首发上海市高二寒假作业 数学8含答案
新课标高二数学寒假作业8(必修5选修23)

新课标高二数学寒假作业8(必修5选修23)14.(本小题满分12分)(1)若的展开式中,的系数是的系数的倍,求;(2)已知的展开式中, 的系数是的系数与的系数的等差中项,求;(3)已知的展开式中,二项式系数最大的项的值等于,求. 15.(本小题满分1分)已知函数f(x)=lnx-ax2-2x(a0).(I)若函数f(x)在定义域内单调递增,求a的取值范围; (Ⅱ)若a=-且关于x的方程f(x)=-x+b在上恰有两个不相等的实数根,求实数b的取值范围.16.(本题满分1分)如图,分别是椭圆的左、右焦点,且焦距为,动弦平行于轴,且(Ⅰ)求椭圆的方程;(Ⅱ)若点是椭圆上异于点的任意一点,且直线分别与轴交于点,若的斜率分别为,求的取值范围.选修2-3参考答案1.A2.D3.B4.C5.D6.C7.B8.B9.210.11.7212.13.(1)由,得或.所以,当或时,为实数;3分(2)由,得且.所以,当且时,为虚数;6分(3)由得所以,当时,为纯虚数;9分(4)由得所以,当时,复数对应的点在第四象限.12分14.(1)的二项式系数是,的二项式系数是.依题意有1分4分(2)依题意,得5分即8分(3)依题意得9分10分即解得,或所以.12分15.16.(Ⅰ)因为焦距为,所以 2分由椭圆的对称性及已知得又因为所以因此 4分于是因此椭圆的方程为 6分(Ⅱ)设,则直线的方程为,令,得故同理可得 9分所以,因此因为在椭圆上,所以故 12分所以 14分又因为当时重合,即重合,这与条件不符,所以因此的取值范围是 15分高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了2019年高二数学寒假作业,希望大家喜欢。
高二数学寒假作业:(八)(Word版含答案)

高二数学寒假作业(八)一、选择题,每小题只有一项是正确的。
1.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += ( )A 、7B 、 5C 、-5D 、-7 2.下列结论正确的是( )A .当0>x 且1≠x 时,x x lg 1lg +≥2B .当0>x 时,xx 1+≥2 C .当x ≥2时,x x 1+的最小值为2 D .当x <0≤2时,xx 1-无最大值 3.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数y x z-=3的取值范 围是( )A .⎥⎦⎤⎢⎣⎡-6,23 B. ⎥⎦⎤⎢⎣⎡--1,23 C .[]6,1- D. ⎦⎤⎢⎣⎡-23,6 4.已知双曲线)0,0(1:2222>>=-b a bx a y C 的离心率为25,则C 的渐近线方程为( ) A .x y 2±= B .x y 21±= C .x y 4±= D .x y 41±= 5.已知()0,12,1--=t t ,()t t ,,2=的最小值为( )A. 2B. 6C. 5D. 36.在正方体1111D C B A ABCD -中,M 、N 分别为棱1AA 和1BB 的中点,则><N D CM 1,sin 的值为( )A. 91B. 594C. 592D. 32 7.设等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=A .2B .3C .6D .78.数列{}n a 的通项公式2=n a n n +,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为 A .910 B .1011 C .1110 D .12119.已知椭圆的一个焦点为F ,若椭圆上存在点P ,满足以椭圆短轴为直径的圆与线段PF 相 切于线段PF 的中点,则该椭圆的离心率为 ( )2359 二、填空题10.在====∆A AC BC AB ABC 则中,,4,13,3 .11.设等差数列{}n a 的前n 项和为n S ,若1133,,122k k a a S +=-==-,则正整数K=____.12.数列{a n }的前n 项和是S n ,若数列{a n }的各项按如下规则排列:,…,若存在整数k ,使S k <10,S k+1≥10,则a k = _________ .13.已知ABC ∆的三边,,a b c 成等差数列,且22263a b c ++=,则b 的最大值是▲ .三、计算题14.(10分)在ΔABC 中 ,已知,3,30,30=︒==︒c B A 解三角形ABC 。
高中寒假作业:高二数学寒假作业答案

高中寒假作业:高二数学寒假作业答案
高中寒假作业:高二数学寒假作业答案
三.解答题
17.(本小题满分12分)
解:在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得cosADC=AD2+DC2-AC22ADDC
=100+36-1962106=-12,ADC=120,
ADB=60.
在△ABD中,AD=10,B=45,ADB=60,
(2)由(1)可知an=3-2n,
所以Sn=n[1+3-2n]2=2n-n2.
由Sk=-35,可得2k-k2=-35,
即k2-2k-35=0,解得k=7或k=-5.
又kN*,故k=7.
