2020年春冀教版八年级数学下册各阶段试题21.4 一次函数的应用2
2020年春冀教版八年级数学下册各阶段试题21.4 一次函数的应用3

21.4 一次函数的应用要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.参考答案预习练习1-1 7.4 预习练习2-1 D 2-2 大于41.A2.723.(1)当0≤x ≤20时,y 与x 之间的函数表达式为:y=2x(0≤x ≤20);当x >20时,y 与x 之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x >20); (2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨. ∴45.6=2.8(x 1-20)+40,38=2x 2. ∴x 1=22,x 2=19. ∵22-19=3,∴小颖家五月份比四月份节约用水3吨. 4.C 5.D 6.B 7.23或438.(1)s=10t (2)549.根据图形可得:甲的速度是648=8(米/秒), 乙的速度是:6488-=7(米/秒), ∴根据题意得:100-1008×7=12.5(米). 当甲跑到终点时,乙落后甲12.5米. 答:当甲跑到终点时,乙落后甲12.5米. 10.1011.(1)140<x ≤230 x >230 (2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c ,将(140,63),(230,108)代入,得14063,230108.a c a c +=+=⎧⎨⎩解得127.a c ==-⎧⎪⎨⎪⎩,则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=12x-7(140<x ≤230). (4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度; ∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),m=0.75-0.5=0.25. 答:m 的值为0.25.。
2020年春冀教版八年级数学下册各阶段试题21.5 一次函数与二元一次方程的关系1

21.5 一次函数与二元一次方程的关系要点感知 1 一般地,一次函数y=kx+b 的图象上任意一点的坐标都是二元一次方程kx-y+b=0的一个解,以二元一次方程kx-y+b=0的解为__________的点都在一次函数y=kx+b 的图象上.预习练习1-1 以2x-4+y=0方程的解为坐标组成的图形与下列哪个函数的图象相同( ) A.y=2x-4 B.y=2x+4 C.y=-2x-4 D.y=-2x+4 要点感知2 一般地,一次函数y=kx+b(k ≠0)的图象与x 轴的交点的__________坐标是一元一次方程kx+b=0的解;任何一个一元一次方程kx+b=0的解,就是一次函数y=kx+b 的图象与x 轴交点的__________坐标.预习练习2-1 方程2x+12=0的解是直线y=2x+12( )A.与y 轴交点的横坐标B.与y 轴交点的纵坐标C.与x 轴交点的横坐标D.与x 轴交点的纵坐标知识点 一次函数与一次方程的联系1.把方程x+1=4y+3x化为y=kx+b 的形式,正确的是( ) A.y=13x+1 B.y=16x+14 C.y=16x+1 D.y=13x+142.下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是( )3.一次函数y=kx+b 的图象如图所示,则方程kx+b=0的解为( )A.x=2B.y=2C.x=-1D.y=-14.已知方程kx+b=0的解是x=3,则函数y=kx+b 的图象可能是( )5.若方程x-3=0的解也是直线y=(4k+1)x-15与x轴的交点的横坐标,则k的值为( )A.-1B.0C.1D.±16.一次函数y=2x-3与x轴的交点坐标为__________.7.已知关于x的方程mx+n=0的解是x=-2,则直线y=mx+n与x轴的交点坐标是__________.8.利用函数图象,解方程2x-6=0.9.一次函数y=-12x+1的图象与x轴交点的坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)10.如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是( )A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0D.3x+2y-7=011.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是( )A.x=2B.x=4C.x=8D.x=1012.已知二元一次方程3x-y=1的一个解是,.x ay b==⎧⎨⎩那么点P(a,b)一定不在( )A.第一、三象限B.第二、四象限C.第二象限D.坐标轴上13.已知一次函数y=ax+b(a,b为常数,a≠0),x与y的部分对应值如下表:那么方程ax+b=0的解是__________.14.点(2,3)(填“在”或“不在”)直线y=2x-1上,故23xy==⎧⎨⎩,__________(填“是”或“不是”)二元一次方程2x-y=1的一组整数解.15.将直角坐标系中一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数图象与x,y轴分别交于点A,B,则△ABO为此一次函数的坐标三角形,一次函数y=-43x+4的坐标三角形的周长是__________.16.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为多少?17.已知二元一次方程y-kx-2k+4=0化为一次函数后,经过画图发现,它与x轴的交点为-1.(1)请将二元一次方程化为一次函数的形式;(2)这个函数的图象不经过第几象限?(3)求这个一次函数的图象与y轴的交点坐标.18.一次函数y=kx+3的图象与x轴交点到原点的距离是6,求k的值.19.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组10,0.x ymx y n-+=-+=⎧⎨⎩请你直接写出它的解.参考答案要点感知1坐标预习练习1-1 D要点感知2横横预习练习2-1 C1.B2.B3.C4.C5.C6.(32,0) 7.(-2,0)8.令y=2x-6,画出函数y=2x-6的图象,从图中可以看出,一次函数y=2x-6与x轴交于点(3,0),这就是当y=0时,x=3,所以方程2x-6=0的解是x=3.9.C 10.D 11.A 12.C 13.x=1 14.在是15.1216.∵一次函数y=kx+b过(0,1),(2,3),∴1,2 3.bk b=+=⎧⎨⎩解得1,1.bk==⎧⎨⎩∴一次函数解析式为y=x+1.当y=4时,x=3.即kx+b=4的解为x=3.17.(1)由已知可知,一次函数过点(-1,0),代入二元一次方程,得0=-k·(-1)-2k+4.解得k=4.故一次函数的形式为:y=4x+4.(2)∵x=0时y=4,y=0时x=-1,∴这个函数的图象不经过第四象限.(3)当x=0时,y=4×0+4=4.故一次函数的图象与y轴的交点坐标为(0,4).18.一次函数y=kx+3与x轴相交,交点纵坐标为0,即y=0,则kx+3=0,∵函数y=kx+3是一次函数,∴k≠0.∴x=-3 k .∵一次函数y=kx+3的图象与x轴交点到原点的距离是6,∴|-3k|=6.①当k>0时,3k=6,解得k=12;②当k<0时,-3k=6,解得k=-12.综上所述,k的值为±1 2 .19.(1)∵(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2.(2)∵直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),∴方程组10,x ymx y n-+=-+=⎧⎨⎩的解是1,2.xy==⎧⎨⎩。
冀教版八年级数学下册第二十一章《一次函数》同步练习题

