8 关联分析与解耦控制讲解
解耦控制课件

WT1(s)
T 1
D11 D21
1 W11
2
Y1
Y2
r2
WT2(s)
T 2
W21
W12 W22
D12 D22
设计D(s) ,使W(s) D(s)相乘后成为对角阵,这样 就解除了系统间的耦合,使两个控制回路不再 关联。
1.对角矩阵法
推导过程略
r1
WT1(s)
T 1
T 2
W11(s) W22(s)
2.三角矩阵法 推导过程略 解耦器数学模型为
D11 s D s 21 D12 s D22 s
r1
WT1(s) WT2(s)
T 1
W21
Y1
r2
T 2
Y2
W22 s W12 s W21 s 1 W11 s W22 s W12 s W21 s W21 s W11 s W21 s
W12 s W11 s
二、反馈解耦控制
R T
Fd
W Y F
WT
根据串联解耦控制求Fd,再求F
三、前补偿法
前补偿法是在控制器之前(控制对象后)进行补偿的。
r1
WT1(s)
T 1
W11(s) W21(s) W12(s)
Y1
K1 K2
Y1 '
r2
WT2(s)
W22(s)
yi 可表示为 qij j
yr
μ1
yi 第一放大系数 pij j
r
μ1
yi 第二放大系数 qij j
yr
相对增益=第一放大系数/第二放大系数
yi pij j μj到yi这个通道的相对增益为 ij yi qij j
解耦控制

Y1 v11 (U 1 v12Y2 v1nYn )
Y2 v 22 (U 2 v 21Y1 v 2 n Yn ) Yn v nn (U n v n1Y1 v n ( n 1)Yn 1 )
9
2 解耦控制系统的分析
(9-15)
25
从上述分析可知,第一放大系数pij是比较容易 确定的,但第二放大系数qij则要求其他回路开环增 益为无穷大的情况才能确定,这不是在任何情况下 都能达到的。事实上,由式(9-12)和式(9-14) 可看出,第二放大系数qij完全取决于各个第一放大 系数pij,这说明有可能由第一放大系数直接求第二 放大系数,从而求得耦合系统的相对增益ij。
根据定义可得相对增益ij p11 K11 K 22 p 21 K12 K 21 11 ; 21 q11 K11 K 22 K12 K 21 q 21 K11 K 21 K11 K 22 p12 K12 K 21 p 22 K11 K 22 12 ; 22 q12 K12 K 21 K11 K 22 q 22 K11 K 22 K12 K 21
26
(2) 直接计算法 现以图9-7所示双变量耦合系统为例说明如何由 第一放大系数直接求第二放大系数。引入P矩阵, 式(9-10)可写成矩阵形式,即
Y1 p11 Y p 2 21
p12 U 1 K11 p 22 U 2 K 21
2
1 解耦控制的基本概念
在一个生产过程中,被控变量和控制变量往往不 止一对,只有设置若干个控制回路,才能对生产过程 中的多个被控变量进行准确、稳定地调节。在这种情 况下,多个控制回路之间就有可能产生某种程度的相 互关联、相互耦合和相互影响。而且这些控制回路之 间的相互耦合还将直接妨碍各被控变量和控制变量之 间的独立控制作用,有时甚至会破坏各系统的正常工 作,使之不能投入运行。
8_关联分析与解耦控制