两边同乘以得2=2(sin +cos ),
得圆C的直角坐标方程为(x-1)2+(y-1)2=2,
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
2021-2022年高二数学寒假作业试题理(八)

2021-2022年高二数学寒假作业试题理(八)一.填空题(共3小题)1.如图,在底面为正方形的四棱锥P﹣ABCD中,PA=PB=PC=PD=AB=2,点E为棱PA的中点,则异面直线BE与PD所成角的余弦值为.2.如图的矩形,长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影部分的面积为.3.某同学在借助题设给出的数据求方程lgx=2﹣x的近似数(精确到0.1)时,设f(x)=lgx+x﹣2,得出f(1)<0,且f(2)>0,他用“二分法”取到了4个x的值,计算其函数值的正负,并得出判断:方程的近似解为x≈1.8,那么他所取的4个值中的第二个值为.二.解答题(共3小题)4.已知(+2x)n.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.5.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999104.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).6.如图,已知椭圆C的中心在原点,焦点在x轴上,离心率e=,F是右焦点,A 是右顶点,B是椭圆上一点,BF⊥x轴,|BF|=.(1)求椭圆C的方程;(2)设直线l:x=ty+λ是椭圆C的一条切线,点M(﹣,y1),点N(,y2)是切线l上两个点,证明:当t、λ变化时,以 M N为直径的圆过x轴上的定点,并求出定点坐标.1.如图,连接AC,BD,并交于O点,连接PO,根据题意知,PO⊥底面ABCD;又底面ABCD为正方形;∴AC⊥BD;∴OB,OC,OP三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,如下图所示:根据条件可确定以下几点坐标:A(0,,0),,,;∴,;∴,;∴=;∴异面直线BE与PD所成角的余弦值为.故答案为:.2.∵矩形的长为5,宽为3,则S=5×3,矩形∴==,∴利用几何概型,故答案为:6.3.先判断零点所在的区间为(1,2),故用“二分法”取的第一个值为1.5,由于方程的近似解为x≈1.8,故零点所在的区间进一步确定为(1.5,2),故取的第二个值为(1.5+2)÷2=1.75,故答案为 1.75.4.(1)∵C n 4+C n 6=2C n 5,∴n 2﹣21n+98=0,∴n=7或n=14.当n=7时,展开式中二项式系数最大的项是T 4和T 5,∴T 4的系数=C 73()423=,T 5的系数=C 74()324=70.当n=14时,展开式中二项式系数最大的项是T 8.∴T 8的系数=C 147()727=3432.(2)由C n 0+C n 1+C n 2=79,可得n=12,设T k+1项的系数最大.∵(+2x )12=()12(1+4x )12,∴∴9.4≤k≤10.4,∴k=10,∴展开式中系数最大的项为T 11.T 11=()12C 1210410x 10=16896x 10.5.由题意知各投保人是否出险互相独立,且出险的概率都是p ,记投保的10000人中出险的人数为ξ,由题意知ξ~B(104,p).(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000a﹣(10000ξ+50000),盈利的期望为Eη=10000a﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15元.6.(1)由题意设椭圆方程为①焦点F(c,0),因为②,将点B(c,)代入方程①得③由②③结合a2=b2+c2得:.故所求椭圆方程为.(2)由得(2+t2)y2+2tλy+λ2﹣2=0.∵l为切线,∴△=(2tλ)2﹣4(t2+2)(λ2﹣2)=0,即t2﹣λ2+2=0①,0),则设圆与x轴的交点为T(x,∵MN为圆的直径,∴②因为,所以,代入②及①得=,要使上式为零,当且仅当,解得x=±1,所以T为定点,故动圆过x轴上的定点是(﹣1,0)与(1,0),即两个焦点.E26267 669B 暛"v29754 743A 琺24481 5FA1 御29923 74E3 瓣23057 5A11 娑21355 536B 卫F@28946 7112 焒33857 8441 葁20909 51AD 冭39577 9A99 骙。
高二数学寒假作业8

高二数学假期作业8(理科)一、选择题1.如果实数y x ,满足不等式组30,230,1.x y x y x +-≤⎧⎪--≤⎨⎪≥⎩目标函数z kx y =-的最大值为6,最小值为0,则实数k 的值为A .1 B .2 C .3 D .4( )2.高三某班有学生36人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、23号、32号学生在样本中,则样本中还有一个学生的编号为A . 13 B . 14 C . 18 D . 26( )3.一个样本a ,3,5,7的平均数是b ,且a , b 分别是数列{}()2*2n n N -∈的第2项和第4项,则这个样本的方差是A . 3 B . 4 C . 5 D . 6( ) 4.已知x 、y 取值如下表:从所得的散点图分析可知: y 与x 线性相关,且线性回归方程为0.95y x a =+,则a = A . 1.30 B . 1.45 C . 1.65 D . 1.80( )5.数列{}n a 中, ()*12211,n n n a a a a a n N ++===+∈,设计一种计算{}n a 的前n 项和的算法框图如右,其中赋值框中应填入的是( ) A . ,a b b a b ==+ B . ,b a b a b =+=C . ,,x b a x b a b ===+D . ,,x b b a b a x ==+=6.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A .43B .83C .41 D .817.某人睡午觉醒来,发现表停了,他打开收音机,想听电台报时,则他等待时间不多于15分钟的概率为A .12B .14C .23D .348.某班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为A . 217B . 316C . 326D . 328( )9.如图所示:在杨辉三角中,斜线上方箭头所连的数组成一个齿形的数列: 记这个数列前项和为,则等于( )A . 128B . 144C . 155D . 16410.在5()ax x-的展开式中3x 的系数等于5-,则该展开式各项的系数中最大值为( )A .5B .10C .15D .20 二、填空题11.给出下列四个命题中:①命题“2,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②“2m =-”是“直线(2)10m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的必要不充分条件;③设圆22220(40)x y Dx Ey F D E F ++++=+->与坐标轴有4个交点,分别为1212(,0),(,0),(0,),(0,)A x B x C y D y ,则12120x x y y -=;④对x ∀∈+R,不等式1x ≥恒成立, 则2≤a其中所有真命题的序号是 ▲ .12.如图所示,此程序框图运行后输出的值是________.13.若变量,x y 满足约束条件0{102 10x y y x x -≤≤--≥,则2z x y =-的最小值为__________.14. 5个人排成一排,其中甲与乙必须相邻,而丙与丁不能相邻,则不同的排法种数有 种.三、解答题15.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率; (2)由表中统计数据填写下边列联表,试采用独立性检验进行分析,能否在犯错误的概率不”. 参考数据与公式:,其中.16.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.随机变量ξ表示开始第4次发球时甲的得分....,求ξ的分布列和期望。
