(公开课)直线与圆的位置关系
直线和圆的位置关系(第1课时)课件

内部
直线完全在圆的内部。
如何判断直线与圆的位置关系
要判断直线和圆的位置关系,可以使用以下几种方法: • 计算直线与圆心的距离,判断是否等于半径 • 求解直线方程与圆方程的交点 • 观察直线与圆的相对位置关系
直线与圆的常见例题
1
例题二
2
求解直线方程与圆方程的交点。
3
例题一
判断直线与圆的位置关系,并说明理 由。
直径
直径是通过圆心并且两个圆上 的点的距离。它是圆的最长宽 度。
圆心
圆的中心点,它在所有圆上的 点的中点。
直线与圆的位置关系
直线与圆可以有不同的位置关系。了解这些关系对于解决与直线和圆有关的问题非常重要。
外部
直线完全在圆的外部,不与圆相交。
切线
直线刚好与圆相切,只有一个切点。
相交
直线与圆相交于两个不同的点。
直线和圆的位置关系(第1 课时)课件
本课程将介绍直线和圆的位置关系,并探讨圆的基本概念。了解直线与圆的 位置关系的方法,以及解决这类问题的常见例题。
圆的基本概念
在数学中,圆是由一组与中心点等距离的点组成的曲线。它具有许多独特的特性,例如半径、直径和圆 心。
半径
半径是从圆心到任何圆上的点 的距离。它是圆的关键尺寸之 一。
例题三
已知圆上两点和圆心的坐标,求直线 方程。
练习题与课堂互动
让我们通过一些练习题和课堂互动,更好地理解直线和圆的位置关系。
总结与下节课预告
通过本课时的学习,我们已经了解了直线和圆的位置关系以及解决问题的方 法。请准备好下节课的内容,我们将进一步探
直线和圆的位置关系课件(公开课)

圆的定义和性质
总结词
圆的定义、性质和表示方法
详细描述
圆是由平面内所有与给定点等距的点组成的图形。圆的性质包括圆心到圆上任一 点的距离相等、圆是中心对称图形、圆是旋转对称图形等。在平面直角坐标系中 ,圆可以用方程来表示,常见的表示方法有标准式和一般式。
直线和圆的方程
总结词
直线和圆的方程及其求解方法
详细描述
数形结合法是先通过代数法解方程组找出交点个数,再通过几何法观察图形判断位置关 系。这种方法结合了代数和几何的优势,能够更准确、直观地判断直线和圆的位置关系
。
04
直线和圆的应用
解析几何在实际问题中的应用
解析几何是研究几何图形在坐标系中 的表示和变换的数学分支,通过引入 坐标和方程,将几何问题转化为代数 问题,方便进行计算和分析。
类型一
类型三
已知直线和圆相交,求相关量。解题 思路:利用交点坐标,结合直线和圆 方程联立求解。
已知直线和圆相离,求相关量。解题 思路:利用圆心到直线的距离与半径 比较,结合直线和圆方程联立求解。
类型二
已知直线和圆相切,求相关量。解题 思路:利用圆心到直线的距离等于半 径,结合直线和圆方程联立求解。
综合题的解题技巧和方法
详细描述
相交关系是指直线与圆有两个交点的 情况。当直线穿过圆内或圆外时,这 两个交点位于不同的位置,并且直线 与圆心的距离小于半径。
相切关系
总结词
当直线与圆只有一个交点时,称为相切关系。
详细描述
相切关系是指直线与圆只有一个交点的情况。此时,直线与圆心的距离等于半 径。在相切关系中,直线与圆接触于一点,称为切点。
错误二
计算失误,导致答案不准确。
错误三
对题意理解不透彻,导致解题 思路偏离正确方向。
《直线和圆的位置关系》公开课

.Or
dA
B
l
H
相离
.O r
d
.
C
.Dl
相切
1、直线和圆相交
d< r
2、直线和圆相切
d= r
3、直线和圆相离
d> r
d
.Or
.F
E
l
相交
?