8_关联分析与解耦控制第八章关联分析与解耦控制ncwu8关联分析与解耦控制控制回路间的关联相对增益矩阵减少和消除耦合的方法解耦控制系统设计电力学28关联分析与解耦控制8.1控制回路间的关联控制回路间的耦合单回路控制系统:只有1个被控量和调节量R1多回路控制系统:对多个被控量准确、稳定调节各回路间的耦合Rn一个调节量影响多个被控变量;一个被控变量受多个调节量的影响。
电力学3U1Gc1Gp1Y1YnGcnGpnUn8关联分析与解耦控制温度变送器塔顶温度1GC1xDy1u12GC2r1Qr塔顶回流量进料精馏塔底温度塔y2u2再沸器r2Qs加热蒸汽量xB图8.1精馏塔温度控制方案(两个回路)电力学48关联分析与解耦控制R1Gc1(s)U1Gp11(s)Gp21(s)Gp12(s)Y1R2Y2Gc2(s)U2Gp22(s)图8.2精馏塔温度控制系统方框图电力学58关联分析与解耦控制8.1控制回路间的关联被控对象的典型耦合结构对于具有相同数目的输入量和输出量的控制对象,典型的耦合结构可分为:P规范耦合V规范耦合电力学68关联分析与解耦控制8.1控制回路间的关联P规范耦合n个入(Uj)U1UjUnn 个出(Yi)Y1YiY=PUYn111YpY1p11U1p12U2p1nUnY2p21U1p22U2p2nUnYYYnpn1U1pn2U2pnnUn电力学pinn1p12p1nU1UipijpnnUn78关联分析与解耦控制U1U2Unp11p12p1nY1p21pn1pnnYnp22pn2p2nY2电力学8图8.3P规范耦合对象方框图8关联分析与解耦控制8.1控制回路间的关联V规范耦合n个入(Uj)U1UiUnn个出(Yi)Y1YiYnY1v11(U1v12Y2v1nYn)Y2v22(U2v21Y1v2nYn)Ynvnn(Unvn1Y1vn,n1Yn1)电力学98关联分析与解耦控制U1U2v11v220Y1Y2YnUn0v12v1nvnnv210v2nv31v32vn1vn20v3n图8-4V规范耦合对象方框图电力学108关联分析与解耦控制8.1控制回路间的关联耦合程度分析方法直接法解析法相对增益法求相对增益矩阵的计算方法电力学118关联分析与解耦控制8.1.3耦合程度分析方法直接法借助耦合系统的方框图,直接解析地导出各变量之间的函数关系,从而确定过程中每个被控量相对每个调节量的关联程度。
现代控制理论论文-系统关联性及解耦控制

多输入-多输出系统关联性及解耦控制摘要:在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对这些设备进行控制。
此时控制系统并非简单的单输入-单输出系统,而是较复杂的多输入-多输出系统,由于控制回路的增加,往往会在它们之间造成相互影响,各输入量与个输出量之间存在一定的相互关系 — 关联性(耦合关系)。
系统中每一个控制回路的输入信号对其他回路的输出都会有影响,而每一个回路的输出又会受到其他输入的作用。
要想一个输入只去控制一个输出几乎不可能,这时往往使系统难于控制、性能很差。
关键词:系统关联性;解耦;控制;0 引 言 本主要考虑解耦的方法来消除这种影响,所谓解耦控制,就是采用某种结构,寻找合适的控制规律来消除系统中各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。
1 系统的关联1.1系统关联及影响所谓系统关联就是系统之间彼此相互影响。
日常生活中就有不少关联的例子。
例如,在同一条水管上安装若干自来水龙头,当别人开大或开小所用的水龙头时,你所用的水龙头的水流量也会随之发生变化。
这就是系统关联。
实际实际生产过程控制中经常会碰到系统间相互关联的问题,要进行认真的分析和慎重的处理。
如果其关联性比较密切,相互影响比较大而又处理不当,这不仅会影响控制质量,可能还会是系统无法运行,甚至会导致安全事故,应此必须给予足够的的重视。
1.2分析系统关联的方法对于如何判别系统间的关联,下面介绍一种利用相对增益来判断系统间关联的方法。
如果生产设备上同时存在n 个控制系统,那么就有n 个被控变量和n 个控制变量,习惯上成为n ×n 个多变量系统。
用y 表示被控变量,用u 表示控制变量。
控制变量u 的改变对被控变量y 的影响,可以用通道的增益(及静态放大倍数)来描述。
第j个控制变量的改变对第i个被控变量的影响(即该通道的增益),用来表示。
(工业过程控制)10.解耦控制

在系统运行过程中,通过动态调整控制参数或策略,实现耦合的 实时解耦。
解耦控制的方法与策略
状态反馈解耦
通过引入状态反馈控制 器,对系统状态进行实 时监测和调整,实现解
耦。
输入/输出解耦
通过合理设计输入和输 出信号,降低变量之间
的耦合程度。
参数优化解耦
通过对系统参数进行优 化调整,改善耦合状况, 实现更好的解耦效果。
通过线性化模型,利用线性控制理论设计控制器,实现系统 解耦。
非线性解耦控制
针对非线性系统,采用非线性控制方法,如滑模控制、反步 法等,实现系统解耦。
状态反馈与动态补偿解耦控制
状态反馈解耦控制
通过状态反馈技术,将系统状态反馈 到控制器中,实现系统解耦。
动态补偿解耦控制
通过动态补偿器对系统进行补偿,消 除耦合项,实现系统解耦。
特点
解耦控制能够简化系统分析和设计过 程,提高系统的可维护性和可扩展性 ,同时降低系统各部分之间的相互影 响,增强系统的鲁棒性。
解耦控制的重要性
01
02
03
提高系统性能
通过解耦控制,可以减小 系统各部分之间的相互干 扰,提高系统的整体性能。
简化系统设计
解耦控制能够将复杂的系 统分解为若干个独立的子 系统,简化系统的分析和 设计过程。
调试和维护困难
耦合问题增加了系统调试和维护的难度,提高了运营成本。
解耦控制在工业过程控制中的实施
建立数学模型
01
对工业过程进行数学建模,明确各变量之间的耦合关系。
选择合适的解耦策略
02
根据耦合程度和系统特性,选择合适的解耦策略,如状态反馈、
输出反馈等。
控制器设计
03
解耦控制系统