高二数学寒假作业有答案

高二数学寒假作业一、 选择题(本大题共12个小题,每小题5分,共60分)1、在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( )(A )3π (B )56π (C )34π (D )23π2、已知命题2:,10,p x R x ∃∈+<则p ⌝是( ) (A )2,10x R x ∀∈+≥ (B )2,10x R x ∃∈+≥(C )2,10x R x ∀∈+> (D )2,10x R x ∃∈+>3、已知a,b,c ∈R ,下列推证正确的是 (A). 22a b am bm ⇒ (B).a ba b c c⇒(C). 3311,0a b aba b⇒(D). 2211,0a b abab⇒4、一个数列{}n a 的首项11a =,121(2)n n a a n -=+≥,则数列{}n a 的第4项是( ) (A )7 (B )15 (C )31 (D )125、若点A 的坐标为(3,2),F 为抛物线22y x =的焦点,点P 在该抛物线上移动,为使得PA PF +取得最小值,则P 点的坐标为( ).(A )(3,)6 (B )(2,2) (C )(0.5,1) (D )(0.5,-1) 6、已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) (A ).64(B ).81(C ).128(D ).2437、若向量a =(cos ,sin αα),b =(cos ,sin ββ),则a 与b 一定满足 ( ) (A).a 与b 的夹角等于α-β? (B).(a +b )⊥(a -b )(C).a ∥b(D).a ⊥b8、若1,a ,则11a a +-的最小值是 ( )9、若F 1,F 2是椭圆22194x y +=的两个焦点,P 是椭圆上的点,且12:2:1PF PF =,则⊿12PF F 的面积为(A). 4 (B). 6 (C).10、若),24(16960cos sin ππ<<=⋅A A A 则A tan 的值等于( ) (A )43(B )34 (C )125 (D )51211、下列各组命题中,满足“p ∨q ”为真,“p ∧q ”为假,“⌝p ”为真的是 (A). p :0 ≠ ∅ ;q :0∈ ∅(B). p :在⊿ABC 中,若cos2A=cos2B ,则A=B; q :y=sinx 在第一象限是增函数(C). :,)p a b a b R +≥∈;q :不等式2x x 的解集是(,0)(1,)-∞+∞(D).p :椭圆2212516x y +=的面积被直线y=x 平分;q :双曲线221x y -=的两条渐近线互相垂直12、已知抛物线2y ax =的焦点为F ,准线l 与对称轴交于点R ,过抛物线上一点P(1,2),作PQ ⊥l 垂足为Q ,则梯形PQRF 的面积为(A). 74 (B). 118 (C). 516 (D). 1916二、填空题:(本大题共4个小题,每小题4分,共16分) 13、若x,y 满足 ,则2x+y 的最大值为_____14、设命题p :431x -≤,命题q :2(21)(1)0x a x a a -+++≤,若⌝p 是⌝q 的必要条件,但不是充分条件,则实数a 的取值范围为_____ 15、函数sin()cos 6y x x π=-的最小值________。
高二数学寒假作业上(含答案解析)

本文档包括:算法与程序框图、基本算法语句、算法案例、算法初步综合、随机抽样、用样本估计总体、变量间的相关关系、统计综合、随机事件的概率、古典概型、几何概型、概率综合、必修3综合质检、命题及其关系等14天内容,及答案解析。
(1)算法与程序框图一、选择题1.下面的结论正确的是( )A.—个程序的算法步骤是可逆的B.—个算法可以无止境地运算下去C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.一个算法的步骤如下:如果输入的值为,则输出的值为( )第一步,输入的值;第二步,计算的绝对值;第三步,计算;第四步,输出的值.A.4B.5C.6D.83.有下列说法:①顺序结构是最简单的算法结构;②顺序结构是按照程序语句的自然顺序依次地执行程序;③条件结构包括两分支结构和多分支结构两种;④条件结构可以根据设定的条件,控制语句流程,有选择地执行不同的语句序列.其中正确的说法是( )A.①②③B.①③④C.②③④D.①②③④4.给出以下四个问题:①输入一个数,输出它的绝对值;②求面积为的正方形的周长;③求三个数中的最大数;④求函数的函数值.其中需要用条件结构来描述算法的有( )A.0个B.1个C.3个D.4个5.下列各式中的值不能用算法求解的是( )A. ;B. ;C. ;D.6.如图所示的程序框图表示的算法含义是( )A.计算边长为的直角三角形的面积B.计算边长为的直角三角形内切圆的面积C.计算边长为的直角三角形外接圆的面积D.计算以为弦的圆的面积7.阅读如图所示的程序框图,若输入,则输出的值为( )A.B.C.D.8.运行如图程序框图,使得当成绩不低于分时,输出“及格”,当成绩低于分时,输出“不及格”,则( )A.①框中填"是",②框中填"否"B.①框中填"否",②框中填"是"C.①框中填"是",②框中可填可不填D.①框中填"否",②框中可填可不填9.阅读如下程序框图,如果输出,那么在空白矩形框中应填人的语句为( )A.B.C.D.10.执行下面的程序框图,若输入的,,分别为,,,则输出的 ( )A.B.C.D.二、填空题11.有关算法的描述有下列几种说法:①对一类问题都有效;②对个别问题有效;③可以一步一步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.其中描述正确的为__________12.已知直角三角形的两直角边长分别为,设计计算三角形周长的算法如下: 第一步,输入.第二步,计算.第三步,计算___.第四步,输出.将算法补充完整,横线处应填__________.13.执行下面的程序框图,若输入的是,那么输出的是__________.14.某篮球队名主力队员在最近三场比赛中投进的三分球个数如表所示:队员如图是统计该名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填__________,输出的__________.参考答案一、选择题1.答案:D解析:算法程序是有序步骤,是不可逆的,算法的程序是有限的,同一个问题的算题也是不唯一的.2.答案:B解析:选B.分析算法中各变量、各语句的作用,再根据算法的步骤可知:该算法的作用是计算并输出的函数值.第一步,输入;第二步,计算的绝对值;第三步,计算;第四步,输出的值为.3.答案:D解析:熟练掌握程序框图的三种基本逻辑结构是解决本题关键.4.答案:C解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.5.答案:C解析:根据算法的有限性知③不能用算法求解.答案:C6.答案:B解析:直角三角形内切圆半径故选7.答案:B解析:选.,则输出的值为.8.答案:A解析:选.当时,应输出“及格”;当时,应输出“不及格”,故①框中应填“是”,②框中应填“否”.9.答案:C解析:由框图可以看出需要一个对的赋值语句,当时, ,当时, ,输出,只有C项满足条件.故选C.10.答案:D解析:第一次循环, ,,,;第二次循环, ,,,;第三次循环, ,,,,退出循环,输出为.故选D.二、填空题11.答案:①③④解析:算法通常是指可以用计算机来解决的某一类问题的程序或步骤,所以①正确,②错误.由于算法必须是明确的,有效的,而且在有限步内完成,故③④正确.12.答案:解析:根据“已知两直角边长分别为,计算三角形周长”的要求,可知三角形的周长.13.答案:-399解析:14.答案:;解析:依据题设条件中提供的算法流程图可知:该算法程序中执行的是求出六名主力队员所投三分球的个数之和,即求,所以当时,运算程序继续进行,故由题意图中判断框应填,输出的.