《不等式的基本性质》导学案2

合集下载

8.1《不等式的基本性质(2)》导学案

8.1《不等式的基本性质(2)》导学案

8.1.2不等式的基本性质【学习目标】1.经历探索的过程,掌握不等式的基本性质;2.会运用不等式的基本性质进行简单的不等式变形。

【学习重难点】会运用不等式的基本性质进行简单的不等式变形。

【学习过程】一、课前准备任务一:阅读教材内容,思考并总结本节课学习的主要内容有哪几个,写在下面:任务二:阅读课本86页交流与发现的内容,解决下列问题。

1.什么叫做不等式?2.你能从现实生活中举出几个表示不等关系的不等式吗?二、学习新知任务三:探究不等式基本性质3.甲的年龄为a岁,乙的年龄为b岁,如果甲的年龄比乙大,则用不等式表示a与b的大小关系为;c年后,它们二人谁的年龄大?用不等式表示为;c年前,他们二人谁的年龄大?用不等式表示为。

4.在数轴上,点A与点B分别对应实数a、b,并且点A在点B的右边,请你用不等式表示a、b之间的大小关系为;如果同时将点A、B向右(或向左)沿x轴移动c个单位长度,得到点A′、B′,用不等式表示点A′、B′所对应的数的大小关系为。

5.不等式基本性质1:不等式的两边都加上(或减去)同一个数或整式,不等号的方向。

即如果a>b,那么a±c b±c。

举例说明:。

6.不等式的基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向。

即如果a>b,c>0,那么ac bc。

举例说明:。

7.不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向。

即如果a>b,c<0,那么ac bc。

举例说明:。

任务四:例题学习阅读例题后,独立解答。

三、合作交流问题一:不等式的意义1.表示不等关系的符号(不等号)都有哪几种?2.什么叫做不等式?问题二:不等式的基本性质3.不等式基本性质1:数学语言叙述:;自然语言叙述:;证明:如果a>b,因为(a+c)-(b+c)=a-b 0,所以。

4.不等式基本性质2:数学语言叙述:;自然语言叙述:;证明:如果a>b,c>0,因为ac-bc=c(a-b) 0,所以。

高中数学《不等式的基本性质》导学案

高中数学《不等式的基本性质》导学案

1.1不等式的基本性质导学案1.掌握两个实数比较大小的理论依据;2.理解并掌握不等式的性质;3.会利用不等式的基本性质证明不等式和比较大小;【重点、难点】教学重点:不等式的性质;教学难点:不等式性质的应用.二、学习过程【情景创设】1.在必修5中,我们学习了不等式的基本性质,这些性质是我们解不等式及证明不等式或者求一个变量的范围的理论依据;2.在必修5中学到的两个实数比较大小的原理及不等式的基本性质是怎样的?3.这些性质及原理是如何应用的?应用时应注意什么?【导入新课】1.不等关系是自然界中存在着的基本数学关系。

2. 实数的运算性质与大小顺序的关系: 数轴上右边的点表示的数总 左边的点所表示的数,可知: 0ba b a -⇔> 0ba b a -⇔=0b a b a -⇔<结论:要比较两个实数的大小,只要考察它们的差的符号即可。

3. 不等式的基本性质:10. 对称性:b a >⇔ ;20. 传递性:⇒>>c b b a , ; 30. 同加性:⇒>b a ;推论:加法法则:⇒>>d c b a , ; 40. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ; 推论1:乘法法则:⇒>>>>0,0d c b a ; 推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法: 与 .三 、典例分析【例1】 判断下列各题的对错(1)c a <c b且c >0⇒a >b ( ). (2)a >b 且c >d ⇒ac >bd ( ).(3)a >b >0且c >d >0⇒a d >b c(4)a c 2>b c2⇒a >b ( ). 【例2】 比较下列各组中两个代数式的大小:(1)x 2+3与3x ;(2)已知a ,b 为正数,且a ≠b ,比较a 3+b 3与a 2b +ab 2的大小.分析:我们知道,a -b >0a >b ,a -b <0a <b ,因此,若要比较两式的大小,只需作差并与0作比较即可.【例3】已知0,0,a b c >><求证: c c a b>。