14.已知直线 y=kx+b 经过点(5/2,0)且与坐标轴所围成的三角形面积为 25/4,求该函数 的表达式。
21.4 一次函数的应用
一.选择题(每小题 6 分)
7
1.一根弹簧的原长为 12 cm,它能挂的重量不能超过 15 kg 并且每挂重 1kg 就伸长12 cm,写 出挂重后的弹簧长度 y(cm)与挂重 x(kg)之间的函数关系式( )
11.已知 y+3 和 2x-1 成正比例,且 x=2 时,y=1。 (1)写出 y 与 x 的函数解析式。 (2)当 0≤x≤3 时,y 的最大值和最小值分别是多少?
21.2 一次函数的图像和性质
一.选择题(每题 6 分)
1.一次函数 y=x+5 的图像不经过( )
A. 第一现限
B. 第二象限
C.第三象限
2
12.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本 1 元,但甲商店的优惠条件是:购买 10•本以上,•从第 11•本开始按标价的 70%卖;乙商店 的优惠条件是:从第 1 本开始就按标价的 85%卖.
(1)小明要买 20 个练习本,到哪个商店购买较省钱? (2)写出甲、乙两个商店中,收款 y(元)关于购买本数 x(本)(x>10)的关系式, 它们都是正比例函数吗? (3)小明现有 24 元钱,最多可买多少个本子?
A.k1<k2<k3<k4
B. k2<k1<k4<k3
C.k1<k2<k4<k3
D.k2<k1<数 y=kx,又是 y 的值随 x 的增大而减小的图象是
()
冀教版初中数学八年级下册21.4 一次函数的应用