G p11 ( s)
0
0 Gp22 (s)
Gp11 (s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s
)
Gp11 (s)Gp21 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s
)
Gp22 (s)Gp12 (s)
G p11
(s)G
p 22
(s)
G p12
9
相对增益系数的计算方法1
u1(s) u2(s)
y1(s) y2(s)
输入输出稳态方程
y1 K11u1 K12u2 y2 K21u1 K22u2
p11
y1 u1
u2
K11
y1 K11u1 K12
y2 K 21u1 K 22
q11
y1 u1
y2
K11
K12 K 21 K 22
11
Y1 (s) Y2 (s)
1 0
0 1
U c1 (s) Uc2 (s)
于是得解耦器的数学模型为
N11(s)
N
21
(
s)
N12 (s) N22 (s)
G p11 ( s) G p 21 ( s)
Gp12 (s) 1 Gp22 (s)
31
3. 解耦控制系统设计
Gp11(s)Gp22 (s)
1 Gp12 (s)Gp21(s)
解耦控制
学习内容
1 耦合过程及其要解决的问题 2 相对增益与相对增益矩阵 3 解耦控制系统的设计
解耦控制的名词解释

解耦控制的名词解释解耦控制是计算机科学中一个重要概念,被广泛应用于软件设计及程序开发中。
解耦控制的含义是将单一的程序模块或对象之间的依赖性降至最低限度,从而提高软件的灵活性、可重用性和可维护性。
本文将从以下几个方面对解耦控制的定义、原则及应用进行简要解释。
一、解耦控制的定义解耦控制是一种软件设计方法,旨在降低程序模块或对象之间的相互依赖性,从而提高可维护性、可扩展性和可重用性。
通过解除模块间的强关联关系,使各模块之间的独立性增加,也便于实现模块的替换和改写。
二、解耦控制的原则1.高内聚、低耦合原则高内聚指的是一个模块或对象内部的操作之间高度相关,而与其他模块或对象的关系较少;低耦合是指各个模块或对象之间的依赖关系较少,相对独立。
这两项原则是解耦控制的核心观念,是实现代码可维护性和可扩展性的必备条件。
2.接口分离原则该原则指在设计类或对象的接口时应尽量避免出现过于复杂的接口。
应该根据调用方的需要,将类或对象的接口分成多个小的接口,以便实现多个功能之间的解耦。
3.依赖倒置原则该原则指依赖于抽象,而不是具体的实现。
在软件设计中,应该从抽象层面出发,尽量避免直接依赖于具体的实现。
三、解耦控制的应用在软件设计中,采用解耦控制的方法可以实现更好的模块化设计,促进模块化的开发和重用。
1.模块化设计通过在系统架构上采用模块化的设计思路,可以将系统中的功能模块分解为相对独立的模块。
这样可以使模块之间的耦合度降低,便于模块的调整、维护和替换。
2.代码复用通过将一些独立的功能实现为软件库或者模块,可以提高代码复用率,节省重复的开发时间。
同时,采用解耦控制的方法,也可以使复用的代码与原有的代码相对独立,从而更好地实现复用代码的维护和升级。
总之,解耦控制是一种非常重要的软件设计原则,具有实际的应用意义。
采用解耦控制的方法可以使软件更加健壮、易于维护,同时也有助于提高代码的重用率和程序的可扩展性。
解耦控制

2
Y 56 R 1 R 0.8485R 0.0303R
2 66 1 33 2
1
2
Y1主要取决于R2,R1对Y1的影响可以忽略; Y2主要取决于R1,R2对Y2的影响可以忽略.
20
例:一个混合配料过程如图所示,两种原料分别以流量 qA,qB
流入并混合,阀门由 u1 和u2 控制,要去控制其总流量和混合后
5
5s 1
U
s 1
2
Y 2
R 1
5
U 1
3
Y 1
5
R 2
4
5
1
U 2
Y 2
U 5R 5Y , U 5R 5Y
1
1
1
2
2
2
Y 3U 4U , Y 5U U
1
1
2
2
1
2
295 5
Y
R R 0.9899R 0.03356R
1 298 1 149 2
接近1,则采用第j个控制输入u j