(2)基本算法语句一、选择题1.对赋值语句的描述正确的是( )①可以给变量提供初值②可以将表达式的值赋给变量③可以给一个变量重复赋值④不能给同一个变量重复赋值A.①②③B.①②C.②③④D.①②④2.下列选项中,正确的赋值语句是( )A.B.C.D.3.有以下程序:程序执行后的结果是( )A.3,5B.5,3C.5,5D.3,34.下面的问题中必须用条件语句才能实现的个数是( )①已知三角形三边长,求三角形的面积;②求方程为常数的根;③求三个实数中的最大者;④求函数的图象的对称轴方程.A.B.C.D.5.运行程序在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为( )A.8,2B.8,4C.4,2D.4,46.读程序:甲:乙:对甲、乙程序和输出结果判断正确的是( )A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同7.如图所示的程序运行后,输出的值为( )A.45B.44C.43D.428.下面程序运行后,输出的结果为( )A.B.C.D.9.如果下面程序执行后输出的结果是,那么在后面的“条件”应为( )A.B.C.D.10.阅读如图所示的程序,若输出的值为,则输入的值的集合为( )A.B.C.D.二、填空题11.程序如下:该程序的输出结果__________.12.根据下列算法语句,当输入为时,输出的值为__________.13.已知有下面的程序,如果程序执行后输出的结果是那么在程序后面的“条件”应为__________14.程序如下:以上程序运行的结果为__________.参考答案一、选择题1.答案:A解析:赋值语句的功能:赋值语句可以给变量提供初始值,可以将表达式的值赋给变量,可以给一个变量重复赋值.故选A.2.答案:C解析:赋值语句的表达式“变量=表达式”,故C正确3.答案:C解析:执行完第一行:A=3,执行完第二行:B=5,执行完第三行:A=5,执行完第四行:B=5,最后输出A,B的值分别为5,5.4.答案:C解析:①已知三角形三边长,求三角形的面积,直接代入公式,需要用顺序结构;②求方程为常数的根,需要分类讨论的取值,根据取值的不同,执行后面不同的算法;③求三个实数中的最大者,需要用到条件语句;④求的图象的对称轴方程,不需要用条件语句.5.答案:C解析:对、的情况进行区分,当输入的时候, ,所以;当输入时,不成立,所以选择执行.6.答案:B解析:选B.执行甲、乙程序后,可知都是计算的值.7.答案:B解析:8.答案:D解析:选D.依题意知,第1次循环: ;第2次循环: ,;第3次循环: ;…,第2 018次循环,循环结束,输出9.答案:D解析:选D.因为,所以应在时,条件符合,终止循环,故条件应为“”.10.答案:A解析:由题意知令得或,故选A.二、填空题11.答案:A=33,B=22解析:12.答案:31解析:由算法语句可知输入,,所以输出.考点:算法语句13.答案:(或)解析:因为输出的结果是360,即,需执行4次,s需乘到后结束算法.所以,程序中后面的“条件”应为 (或).14.答案:120解析:(3)算法案例一、选择题1.对于更相减损术,下列说法错误的是( )A.更相减损术与辗转相除法的作用是一样的,都是求最大公约数B.更相减损术与辗转相除法相比,计算次数较多,因此,此法不好,不能用此法C.更相减损术是我国古代数学专著《九章算术》中提出的D.更相减损术的基本步骤是用较大数减去较小的数2.下列关于进位制的说法错误的是( )A.进位制是人们为了计数和运算方便而约定的记数系统B.二进制就是满二进一,十进制就是满十进一C.满几进几,就是几进制,几进制的基数就是几D.为了区分不同的进位制,必须在数的右下角标注基数3.(2)(2)101010+的值是( )A. (2)1011B. (2)1100C. (2)1101D. (2)10004.用秦九韶算法求多项式652()7632f x x x x =+++当4x =时的值时,先算的是()A. 4⨯4=16B. 7⨯4=28C. 44464⨯⨯=D. 74634⨯+=5.下面一段程序的功能是( )(说明: INT(x)表示不超过x 的最大整数)A.求,x y 的最小公倍数B.求,x y 的最大公约数C.求x 被y 整除的商D.求y 除以x 的余数6.用秦九韶算法求多项式1110()n n n n f x a x a x a x a --=++⋅⋅⋅++当0x x =时的值时,求0()f x 需要算乘方、乘法、加法的次数分别为( ) A. (1),,2n n n n + B. ,2,n n nC. 0,2,n nD. 0,,n n7.用更相减损术求120与75的最大公约数时,反复想减,则进行减法运算的次数是( )A.4B.5C.6D.38.用秦九韶算法计算多项式65432()654325f x x x x x x x =++++++当100x =时的值,需做的加法与乘法的总次数是( )A.10B.9C.12D.89.阅读下面的算法程序:上述程序的功能是( )A.计算310⨯的值B.计算93的值C.计算103的值D.计算12310⨯⨯⨯⨯的值10.已知532()231,f x x x x x =++++应用秦九韶算法计算当3x =时这个多项式的值时, 3v 的值为( )A.27B.11C.109D.36二、填空题11.利用秦九韶算法求当23x =时,多项式3273511y x x x =+-+的值.(1) 1:23;S x =322:73511;S y x x x =+-+3:S 输出.y(2) 1:23;S x =322:73511;S y x x x =+-+3:S 输出.y(3) 算6次乘法和3次加法.(4) 算3次乘法和3次加法.以上描述正确的为__________.12.若k 进制数()123k 与38相等,则k =__________.13.已知函数()32256f x x x x =--+,用秦九韶算法,则()10f =__________ 14.如图,是用辗转相除法求两个正整数(),a b a b >的最大公约数算法的程序框图,其中①处应填入的是__________参考答案一、选择题1.答案:B解析:更相减损术与辗转相除法求最大公约数各有各的优点.2.答案:D解析:十进制的数一般不标注基数.3.答案:B解析:二进制数进行加法计算时,同十进制数加法类似,要逢2进1.4.答案:D解析:用秦九韶算法求多项式652()7632f x x x x =+++当4x =时的值时,先算的是74634.⨯+=5.答案:B解析:由循环条件m/n<>INT(m/n),知当m 与n 的商不是整数时,执行循环体.循环体为由三个赋值语句构成的顺序结构,不妨令12,8,x y ==第一次循环,121,8≠,执行循环体1284,8, 4.c m n =-===, 第二次循环82,4=结束循环,输出n 的值4. 故该程序是通过辗转相除法求最大公约数.故选B.6.答案:D解析:7.答案:A解析:用更相减损术求120与75的最大公约数,列式做出结论.8.答案:C解析:9.答案:C解析: 该算法中使用了循环语句,在i 不超过10的条件下,反复执行循环体,依次得到3,23,33,...103,所以循环结束时,输出结果为103,因此该程序的功能是计算103的值,故应选C.10.答案:D解析:532()231((((0)2)3)1)+1,f x x x x x x x x x x =++++=++⋅++01231,1303,33211,113336.v v v v ==⨯+==⨯+==⨯+=二、填空题11.答案:(2)(4)解析:12.答案:5解析:13.答案:756解析:()32256f x x x x =--+25()26x x x --+=()()25 6.x x x =--+当10x =时, ()()()10102105106f =-⨯-⨯+()8105106=⨯-⨯+75106756.=⨯+=14.答案:a MOD b解析:根据辗转相除法的原理,易知①处应填入的是r=aMOD b.(4)算法初步综合一、选择题1.下面对算法描述正确的一项是( )A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.