小结:
判定直线 与圆的位置关系的方法有__两__种:
(1)根据定义,由_直__线___与__圆__的__公__共__点__的 个数来判断; (2)根据数量关系:由_圆__心__到__直__线__的__距__离d __与__半__径__r __的大小关系来判断。
已知圆的半径是8cm,如果直线与圆心的距离分别是
(1)6cm ; (2) 8cm ;
(3) 10cm
那么直线与圆分别是什么位置关系?请画出基本图形
并写出过程。
8cm
O· d=6cm
AM B ∵r=8cm,d=6cm。 ∴ r >d ∴直线AB与⊙M相交.
8cm
O·
d=8cm
N ∵r=8cm,d=8cm。 ∴ r =d ∴直线AB与⊙M相切.
直线与圆的位置关系(一)
小组讨论要求:
1、各组的组长必须安排好每次讨论的主 要发言人,并且该同学必须站起来,组织全 组同学讨论。
2、每次讨论分为以下几个环节: (1)独立思考3—5分钟。 (2)讨论1分钟。 (3)完善过程1分钟。
展示要求
①各小组必须充分讨论,展示人展示小组的观点。 ②展示人及时到位,规范快速。 ③其他同学讨论完毕坐下立即修改,不浪费 一分钟,并观察展示内容,准备质疑与补充。
1
公开课直线与圆的位置关系

d | Ax0 By0 C | A2 B2
(x a)2 (y b)2 r2
x2 y2 Dx Ey F 0 (其中D2 E2 4F 0)
一、直线与圆的位置关系(用公 共点的个数来区分)
(1)直线和圆有两个公共点, 叫做直线和圆相交, 这条直线叫圆的割线, 这两个公共点叫交点。
建立如图所示直角坐标系,取 10km为长度单位
数学建模
y
港口
o
O
轮船 x
判断直线与圆的位置关系的方法:
方法一,可以依据圆心到直线的距离与半径长的关系,判 断直线与圆的位置关系.
方法二,判断直线l与圆的位置关系,就是看由它们的方程 组成的方程组有无实数解;
几何法
代数法
求出圆心(a,b) 及圆的半径r
方法二,可以依据圆心到直线的距离与半径长的关系, 判断直线与圆的位置关系.
几何法
代数法
求出圆心(a,b) 及圆的半径r
联立 Ax By C 0 x2y2Dx
Ey
F
0
求出 d aA bB C
A2 B2
判断d与r的大小关系
px2 qx m 0
判断△与0的大小关系
(2)直线和圆有唯一个公共点, 叫做直线和圆相切, 这条直线叫圆的切线, 这个公共点叫切点。
(3)直线和圆没有公共点时, 叫做直线和圆相离。
二、直线和圆的位置关系(用圆心o到直线l的 距离d与圆的半径r的关系来区分)
dr
直线和圆相交
d< r
r d
直线和圆相切
d= r
r
d
直线和圆相离
d> r
直线与圆位置关系正式公开课

A C
2.5
O
30°
5
M
B
例2:如图,点A是一个半径为300m的圆形森林公园的中心, 在森林公园附近有B,C两村庄,现要在B,C两村庄之间修 一条长为1000m的笔直公路将两村连通, 现测得∠ABC=45°, ∠ACB= 30°.问此公路是否会穿过该森林公园?请通过计 算进行说明.
O
l A
切线需满足两条: ①经过半径外端; ②垂直于这条半径.
证切线常用方法:①连半径,证垂直。 ②作垂直,证半径。
判断对错
1. 过半径的外端的直线是圆的切线( ) 2. 与半径垂直的的直线是圆的切线( ) 3. 过半径的端点与半径垂直的直线是圆的切线( )
O l
r
O
r l
O l
r
A
A
A
利用判定定理时,要注意直线须具备以下两个条件,缺一不可 (1)直线经过半径的外端; (2)直线与这半径垂直。
分析:由于AB过⊙O上的点C,所以连接OC,
只要证明 AB⊥OC 即可。
O
证明:连结OC(如图)。 ∵ OA=OB , CA=CB, ∴ AB⊥OC。 ∵ OC是⊙O的半径 ∴ AB是⊙O的切线。
A
C
B
连半径,证垂直
如图,已知⊙O的半径为r,直线AB经过⊙O 上的点A,并且 AB=r,∠ABO=45°. 求证:直线AB是⊙O的切线。
(第一课时)
如果我们把太阳看成一个圆, 地平线看成一条直线,那你能根 据直线与圆的公共点的个数想 象一下,直线和圆的位置关系 有几种?