冀教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!冀教版初中数学和你一起共同进步学业有成!一次函数的应用【学习目标】1.经历应用一次函数解决实际问题的过程.2.提高通过文字、表格、图像获取信息的能力.【重点】利用一次函数解决实际问题.【难点】一元一次方程与一次函数关系.【自学指导】1.自主学习阅读课本P99-100:一农民带上若干千克自产的土豆进城出售,为了方便他带了一些零钱备用,按市场价售出一些后又降价出售,售出的土豆千克数x与他手中持有的钱数(含备用零钱)y的关系如图所示,结合图象回答下列问题:(1)这位农民自带的零钱是多少?(2)试求降价前y与x之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2.自学检测:(1)一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元.①写出每月话费y元与通话时间x(x>120)的函数关系式;②分别求每月通话时间为100分,200分的话费.(2)地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系.深度(千米)…… 2 4 6 ……温度(℃)…… 90 160 300 ……1.根据上表,求t(℃)与h(千米)之间的函数关系式.2.求当岩层温度达到1700℃时,岩层所处的深度为多少千米?【课堂练习】1.假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(1)这是一次米赛跑;(2)甲、乙两人中先到达终点的是;(3)乙在这次赛跑中的速度为;(4)甲到达终点时,乙离终点还有 米.【拓展延伸】2.为鼓励居民节约用水,出台了新的用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分按每立方米2元计算).现某户居民某月用水x立方米,水费为y元,(1)求y与x的函数关系式;(2)y与x的函数关系用图象表示正确的是 ( )【总结反思】1.本节课我学会了:还有些疑惑:2.做错的题目有:原因:21.4 一次函数的应用(2)【学习目标】1.通过解决实际问题,领悟;函数与方程、不等式的关系及其应用价值.2.初步学会利用函数性质进行判断及决策的方法,增进应用函数思想的意识.【重点】一元一次方程、一元一次不等式与一次函数的关系.【难点】利用函数性质进行判断及决策.【自学指导】自主学习P102-1031.自学检测:一家电信公司给顾客提供两种上网收费方式:方式A以0.1元\分的价格按上网时间计费,方式B除收20元\月基费外,再以0.05元\分的价格上网时间计费,如何选择收费方式能使上网者更合算.解法一:设上网时间为x分,若按方式A则收y= 元;若按方式B则收y= 元,在同一直角坐标系中的图像如图所示:当x = 400 时, = ;当 0 > 400时,> .因此,当一个月内上网时间少于400分时,选择方式合算;当一个月内上网时间等于400分时,选择方式合算;当一个月内上网时间多于400分时,选择方式合算.解法二:设上网时间为x分钟,方式B与方式A两种计费的差额为y元,则y随x变化的函数关系式为:y= ;化简:y= .在直角坐标系中画出函数的图象(空白处画图).计算出直线y=-0.05x+20与x轴交点为(,).由图象可知:当时,y>0,即选方式省钱.当时,y=0,即选方式A、B没有区别.当时,y<0,即选方式省钱.【课堂练习】1.移动电话有下面两种计费方式:全球通神州行月租费50元∕月0本地通话费0.4元∕分0.6元∕分(1)分别写出两种通讯业务每月应缴费用y(元)与通话时间x(分)之间的关系式?(2)在同一坐标系中作出它们的图像.(3)若每月平均通话时间为300分,你选择哪类通讯业务?(4)每月通话多长时间时,两种收费方式所缴话费相同?【拓展延伸】2.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,哥哥每秒跑4m.列出函数关系式,作出函数图象,观察图象回答下列问题:(1)何时哥哥追上弟弟?(2)何时弟弟跑在哥哥前面?(3)何时哥哥跑在弟弟前面?(4)谁先跑过20m?谁先跑过100m?3.某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费.(1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;(2)在同一坐标系中作出它们的图像;(3)根据图像回答问题:①印刷800份说明书时,选择哪家印刷厂比较合算?②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?【总结反思】1.本节课我学会了:还有些疑惑:2.做错的题目有:原因:相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
翼教版八年级数学下册一次函数的应用2测试题

21.4 一次函数的应用基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时6、关于x 的一次函数)2()73(-+-=a x a y 的图像与y 轴的交点在x 轴的上方,则y 随x 的增大而减小,则a 的取值范围是 。
八年级数学下册第二十一章一次函数21.4一次函数的应用21.4.2一次函数的应用二课后练习新版冀教版