根据下面的算法,可知输出的结果S 为( )第一步, 1i =;第二步,判断10i <是否成立,若成立,则2,23i i S i =+=+,重复第二步,否则执行下一步; 第三步,输出S .A.19B.21C.25D.273.在设计求函数()2,21,2266,2x x f x x x x x ⎧>⎪=--<≤⎨⎪-≤-⎩的值的程序中不可能用到的算法语句为( )A.输入语句B.条件语句C.输出语句D.循环语句4.用秦九韶算法求多项式23456()1235879653f x x x x x x x =+-++++在4x =-的值时, 4V 的值为( )A. 57-B. 220C. 845-D. 33925.在k 进制中,十进制数103记为87,则k 等于( )A.6B.12C.14D.166.如下图所示是一个算法框图,已知13a =,输出的结果为7,则2a 的值是( )A.9B.10C.11D.127.执行如图所示的程序框图,则输出S的值为( )A. 2016B. 2C. 1 2D. 18.执行两次下图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a的值分别为( )A.0,0B.1,1C.0,1D.1,09.执行如图所示的程序框图,如果最后输出的s 的值为110,那么判断框中实数a 的取值范围是( )A. [)9,10B. (]9,10C. []9,10D.无法确定10.某店一个月的收入和支出总共记录了N 个数据12,,,,N a a a ⋯其中收入记为正数,支出记为负数.该店用如图所示的程序框图计算月总收入S 和月净盈利,V 那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A. 0?,A V S T >=-B. 0?,A V S T <=-C. 0?,A V S T >=+D. 0?,A V S T <=+二、填空题11.一个算法如下:第一步, s 取值0,i 取值1.第二步,若i 不大于12,则执行下一步;否则执行第六步.第三步,计算s i +并用结果代替s .第四步,用2i +的值代替i .第五步,转去执行第二步.第六步,输出s .则运行以上步骤输出的结果为__________.12.如图所示的流程图,输出的结果是__________.13下面的程序框图能判断任意输人的整数是奇数还是偶数.其中判断框内的条件是 .14.如图,是用辗转相除法求两个正整数(),a b a b >的最大公约数算法的程序框图,其中①处应填入的是__________参考答案一、选择题1.答案:C解析:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性; 算法可以用自然语言、图形语言,程序语言来表示,故A、B不对;同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.2.答案:C解析:该算法的运行过程是:i=1,i=<成立,110i=+=123,S=⨯+=2339,i=<成立,310i=+=325,S=⨯+=25313,i=<成立,510i=+=527,S=⨯+=27317,i=<成立,710i=+=729,S=⨯+=29321,910i=<成立,i=+=9211,211325,S =⨯+=1110i =<不成立,输出25.S =3.答案:D解析:对于分段函数的算法,输入语句和输出语句都是需要的,条件语句也是需要的,只有循环语句不可能用到,故选D.4.答案:B解析:解析: 0103,57,V V V x ==+=-21628634,V V x =+=+=()32793447957,V V x =+=⨯-+=-()4385748220.V V x =-=-⋅--=5.答案:B解析:由k 进制中基数为k,得870103k k ⨯+⨯=,即8k=96,k=12.故选B.6.答案:C解析:根据题中算法框图可知, 122a ab +=,又13,7,a b ==∴13,7,a b ==2372a +∴=,∴211a =. 7.答案:B解析:2,0S k ==,满足条件2016k <,则1,1S k =-=;满足条件2016k <,则1,22S k ==; 满足条件2016,k <则2,3S k ==;满足条件2016k <,则1,4;S k =-=满足条件2016k <,则1,5;2S k ==观察规律,可知S 的取值以3为周期变化,当201536712k ==⨯+时,满足条件2016k <,则2,2016,S k ==结束循环,输出2.故选B.8.答案:D解析:第一次7x =,227<,3b =,237>,1a =;第二次9x =,229<,3b =,239=,0a =,选D.9.答案:A解析:11111,2;,3;,4;,5;;,10234510s n s n s n s n s n ========⋯==,故910a ≤<,故选A.10.答案:C解析:由题意可得,判断框内应填“0?A > ”,月净盈利V 为S 与T 的和,故处理框中填“V S T =+”,所以选C.二、填空题11.答案:36解析:用程序框图表示出算法条件和循环条件,弄清每一次变量数值的变化以及程序结束运算是s 的值.12.答案:24解析:答案:解析: 根据条件结构中“是”“否”输出的结论填空即可.14.答案:a MOD b解析:根据辗转相除法的原理,易知①处应填入的是r=a MOD b.(5)随机抽样一、选择题1.下列说法不正确的是( )A.简单随机抽样是从个体数较少的总体中逐个随机抽取个体B.系统抽样是从个体数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取C.系统抽样是将差异明显的总体均分成几部分,再进行抽取D.分层抽样是将由差异明显的几部分组成的总体分成几层,分层进行抽取2.下列抽样实验中,适合用抽签法的是( )A.从某工厂生产的3000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验3.用简单随机抽样的方法从含有N 个个体的总体中抽取一个样本,则在抽样过程中,每个个体被抽取的可能性( )A.相等B.逐渐増大C.逐渐减少D.不能确定4.某单位有老年人28人,中年人54人.青年人81人,为调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随即抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样5.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A.7B.9C.10D.156.某商场出售三种品牌电脑,现库存量分别是60台、36台和24台,用分层抽样的方法从中抽取10台进行检测,则这三种品牌的电脑依次应抽取的台数是( )A.6,3,1B.5,3,2C.5,4,1D.4,3,37.中央电视台动画城节目为了对本周热心小观众给予奖励,要从已确定编号的10000名小观众中抽取10名幸运小观众,现采用系统抽样方法抽取,其分段间隔为( )A.10B.100C.1000D.100008.某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为( )A.6B.4C.3D.29.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.25010.某企业在甲、乙、丙、丁四个城市分别有150个、120个、190个、140个销售点.为了调查产品的质量,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙城市有20个特大型销售点,要从中抽取8个调查,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次为( )A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法二、填空题11.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有__________(请把你认为正确的所有序号都写上).12.