地平线
发现这个自然现象反映出直线和圆的公共点的个数有 三种 情况。
《直线与圆的位置关系》教案 (公开课获奖)教案 青岛版

直线与圆的位置关系一、学习目标1、知识目标:a、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质。
b、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系。
2、能力目标:通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力。
3、情感目标:使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点。
二、学习重点:直线和圆的位置关系的判定方法和性质。
三、学习难点:直线和圆三种位置关系的研究与运用。
四、教学方法:启发引导、自主互助、合作探究。
五、教学准备:多媒体计算机六、学习过程情景导入教师活动:同学们,在我们的日常生活中蕴含着许多数学知识,下面请同学们欣赏一段日出视频。
〔在学生尚未获取新知之前安排此视频有利于创设一个良好的课堂气氛,进行渲染情感,便于学生获取新的知识。
〕教师活动:如果我们从数学的角度看,得到的是怎样几何图形?学生活动:我们可以把地平线看作一条直线,把太阳看作圆。
教师活动:很好。
今天老师和同学们一起探究直线与圆的位置关系。
并板书课题。
教师活动:首先检测一下同学们的预习情况。
学生展示:1、直线与圆的位置关系有几种?2、设⊙O的半径为r,圆心O到直线l的距离为d,〔1〕当d( )r时,直线l与⊙O相交。
〔2〕当d( )r时,直线l与⊙O相切。
〔3〕当d( )r时,直线l与⊙O相离。
教师活动:由海上日出从数学的角度来看给定一条直线和一个运动的圆,它们之间的位置关系可分为几大类?学生活动:三大类。
教师活动:有哪三大类?学生活动:太阳在升起的过程中,和地平线有两个公共点、一个公共点、没有公共点。
教师活动:如果给定一个圆和一条运动的直线,它们之间是否也存在这三种位置关系呢?学生活动:存在。
并让一学生上黑板演示,边演示边分析。
观察直线和圆的公共点个数有什么变化?思考直线和圆的位置关系有几种?教师活动:提出问题,概括直线与圆有哪几种位关系,你是怎样区分这几种位置关系的?如何用语言描述三种位置关系?〔请同学们带着问题去看课本,自主学习〕教师活动:上述变化过程中,除了公共点的个数发生了变化,还有什么量在改变?你能否用数量关系来判别直线与圆的位置关系?预期效果:对学生的答复给予鼓励、表扬。
直线与圆的位置关系(公开课) ppt课件

对于圆: x2 y2 4 y 21 0
x2 ( y 2)2 25
M. .O
x
圆心坐标为(0,2),半径r 5
E
F
ppt课件
21
练习
1、求以c(1、3)为圆心,并和直线3x-4y-6=0相 切的圆的方程.
有两个公共点,所以直线l与圆相交
ppt课件
10
判断直线和圆的位置关系
代数方法
(x a)2 ( y b)2 r 2 Ax By C 0
消去y(或x)
px2 qx t 0
0 : 相交
0 : 相切
p0pt:课相件 离
11
例1.已知直线 l : 3x y 6 0与圆 x2 y2 2 y 4 0
判断l与圆的位置关系 解:代数法
yB
联立圆和直线的方程得
3x y 6 0
①
x
2
y2
2y
4
0
②
由①得
y 3x 6 ③
把上式代入②
C
O
Ax
x2 3x 2 0 ④
(3)2 41 (2) 1 0
所以方程④有两个不相等的实根x1,x2
d<r
直线与圆相交
d=r
直线与圆相切
d>r
直线与圆相离
ppt课件
17
练习
P128 练习3 用几何法
y
解:x2 y2 2x 0
(x 1)2 y2 1
人教初中数学九上 《直线和圆的位置关系(第1课时)》教案 (公开课获奖)

24.2.2直线和圆的位置关系教学目标(一)教学知识点1.理解直线与圆有相交、相切、相离三种位置关系.2.了解切线的概念,探索切线与过切点的直径之间的关系.(二)能力训练要求1.经历探索直线与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.(三)情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索直线与圆位置关系的过程.理解直线与圆的三种位置关系.了解切线的概念以及切线的性质.教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.探索圆的切线的性质.教学方法教师指导学生探索法.教具准备投影片三张教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.[师]本节课我们将类比地学习直线和圆的位置关系.Ⅱ.新课讲解1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tan gent line).当直线与圆有两个公共点时,叫做直线和圆相交.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.投影片(§3.5.1A)(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的距离d与半径r的大小关系来判断:d<r时,直线与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离.