北师大版数学八年级下册《2. 不等式的基本性质》教案2

北师大版数学八年级下册《2. 不等式的基本性质》教案2

北师大版数学八年级下册《2. 不等式的基本性质》教案2一. 教材分析《2. 不等式的基本性质》是北师大版数学八年级下册的教学内容。

这部分内容主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向变化。

这些性质是解不等式问题的关键,也是中考的热点。

二. 学情分析八年级的学生已经学习了不等式的基本概念和简单的解法,对不等式有一定的认识。

但是,对于不等式的性质的理解和运用还不够熟练,需要通过本节课的学习加以巩固。

同时,学生对于数学语言的严谨性还需要进一步的培养。

三. 教学目标1.理解不等式的基本性质,并能熟练运用。

2.培养学生的逻辑思维能力和严谨的数学语言表达能力。

3.培养学生合作学习,积极探究的学习态度。

四. 教学重难点1.教学重点:不等式的基本性质的推导和理解。

2.教学难点:不等式的性质在解不等式时的运用。

五. 教学方法采用问题驱动法,引导学生主动探究不等式的性质,通过小组合作,讨论交流,从而达到理解并熟练掌握不等式的性质。

六. 教学准备1.PPT课件2.教学卡片七. 教学过程1.导入(5分钟)利用PPT课件,展示一组不等式,让学生观察并回答:这些不等式有什么共同的特点?引导学生发现不等式的基本性质。

2.呈现(10分钟)呈现不等式的基本性质,引导学生进行分析,推导,并总结性质。

3.操练(10分钟)学生分组,每组发一套教学卡片,每张卡片上有一个不等式,要求学生用刚才学到的不等式的性质,解出不等式的解集。

4.巩固(10分钟)学生上台展示解题过程,其他学生和老师对其进行评价,指出解题过程中的优点和不足。

5.拓展(10分钟)利用不等式的性质,解决实际问题,如:一道关于分配律的数学题。

6.小结(5分钟)学生总结本节课所学的不等式的性质,以及如何运用这些性质解不等式。

7.家庭作业(5分钟)布置一道不等式的综合练习题,要求学生在课后完成。

不等式的性质(1)(2)

不等式的性质(1)(2)

2.1不等式的基本性质1(导学案)组卷人:苏卫国审卷人:刘金涛姓名:学号:一、学习目标:1、学会用两个实数差的符号来规定两个实数大小2、掌握不等式的基本性质,并能加以证明;二、复习旧知:1、a>b是a-b>0的条件;a=b是 a-b=0的条件;a<b是a-b<0的条件。

以上是证明不等式性质的基础。

2、在初中我们学习了以下等式的性质:a=b,b=c⇒a=c;a=b,c=d⇒a+c=b+d;a=b⇒ac=bc。

三、新课导学:1.通过类比等式的性质,得到关于以下不等式的三个结论;请你判断它们是否正确,正确的加以证明;错误的举反例。

结论1 如果a>b,b>c,那么a>c。

结论2 如果a>b,c>d,那么a+c>b+d。

结论3 如果a>b,那么ac>bc。

同学们;结论3是否正确如果不正确,你能改变条件,让它成为正确命题吗?试试看:通过以上结论的推敲请同学们根据课本自己归纳不等式的基本性质性质1性质2性质3性质4你能给它们分别起一个名字吗?试试看。

利用以上性质证明下面结论:性质(5)如果a >b >0,c >d >0,那么ac >bd 。

性质(6)如果a >b >0,那么0ba 11<<。

四、课堂探究例1.判断下列命题的真假。

(1)若a >b ,那么ac >2bc 2。

(2)若ac >2bc 2,那么a >b 。

(3)若a >b ,c >d ,那么a-c >b-d 。

(4)若cda b <,那么ad bc <。

例2.提问:判断以下两个命题的真假:如果是真命题,请加以证明;如果是假命题,请举出反例。

(1)如果a >b ,c >d ,那么ac >bd 。

变式:a >b 0>,c >d 0>,那么ac >bd 。

不等式的基本性质 学案

不等式的基本性质 学案

2.2 不等式的基本性质导学案课题 2.2 不等式的基本性质课型新授课学习目标1.通过探索发现并掌握不等式的三条基本性质;2.会熟练运用不等式的基本性质进行不等式的变形.重点难点会熟练运用不等式的基本性质进行不等式的变形感知探究一、自自主学习阅读课本40、41页,回答下列问题:已知x>y,则x-1________y-1 3x________3y -x________-y二、自自学检测1、下列四个不等式:;;;,一定能推出错误!未找到引用源。