将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,使用的是__________法.13.将参加数学夏令营的100名同学编号为001,002,…,100.现采用系统抽样的方法抽取一个容量为25的样本,且在第一段中随机抽取的号码为004,则在046至078号中,被抽中的人数为__________.14.某工厂生产了某种产品6000件,它们来自甲、乙、丙三条生产线.为了检查这批产品的质量,工厂决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线中抽取的个体数分别为,,a b c ,且2a c b +=,则乙生产线生产了__________件产品.一、选择题1.答案:C解析:2.答案:B解析:利用抽签法的概念和步驟可做出判断.A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.3.答案:A解析:4.答案:D解析:5.答案:C解析:由系统抽样的特点知,抽样号码的间隔为9603032=,抽取的号码依次为9,39,69,,939⋯,落入区间[]451,750内有459,489,,729⋯,所以做问卷调查B 的有10人.6.答案:B解析: 抽样比为10160362412=++,则三种品牌的电脑依次应抽取的台数是111605,363,242121212⨯=⨯=⨯=.故选B. 7.答案:C解析:要抽10名幸运小朋友,所以要分成10个小组,因此分段间隔为1000.8.答案:C解析:根据分层抽样的定义直接计算即可.∵男生36人,女生18人,∴男生和女生人数比为36:18=2:1,∴抽取一个容量为9的样本,则抽取的女生人数为11993213⨯=⨯=+,本题主要考查分层抽样的定义和应用,比较基础.9.答案:A解析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值. 分层抽样的抽取比例为701350050=, 总体个数为350015005000+=, ∴样本容量1500010050n =⨯=. 故选:A.10.答案:B解析:二、填空题11.答案:①②③④解析:由随机抽样的特征可判断12.答案:抽签解析:抽签法分为编号、制签、取样三步,这里用了学生的学号作为编号,后面的抽取过程符合抽签法的实施步骤,所以采用的是抽签法.13.答案:8解析:抽样距为4,第一个号码为004,故在001~100中是4的整数倍的数被抽出,在046至078号中有 048,052,056,060,064,068,072,076,共8个.14.答案:2000解析:由题知样本容量为3a b c b ++=,设乙生产线生产了x 件产品, 则36000b x b =, 解得2000x =.(6)用样本估计总体一、选择题1.下列说法中错误的是( )①用样本的频率分布估计总体频率分布的过程中,样本容量越大,估计越精确;②一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n的值为240;③频率分布直方图中,小长方形的高等于该小组的频率;④将频率分布直方图中各小长方形上端的一个端点顺次连接起来,就可以得到频率分布折线图;⑤每一个总体都有一条总体密度曲线,它反映了总体在各个范围内取值的百分比.A.①③B.②③④C.②③④⑤D.①②③④⑤2.一个学校有初中生800人,高中生1200人,则25是初中生占全体学生的( )A.频数B.频率C.概率D.频率分布3.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)[)20,40,40,60,60,80[),80,100若低于60分的人数是15人,则该班的学生人数是( )A. 45B. 50C. 55D. 604.从甲、乙两种玉米苗中各抽10株,测得它们的株高分别如下:(单位:cm)根据上表数据估计( )A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐5.如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( )A.65B.64C.63D.626.已知样本: 12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么频率为0.25的样本的范围是( )A. [)5.5,7.5B. [)7.5,9.5C. [)9.5,11.5D. [)11.5,13.57.一组数据的标准差为s,将这组数据中每一个数据都缩小到原来的12,所得到的一组新数据的方差是( )A.2 2 sB. 24sC.2 4 sD. 2s8.某中学为落实素质教育特别设置校本课程.高一年级360名学生选择摄影、棋类、武术、美术四门校本课程情况的扇形统计图如图所示,从图中可以看出选择美术的学生人数有( )A.18人B.24人C.36人D.54人PM是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据9. 2.5PM监测点统计的数据(单位:毫克/每立方米)列出某地某日早8点至晚7点甲、乙两个 2.5的茎叶图,则甲、乙浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定10.某高二(1) 班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为( )A.20,2B.24,4C.25,2D.25,4二、填空题11.为了了解商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得的数据整理后,画出频率分布直方图(如下图),已知从左至右前3个小组的频率之比为1 : 2 : 3,第4小组与第5小组的频率分别为0.175和0.075,第2个小组的频数为10,则抽取的顾客人数是__________.12.在一次马拉松比赛中, 35名运动员的成绩(单位:分钟)的茎叶图如图所示.13| 0 0 3 4 5 6 6 8 8 8 914| 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 7 815| 0 1 2 2 3 3 3~号,再用系统抽样方法从中抽取7人,则其中成绩在若将运动员按成绩由好到差编为135139,151上的运动员人数是__________区间[]13.随机抽取某班10名同学,测量他们的身高(单位:cm)获得身高数据的茎叶图(如图),则这个班的众数为__________,极差__________.14.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:若要从这四人中选择一人去参加该运动会射击项目比赛,最佳人选是__________(填“甲”“乙”“丙”“丁”中的一个)参考答案一、选择题 1.答案:C 解析:选C.样本越多往往越接近于总体,所以①正确;②中n=40÷0.125=320;③中频率分布直方图中,小长方形的高等于该小组的频率÷组距;④中应将频率分布直方图中各小长方形上端的中点顺次连接起来得到频率分布折线图;⑤中有一些总体不存在总体密度曲线,如“掷硬币”这样的离散型总体(结果是固定的,只有正面和反面两种可能,且可能性相等),故②③④⑤错误. 2.答案:B 解析: 3.答案:B解析:第一、第二小组的频率分别是0.1,0.2,所以低于60分的频率是0.3,设班级人数为m ,则150.3,50m m==.选B. 4.答案:D 解析:∵()12541403722141939214210=⨯+++++++++130010=⨯()30cm ==()()1127164427441640164031031cm 1010⨯++++++++=⨯= ∴<,即乙种玉米的苗长得高.∵,即甲种玉米的苗长得整齐.综上,乙种玉米的苗长得高,甲种玉米的苗长得整齐. 故选D. 5.答案:B解析:甲的中位数为28,乙的中位数为36, ∴甲、乙比赛得分的中位数之和为64. 6.答案:D解析:[)5.5,7.5的频数为2,频率为0.1; [)7.5,9.5的频数为6,频率为0.3; [)9.5,11.5的频数为7,频率为0.35; [)11.5,13.5的频数为5,频率为0.25. 7.答案:C 解析: 8.答案:A解析:()360125%40%30%18⨯---= (人),故选A. 9.答案:A 解析:,.所以甲、乙浓度的方差较小的是甲. 10.答案:C解析:由频率分布直方图,可知分数在[]90,100内的频率和在[)50,60内的频率相同,所以分数在[]90,100内的人数为2,总人数为2250.08=。