投影片(§3.5.1B)[例1]已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?分析:根据d与r间的数量关系可知:d=r时,相切;d<r时,相交;d>r时,相离.解:(1)如上图,过点C作AB的垂线段CD.∵AC=4cm,AB=8cm;∴cos A=12 ACAB,∴∠A=60°.∴CD=AC sin A=4sin60°=23(cm).因此,当半径长为23cm时,AB与⊙C相切.(2)由(1)可知,圆心C到AB的距离d=23cm,所以,当r=2cm时,d>r,⊙C与AB相离;当r=4cm时,d<r,⊙C与AB相交.3.议一议(投影片§3.5.1C)(1)你能举出生活中直线与圆相交、相切、相离的实例吗?(2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?(3)如图(2),直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由.对于(3),小颖和小亮都认为直径AB垂直于CD.你同意他们的观点吗?[师]请大家发表自己的想法.[生](1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交;自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切;杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离.(2)图(1)中的三个图形是轴对称图形.因为沿着d所在的直线折叠,直线两旁的部分都能完全重合.对称轴是d所在的直线,即过圆心O且与直线l垂直的直线.(3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与⊙O 相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB 对折图形时,AC与AD重合,因此∠BAC=∠BAD=90°.[师]因为直线CD与⊙O相切于点A,直径AB与直线CD垂直,直线CD是⊙O的切线,因此有圆的切线垂直于过切点的直径.这是圆的切线的性质,下面我们来证明这个结论.在图(2)中,AB与CD要么垂直,要么不垂直.假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD 与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB与CD垂直.这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.直线与圆的三种位置关系.(1)从公共点数来判断.(2)从d与r间的数量关系来判断.2.圆的切线的性质:圆的切线垂直于过切点的半径.3.例题讲解.Ⅴ.课后作业习题3.7Ⅵ.活动与探究如下图,A 城气象台测得台风中心在A 城正西方向300千米的B 处,并以每小时107千米的速度向北偏东60°的BF 方向移动,距台风中心200千米的范围是受台风影响的区域.(1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,试计算A 城遭受这次台风影响的时间有多长?分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A 城能否受到影响,即比较A 到直线BF 的距离d 与半径200千米的大小.若d >200,则无影响,若d ≤200,则有影响.解:(1)过A 作AC ⊥BF 于C .在Rt △ABC 中,∵∠CBA =30°,BA =300,∴AC =AB sin30°=300×12=150(千米). ∵AC <200,∴A 城受到这次台风的影响.(2)设BF 上D 、E 两点到A 的距离为200千米,则台风中心在线段DE 上时,对A 城均有影响,而在DE 以外时,对A 城没有影响.∵AC =150,AD =AE =200,∴DC =22200150507-=.∴DE =2DC =1007. ∴t =1007107s v ==10(小时). 答:A 城受影响的时间为10小时.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩D CA BD CAB所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC A BD CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P .EDCABPD C A B∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 (教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab - (3)3 五、1.(1)22yx xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d < R, 直 线 与 圆 相 交
问题(2)直线与圆的相交相切问题
例1.过点P(1,-1)的直线l与圆M:(x-3)2+(y-4)2=4.
(1)当直线和圆相切时,求切线方程和切线长;
(2)若一束光线从点P出发并经y轴反射,反射光线 与圆M相切,求光线从P到切点的距离.
(3)若圆的方程加上条件x≥3,直线l与圆有且只有 一个交点,求斜率k.
