、测量钢丝长度时,要加上一个修正值修L ∆,修L ∆是夹头内不能直接测量的
一段钢丝长度。
【实验数据处理】
标尺最小分度:1mm 千分尺最小分度:0.01mm 钢卷尺最小分度:1mm 钢直尺最小分度:1mm
表一 外力mg 与标尺读数i n
n
n ∆的A 类不确定度:0.049()A n U S cm ∆==
n ∆的B 类不确定度:cm U n B 02.03=∆=
仪 合成不确定度:cm U U U B A n 09.022=+=∆
所以: 4.450.09n n n U cm ∆∆=∆±=±
d 的A 类不确定度:43.410()A d U S mm -==⨯
d 的B 类不确定度:0.003()
B U mm ∆== 合成不确定度:0.003()d U mm =
所以:0.1950.003()d mm =±
另外L=(45.42+4.23)cm 、R=131.20cm 、b=7.40cm 为单次测量,不考虑A 类不确定度,它们的不确定度为:
0.0170.02()L U cm =≈
0.0170.02()R U cm =≈
0.0170.02()b U cm =≈
计算杨氏模量 22832FLR mgLR
Y d nb d nb ππ==∆∆ 3222320.3209.790.4865 1.3213.142(0.195310) 4.45107.4010
---⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯ 111.6910()Pa =⨯
不确定度:Y U Y =
11
1.6910=⨯1121.6910 3.3710-=⨯⨯⨯
9115.7100.0610()Pa -=⨯≈⨯
实验结果:11(1.690.06)10Y Pa =±⨯
【实验教学指导】
1、望远镜中观察不到竖尺的像
应先从望远筒外侧,沿轴线方向望去,能看到平面镜中竖尺的像。
若看不到时,可调节望远镜的位置或方向,或平面反射镜的角度,直到找到竖尺的像为止,然后,再从望远镜中找到竖尺的像。
2、叉丝成像不清楚。
这是望远镜目镜调焦不合适的缘故,可慢慢调节望远镜目镜,使叉丝像变清晰。
3、实验中,加减法时,测提对应的数值重复性不好或规律性不好。
(1) 金属丝夹头未夹紧,金属丝滑动。
(2)杨氏模量仪支柱不垂直,使金属丝端的方框形夹头与平台孔壁接触摩擦
太大。
(3)加冯法码时,动作不够平稳,导致光杠杆足尖发生移动。
(4)可能是金属丝直径太细,加砝码时已超出弹性范围。
【实验随即提问】
⑴ 根据Y 的不确定度公式,分析哪个量的测量对测量结果影响最大。
答:根据22222)()()(4)()(b u n
u d u R u L u Y u b n d R L +∆+++=∆由实际测量出的量计算可知n d ∆和对Y的测量结果影响最大,因此测此二量尤应精细。
⑵ 可否用作图法求钢丝的杨氏模量,如何作图。
答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。
由公式
Y=8FLR πd 2b △n 可得: F= πd 2b 8LR Y △n =KY △n 。
式中K=πd 2b 8LR
可视为常数。
以荷重F 为纵坐标,与之相应的n i 为横坐标作图。
由上式可见该图为一直
线。
从图上求出直线的斜率,即可计算出杨氏模量。
⑶ 怎样提高光杠杆的灵敏度?灵敏度是否越高越好?
答:由Δn= 2R b ΔL 可知, 2R b
为光杠杆的放大倍率。
适当改变R 和b ,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;因为ΔL=b 2R
Δn 成立的条件是平面镜的转角θ很小(θ≤2.5°),否则tg2θ≠2θ。
要使θ≤2.5°,必须使b ≥ 4cm ,这样tg2θ≈2θ引起的误差在允许范围内;而b 尽量大可以减小这种误差。
如果通过减小b 来增加放大倍数将引起较大误差
⑷ b
R L n 2=∆∆称为光杠杆的放大倍数,算算你的实验结果的放大倍数。
答:以实验结果计算光杠杆的放大倍数为 22131.2035.5(7.40
R b ⨯==倍)
执笔人:张昆实。