高二寒假作业答案

一、和角公式1.C2.C3. D4. B5.D6.B7.A8.B9.597210.111.3-12. 13.解:、、 (1)()f x 的最小正周期是π。
(2)∵ππππ4244≤+≤+x所以当:2442221x f x +===ππ时,×max ();所以当:242x f x +==-ππ,m i n ()14:-3 15∴且∵,,∴∴sin sin cos sin cos sin cos 2894900000ααααπαααα=-=-<<<><->∴×cos cos sin (sin cos )(cos sin )()21317317922ααααααα=-=+-=-=-tan 2α∴=16. sin 49α=-二、倍角公式和半角公式1.C2.D3.C4.D5.A6.B7.C8.B9. 210. 2sin2 11.120119- 12.18113cos 42x =. 00000000000000014sin 6cos 48cos 24cos12sin12cos12cos 24cos 482cos 6sin 24cos 24cos 48sin 48cos 484cos 68cos 6sin 96116cos 616o o =====.解:上式=15cos(2)450πα-=-三、正弦定理、余弦定理1.D.2.A.3.A.4.B.5.A6.332 7.A 8.B 9. 钝角;直角;锐角 10.6121或13.解:ABD ∆中,由余弦定理得:22202cos60AB AD BD AD BD =+-⋅即 222114102102BD BD =+-⨯⨯⨯,所以16BD =.BCD ∆中,可求030BDC ∠=,由正弦定理得:00sin 30sin135BC BD=,即122BC =BC =14. ,4π=A .125,3ππ==C B 15. 解:.3,,2ππ=∴=+++=B C B A C A B..0)(,02,3cos 2,cos 2,,222222222是正三角形即根据余弦定理又ABC c a c a ac c a ac c a ac B ac c a b ac b ∆∴=∴=-=-+∴-+=∴-+==π16. (Ⅰ) 1m =(Ⅱ)由(Ⅰ)知 21cos =A ,则23sin =A ,又212222=-+bc a c b 所以22222a bc a c b bc -≥-+=即2a bc ≤ 故433232sin 22=⋅≤=∆a A bc S ABC .四、正弦定理、余弦定理的应用1. C2.B3.A4.B5. A6. A7.B8. B9. 110. 1665-11. 2x <<12. 12m > 13.解:(1)001cos(),60,1202A B A B C +=∴+== .2222(2)2cos ()22cos c a b ab C a b ab ab C=+-=+--,2212222()102c ∴=-⨯-⨯⨯-=,AB ∴=(3)11sin 22222ABC S ab C ∆==⨯⨯=.14. 解:两点甲船和乙船分别到达小时后设经过D C x ,, x BD AB AD x AC 1020,8-=-==则,,6170.,614800)6170(24440056024421)1020(82)1020()8(60cos 222222222取得最小值时当取得最小值取得最小值时当CD x CD CD x x x x x x x AD AC AD AC CD =∴+-=+-=⋅-⋅⋅--+=︒⋅⋅-+=∴此时,甲、乙两船相距最近.15. 030.A =16.解: (1) 设三边分别为,1,2,x x x ++且*x N ∈,设最大角为α,则222(1)(2)0x x x ++-+<,13,1x x ∴-<<∴=或2,经检验2x =.∴49161cos 2234α+--∴==⨯⨯,1arccos().4α∴=-(2)设夹α的两边长为,,a b则4 4.a b ab +=≥≤sin S ab α∴==≤所以平行四边形的最大面五、数列1.C2.D3.A4.B5.B6.B7.D8.B9.40 10.n 11.1n n )21(23a --=12. +∈-=N k ,23k n 13.解: 0,13,12,35. )N n (1n 1n a *n ∈+-=. 14. ⎩⎨⎧≥-==)2n (22n 1)(n 1a n15. n *n S 21(n N )=-+∈,a n =-2n-1.B16. 解:(1) 3128)10(f a 10== (2)不是 (3)证明:13n 3113n 23n a n +-=+-=,又*N n ∈,113n 30<+<∴,1a 0n <<∴.六、等差数列1.A2.D3.B4.C5.C6.A7.B8.B9.24 10.100 11.11 12.10 13.证明:设等差数列{a n }的公差为d,前n 项和为S n ,则S n =d 2)1n (n na 1-+,)2d a (n 2d d 21n a n a a a b 11n 21n -+=-+=++=∴ ,2db b 1n n =-∴-(常数),∴数列{b n }是等差数列. 14.证明:c1,b 1,a 1成等差数列,∴c b a c ,b a c b ,a c b a ++++++,即1c b a ,1b a c ,1a c b ++++++成等差数列,∴cba ,b ac ,a c b +++成等差数列. 15. ⎩⎨⎧≥∈+-≤≤∈-=)51n ,N n (n 100n 5000)51n 1,N n (n 100n T *2*2n 16.(1)(2) (方法一)12m m m a a a ++=(27)(25)23m m m ---,设23m t -=, 则12m m m a a a ++=(4)(2)86t t t t t --=+-, 所以t 为8的约数(方法二)因为1222222(4)(2)86m m m m m m m m a a a a a a a a +++++++--==-+为数列{}n a 中的项, 故m+28a 为整数,又由(1)知:2m a +为奇数,所以2231,1,2m a m m +=-=±=即 经检验,符合题意的正整数只有2m =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学寒假作业满分100分,考试时间90分钟姓名____________ 班级_________学号__________一、填空题(本大题满分36分,每题3分):1.在各项均为正数的等比数列{an}中,已知123a a a 2++=, 345a a a 8++=,则456a a a ++=___________.2.已知(0,3)A -,(3,3)B ,(,1)C x -,若AB 与BC 共线,则x 等于______________.3.已知圆锥的底面半径为3 , 母线长为12 , 那么圆锥侧面展开图所成扇形的圆心角为________.4.已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .5.已知直线l 的方向向量是e ,平面βα,的法向量分别是21,n n 若a =⋂βα,且1n ⊥,2n ⊥,则l 与a 的关系是____________6.与双曲线14522=-y x 有共同渐近线,且过点)2,2(的双曲线方程是___________。