问题(1) 直线与圆位置关系探求
题组(4):试确定下列直线与圆的位置关系
例7 直线m:x+y=1,圆C:x2+y2=1,
相交 位置关系____。
例8 直线m:x+y= 2 ,圆C:x2+y2=1,
相切 位置关系____。
问题(1) 直线与圆位置关系探求
题组(5):试确定下列直线与圆的位置关系
例9 直线m:xcosθ+ysinθ=1,θ∈R,
问题(2)直线与圆的相交相切问题
例2.已知圆C:x2+(y-1)2=5和直线l:mx-y+1-m=0. (1)证明:无论m取什么实数,直线l与圆恒相交; (2)分别求出直线l 截圆C所得的弦长最小和最 大时的直线l 方程;
问题(2)直线与圆的相交相切问题
例2.已知圆C:x2+(y-1)2=5和直线l:mx-y+1-m=0. (3)设直线与圆交于A,B两点,且AB= 17 ,求直线l 的方程; 变式一: 设直线l交圆C于A、B两点,求使△ABC的 面积最大时的直线l的方程(C为圆心)。 变式二:若定点P(1,1)分弦AB的比为AP:PB=1:2,求 此时直线l的方程.
问题(1)直线与圆位置关系探求
题组(1):试确定下列直线与圆的位置关系
例1 直线m:x=1,圆C:x2+y2=1,
相切 位置关系____。
例2 直线m:y=2,圆C:x2+y2=4,
相切 位置关系____。
问题(1) 直线与圆位置关系探求
题组(2):试确定下列直线与圆的+y2=1,
总结(三) 处理相交相切问题的要点
1. 分析条件,从代数角度通过计 算处理问题;
2. 分析几何特征,数形结合,利 用几何性质解决问题;
3. 学会用运动变化的观点,分 析解决问题.
本节课小结
一、知识点
直线和圆的 位置关系 相交 相切 相离 判定 几何法(比较d与r) 代数法(判别式法)
*几何法较优越 (特别地,d=r时,直线与圆相切) 二、数学思想方法 转化化归:把代数问题转化为解析几何问题 数形结合:充分利用图形的性质 待定系数法:求直线和圆的方程
小结提高
定 义
判 断
直线与圆 位置关系
理 解
核心概念
方法 (步骤)
知识•方法•思想
总结(一):直线与圆 把直线方程代入圆的方程 得 到 一 元 计 算 判 二 次 方 程 别 式
> 0,
= 0,
直线与圆相交
直线与圆相切
< 0,
直线与圆相离
总结(二):直线与圆 确定圆的圆心坐标和半径 计算圆心到直线的距离d 判断圆心到直线的距离d与圆 半 径 R 的 大 小 关 系 d > R, 直 线 与 圆 相 离 d = R, 直 线 与 圆 相 切
欢迎光临指导!
直线与圆的位置关系
复习引入
一.直线方程的一般式
Ax+By+C=0(A,B不同时为零)
二.圆的标准方程
(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r
圆的一般方程
x2+y2+Dx+Ey+F=0 (其中D2+E2-4F>0)
圆的参数方程 x a r cos
(θ 为参数) y b r sin
相切 圆 C:x2+y2=1,位置关系____。
拓广:若A={(x,y)│xcosθ+ysinθ=1,θ∈R},
2+y2<1} { ( x , y ) │ x 则 CuA =___________________。
问题(1) 直线与圆位置关系探求
题组(6):试确定下列直线与圆的位置关系
例10 点M(x0,y0)是圆x2+y2=a2(a>0) 内不为圆心的一点,则直线m:x0x+y0y=a2, 相离 与该圆的位置关系是______。 拓广:(1)点M(x0,y0)是圆x2+y2=a2(a>0) 相切 上一点,则 直线与圆的位置关系为 ________. (2)点M(x0,y0)是圆x2+y2=a2(a>0)外一 相交 点,则 直线与圆的位置关系为 ___________ 。
问题(2)直线与圆的相交相切问题
例2.已知圆C:x2+(y-1)2=5和直线l:mx-y+1-m=0. (4)求过点P(1,1)的弦的中点Q的轨迹方程. 变式一: 若点P的坐标为(1,3),结果如何? 变式二:若点P的坐标为(3,1),结果如何?
小结提高
定 义
求 法
相交相切
步骤 理 解
核心概念
知识•方法•思想
相离 位置关系____。
例4 直线m:y=4,圆C:x2+y2=4,
相离 位置关系____。
问题(1) 直线与圆位置关系探求
题组(3):试确定下列直线与圆的位置关系
例5 直线m:x=2,圆C:x2+y2=16,
相交 位置关系____。
例6 直线m:y=3,圆C:x2+y2=25,
相交 位置关系____。