的有错误!未找到引用源。

A. 1个B. 2个C. 3个D. 4个2、若错误!未找到引用源。

,则下列各式中一定成立的是错误!未找到引用源。

A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

3、若错误!未找到引用源。

,则下列结论:错误!未找到引用源。

;错误!未找到引用源。

;错误!未找到引用源。

;错误!未找到引用源。

;错误!未找到引用源。

其中一定成立的个数是错误!未找到引用源。

A. 1B. 2C. 3D. 4三、合合作探究探究一:如果在不等式的两边都加或都减同一个整式,那么结果会怎样?请举几例试一试,并与同伴交流.完成下列填空:2 < 3;2 × 5 __________3 × 5;2 × __________3 ×;2 × (- 1) _______3 × (- 1);2 × (- 5) _______3 × (- 5);2 × ( -) _______3 ×( -)你发现了什么?请再举几例试一试,还有类似的结论吗?与同伴交流.不等式的基本性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向______.不等式的基本性质3 不等式的两边都乘(或除以)同一个负数,不等号的方向______.探究二:你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?将下列不等式化成“x > a”或“x < a”的形式:(1)x - 5 > - 1;(2)-2 x > 3.四、当堂检测1、已知a,b,c均为实数,错误!未找到引用源。

不等式的基本性质

不等式的基本性质

不等式的基本性质导学案☆学习目标: 1. 理解并掌握不等式的性质,能灵活运用实数的性质;2 .掌握比较两个实数大小的一般步骤一、课前准备(请在上课之前自主完成)1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总 左边的点所表示的数,可知:0b a b a -⇔> 0b a b a -⇔= 0b a b a -⇔<结论:要比较两个实数的大小,只要考察它们的 的符号即可。

2. 不等式的基本性质:10. 对称性:b a >⇔ ;20. 传递性:⇒>>c b b a , ;30. 同加性:⇒>b a ; 推论:同加性:⇒>>d c b a , ; 30. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ;推论1:同乘性:⇒>>>>0,0d c b a ; 推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法:比差法与比商法(两正数)b a b a ⇔> 1 b a b a ⇔= 1 ba b a ⇔< 1 二、新课导学☆案例学习: 例1 若3042,1624,x y <<<<则:(1)x y +的取值范围是是__________;(2)23x y -的取值范围是_____________;(3)x y 的取值范围是______________________. 例2 (1)若[]1,3x ∈--,则1x ∈___________; (2)若[]1,3x ∈,则1x ∈____________; (3)若(],1x ∈-∞,则1x ∈____________; (4)若[)2,x ∈+∞,则1x ∈____________; (5)若()0,3x ∈,则1x ∈____________; (6)若()2,3x ∈-,则1x∈___________________. 例3(1).若0<<b a ,则下列不等关系中不成立的是( )A .b a 11> B .ab a 11>- C .b a > D .22b a > (2)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中一定成立的是( ) A. ab ac > B. c b a ()-<0 C. cb ab 22< D. ac a c ()->0(3) 对任意实数,,a b c ,在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件(4) 若b a c b a >∈,R 、、,则下列不等式成立的是( )(A )ba 11<. (B )22b a >. (C )1122+>+c b c a .(D )||||c b c a > (5) 若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a例4 ()1若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;()2设0a >,0b >,且a b ≠,试比较a b a b 与b a a b 的大小.例5 若2()f x ax c =-满足4-≤(1)f ≤1-,1-≤(2)f ≤5,求(3)f 的取值范围.三、当堂检测1.判断下列各题是否正确?正确的打“√”,错误的打“×”(1) 不等式两边同时乘以一个整数,不等号方向不变。

不等式的基本性质

不等式的基本性质

a <0 b
D.-a>-b
6.已知有理数 a、b、c 在数轴上的位置如 图所示,则下列式子正确的是 ( )
c
b
0
a
A.cb>ab B.ac>ab C.cb<ab D.c+b>a+b 7.2a 与 3a 的大小关系 ( ) A.2a<3a B.2a>3a C.2a=3a D.不能确定 8.a 为有理数,下列给出的结论正确的是( ) 2 2 2 2 A.a >0 B.若 a<0,则 a >0 C.若 a<1,则 a <1 D.若 a>0,则 a >a
3.满足-2x>-12 的非负整数有________________________. 4.如果 m<n<0,那么下列结论中错误( ) A.m-9<n-9 B.-m>-n C.
5 7 × ; 4 3