7.O 是平面上一点,C B A ,,是平面上不共线三点,动点P 满足:(),++=λ⎥⎦⎤⎢⎣⎡∈21,0λ,已知21=λ2=. 则PC PA PB PA ⋅+⋅的最小值____________.8.过双曲线G :12222=-by a x )0,0(>>b a 的右顶点A 作斜率为1的直线m ,分别与两渐近线交于C B ,两点,若AC AB 2=,则双曲线G 的离心率为 .9.正方体ABCD —A 1B 1C 1D 1的棱长为1,O 是A 1C 1的中点,则O 到平面ABC 1D 1的距离为 .10.一条光线经过点P (2,3)射在直线x +y +1=0上,反射后,经过点A (1,1),则光线的反射线所在的直线方程为________.11.阅读右边的程序框图,运行相应的程序,则输出i 的值为12.已知数列{a n}满足11=a ,)(12*1N n a a n n ∈+=+则数列{}n a 的通项公式_____________.二、选择题(本大题满分12分,每题3分):13.一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )14.已知等比数列}{n a 的公比为正数,且3a 9a =225a ,2a =1,则1a =A.21B. 22C. 2D.215.已知F 1、F 2是椭圆162x +92y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB |=5,则|AF 1|+|BF 1|等于( )A .2 B .10 C .9 D .1616.某圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于2392cm ,母线与轴的夹角为045,则这个圆台的高为A.7B.14C.21D.214 三、解答题(本大题满分52分):17. (本题满分6分)已知椭圆2222:1(0)x y G a b a b+=>>(),斜率为1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求PAB ∆的面积.18. (本题满分9分).已知椭圆22221(0)x y a b a b +=>>的左焦点为F (0),离心率e=2,M 、N 是椭圆上的的动点。
(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P 满足:2OP OM ON =+,直线OM 与ON 的斜率之积为12-,问:是否存在定点12,F F ,使得12PF PF +为定值?,若存在,求出12,F F 的坐标,若不存在,说明理由。
(Ⅲ)若M 在第一象限,且点,M N 关于原点对称,点M 在x 轴上的射影为A ,连接NA 并延长交椭圆于点B ,证明:MN MB ⊥;19. (本题满分10分).在等差数列{}n a 和等比数列{}n b 中,111==b a ,84=b ,{}n a 的前10项和5510=S 。
(1)求n a 和n b ;(2)现分别从{}n a 和{}n b 的前3项中各随机抽取一项,,求这两项的值相等的概率; (3)设{}n n b a 的前n 和为n T ,求n T 。
20. (本题满分13分).已知公差不为0的等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列(1)求通项公式n a (2)设2n a n b =,求数列n b 的前n 项和n s21. (本题满分14分).如图,四边形ABCD 为平行四边形,四边形ADEF 是正方形,且BD ⊥平面CDE ,H 是BE 的中点,G 是AE,DF 的交点. (1)求证:GH ∥平面CDE ; (2)求证:面ADEF ⊥面ABCD.试卷答案1.162.13.90°4.185.,//a l l 与a 重合.6.14522=-x y7.-2 8.10或3109.42 10.4x -5y +1=0 11.12.*21().n n a n N =-∈ 略13.C 14.B 15.A 16.B17.(Ⅰ)由已知得62,c c a ==解得 3.a =,又222 4.b a c =-= 所以椭圆G 的方程为22 1.124x y +=(Ⅱ)设直线l 的方程为.m x y +=由⎪⎩⎪⎨⎧=++=141222y x m x y 得.01236422=-++m mx x 设A 、B 的坐标分别为),)(,(),,(212211x x y x y x <AB 中点为E ),(00y x , 则,432210m x x x -=+=400mm x y =+=;因为AB 是等腰△PAB 的底边, 所以PE ⊥AB.所以PE 的斜率.143342-=+--=m mk 解得m=2。
此时方程①为.01242=+x x 解得.0,321=-=x x 所以.2,121=-=y y 所以|AB|=23.此时,点P (—3,2)到直线AB :02=+-y x 的距离,2232|223|=+--=d 所以△PAB 的面积S=.29||21=⋅d AB略18.解:(Ⅰ)由题设可知:2,2c a c c a ⎧=⎪==⎨=⎪⎩故2222b a c =-=故椭圆的标准方程为:22142x y +=(Ⅱ)设1122(,),(,),(,)p P P x y M x y N x y ,由2OP OM ON =+可得:12122.............2P P x x x y y y =+⎧⎨=+⎩①由直线OM 与ON 的斜率之积为12-可得:121212y y x x =- ,即121220............x x y y +=②由①②可得:()()22222222121211222222(2)4(2)P P x y x x y y x y x y +=+++=+++M 、N 是椭圆上,故2222112224,24x y x y +=+=故22220P P x y +=,即2212010P Px y +=由椭圆定义可知存在两个定点12(F F ,使得动点P 到两定点距离和为定值 (Ⅲ)设1122(,),(,)M x y B x y由题设可知1122121110,0,0,0,,(,0),(,)x y x y x x A x N x y >>>>≠--由题设可知ABl 斜率存在且满足1211212NA NB y y y k k x x x +=∴=+………….③1211211 1.........MN MB y y y k k x x x -⋅+=⋅+-④将③代入④可得:222221212211222121212()(2)(2)11MN MB y y y y x y x y k k x x x x x x +-+-+⋅+=⋅+=+--……⑤点,M B 在椭圆22142x y +=,故2222221122222121(2)(2)4410MN MB x y x y k k x x x x +-+-⋅+===--所以101MN MB MN MB k k k k MN MB⋅+=∴⋅=-∴⊥略19.(1)设{}n a 的公差为d ,{}n b 的公比为q ,由题意得:8,552910103410===⨯+=q b d S ,解得:2,1==q d 12,-==∴n n n b n a -----------------------------------------------------4分(2)分别从{}n a 和{}n b 的前3项中各随机抽取一项,得到的基本事件有9个:()()()()()()()()()4,3,2,3,1,34,22,21,2,4,1,2,1,1,1,,,,,,,,,合题意的基本事件有两个:()()2,2,1,1,所以所求的概率为:92=P -----------------------------------------------------------------------8分 (3)由错位相减得:n T ()121+-=nn -----------------------------------------12分 略 20.⑴由题意知121114610(2)()(6)a d a d a d a d +=⎧⎨+=++⎩ 1a 2,d 3=-=,所以n a 3n 5=-;⑵数列{}n b 是首项为14、公比为8的等比数列 所以1(18)8141828n n n S --==-21.证明:⑴G 是,AE DF 的交点,∴G 是AE 中点,又H 是BE 的中点, ∴EAB ∆中,AB GH //, ∵ABCD 为平行四边形 ∴AB ∥CD∴//GH CD ,又∵,CD CDE GH CDE ⊂⊄平面平面 ∴//GH 平面CDE ⑵BD CDE ⊥平面,所以BD ED ⊥, 又因为四边形AFED 为正方形,ED AD ∴⊥,AD BD D=,⊥面,- ED ABCD⊂面ED AFED面面.⊥AFED ABCD略。