1 1 > n m

D.
m >1 n
你从中发 现的数学 规律是什 么?请试 举几例验 证一下.
5.若 a-b<0,则下列各式中一定正确( A.a>b B.ab>0 C.
(3)若 a<b,则-1+5a________-1+5b,(4)若 a≥b,则 − 若 < 则
拓展: 拓展 ⑴2>1>0, 4>3>0, 2×4_3×1; ⑵8>
练一练: 练一练 1.若 m<n,比较下列各式的大小: (1)m-3__________n-3;(2)-5m__________-5n; (3) −
学 习 过 程 自主学习: 自主学习: 1.设 a<b,请用“>”或“<”填空. (1)a+5______b+5, (2)a-3______b-3, (3)4a_______4b, (4)-5a_______-5b. 2.将下列不等式化为 x>a 或 x<a 的形式: (1)x+2>3, (2)5y-4≤2. 知识结构:先用文字表示,再用符号表示。并思考注意事项。 知识结构:先用文字表示,再用符号表示。并思考注意事项。 基本性质 1: 基本性质 2: 基本性质 3: 用一用: 用一用: 例 1. 课堂探究部分(先独立完成,再小组讨论完善答案) 课堂探究部分(先独立完成,再小组讨论完善答案) (1)若 a<b,则 a-3_________b-3,(2)若 a>b,则 2a__________a+b, 若 < 则 若 > 则

浙教版数学八年级上册3.2《不等式的基本性质》教案

浙教版数学八年级上册3.2《不等式的基本性质》教案

浙教版数学八年级上册3.2《不等式的基本性质》教案一. 教材分析浙教版数学八年级上册3.2《不等式的基本性质》一节,主要让学生掌握不等式的性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

这些性质是解不等式问题的关键,为后续学习不等式的解法、不等式的应用等奠定基础。

二. 学情分析学生在七年级已经学习了不等式的概念,掌握了不等式的基本运算,但对于不等式的性质理解不够深入。

通过本节课的学习,学生应能理解并掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。

三. 教学目标1.知识与技能:掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。

2.过程与方法:通过观察、操作、交流、归纳等活动,培养学生的逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:不等式的基本性质。

2.难点:不等式性质的运用。

五. 教学方法采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究、合作交流,培养学生的动手操作能力和解决问题的能力。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:练习本、笔。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的不等式图片,如身高、体重等,引导学生回顾不等式的概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师出示不等式,如2x > 3,引导学生观察、思考:不等式的两边同时加上或减去同一个数或整式,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个正数,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个负数,不等号的方向是否会改变?3.操练(10分钟)学生分组讨论,每组选择一个不等式,如3x - 2 > 7,运用不等式的性质进行化简,并解释理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的基本性质 学习
目标
1.理解不等式的三个基本性质;
2.会运用不等式的基本性质对不等式进行变形. 学习重
难点 重点:理解不等式的三个基本性质以及进行简单的运用(对不等式进行变形)
难点:如何在具体问题中正确运用不等式的性质
学 习 过 程 学教
记录
【自主预学】:
1、等式基本性质:
(1)若b a =,c b =,则a ,c 之间的关系是 .
(2)若b a =,c a + c b +;c a - c b -.
2、不等式的基本性质:
(1)已知a <b 和b <c ,在数轴上如图:则a c ,
由此你可以得到什么结论: .
(2)已知a >b ,你能比较c a +与c b +的大小吗?c a -与c b -呢?
由此你可以得到什么结论: .
(3)∵-2<3,则-2×5 3×5; ∵-2<3,则-2×(-5) 3×(-5) ∵-2>-4,则-2×5 -4×5; ∵-2>-4,则-2×(-5) -4×(-5); 由此你可以得到什么结论: .
符号表示:
3、填空:
(1)若5+x >0,两边同加上5-,得 (依据 ___ ).
(2)若x 3>9-,两边同除以3,得 (依据 ).
(3)若x 61-≤2
1-
,两边同乘以6-,得 (依据 ).
【课堂导学】:
归纳不等式性质。

相关文档
最新文档