一次函数的应用1.(2017·上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1 000平方米时,每月收取费用5 500元;绿化面积超过1 000平方米时,每月在收取5 500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数表达式(不要求写出自变量的取值范围);(2)如果某学校目前的绿化面积是1 200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.解:(1)设y =kx +b ,则有⎩⎪⎨⎪⎧b =400,100k +b =900,解得⎩⎪⎨⎪⎧k =5,b =400,∴y =5x +400.(2)绿化面积是1 200平方米时,甲公司的费用为6 400元,乙公司的费用为5 500+4×200=6 300(元),∵6 300<6 400,∴选择乙公司的服务,每月的绿化养护费用较少.2.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y (个)与加工时间x (时)之间的函数图像分别为折线OA —AB 与折线OC —CD (如图所示).(1)求甲机器改变工作效率前每小时加工零件的个数;(2)求乙机器改变工作效率后y 与x 之间的函数关系式; (3)求这批零件的总个数. 解:(1)80÷4=20(个),甲机器改变工作效率前每小时加工零件的个数为20个. (2)设关系式为y 乙=kx +b (k ≠0),将点(2,80),(5,110)代入得⎩⎪⎨⎪⎧2k +b =80,5k +b =110,解得⎩⎪⎨⎪⎧k =10,b =60,∴y 乙=10x +60(2≤x ≤6),∴乙机器改变工作效率后y 与x 之间的函数关系式为y 乙=10x +60(2≤x ≤6). (3)设甲机器改变工作效率后y 与x 的关系式为y 甲=mx +n (m ≠0),将点(4,80),(5,110)代入得⎩⎪⎨⎪⎧4m +n =80,5m +n =110,解得⎩⎪⎨⎪⎧m =30,n =-40,∴y 甲=30x -40(4≤x ≤6),当x =6时,y 甲=30×6-40=140,y 乙=10×6+60=120,140+120=260(个),∴这批零件的总个数是260个.3.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图像,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图①所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系如图②所示.(1)观察图像,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y (单位:千克)与上市时间x (单位:天)的函数关系式; (3)试比较第10天与第12天的销售金额哪天多.解:(1)120千克.(2)当0≤x ≤12时,设日销售量与上市时间的函数关系式为y =k 1x (k 1≠0).∵点(12,120)在y =k 1x (k 1≠0)的图像上,∴k 1=10. ∴函数关系式为y =10x (0≤x ≤12).当12<x ≤20时,设日销售量与上市时间的函数关系式为y =k 2x +b (k 2≠0). ∵点(12,120),(20,0)在y =k 2x +b (k 2≠0)的图像上,∴⎩⎪⎨⎪⎧12k 2+b =120,20k 2+b =0,解得⎩⎪⎨⎪⎧k 2=-15,b =300.∴函数关系式为y =-15x +300(12<x ≤20).综上,y =⎩⎪⎨⎪⎧10x 0≤x ≤12,-15x +30012<x ≤20.(3)∵第10天和第12天在第5天和第15天之间,∴当5≤x ≤15时,设樱桃价格与上市时间的函数关系式为z =k 3x +b 1(k 3≠0). ∵点(5,32),(15,12)在z =k 3x +b 1(k 3≠0)的图像上,∴⎩⎪⎨⎪⎧5k 3+b 1=32,15k 3+b 1=12,解得⎩⎪⎨⎪⎧k 3=-2,b 1=42,∴函数关系式为z =-2x +42(5≤x ≤15).当x =10时,y =10×10=100,z =-2×10+42=22, 销售金额为100×22=2 200(元);当x =12时,y =120,z =-2×12+42=18, 销售金额为120×18=2 160(元). ∵2 200>2 160, ∴第10天的销售金额多.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
八年级数学下册 第二十一章 一次函数 21.4 一次函数的应用典型例题(二)素材 (新版)冀教版

典型例题〔二〕例1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。
开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。
一段时间,风速保持不变。
当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止。
结合风速与时间的图像,答复以下问题:〔1〕在y 轴〔 〕内填入相应的数值; 〔2〕沙尘暴从发生到结束,共经过多少小时? 〔3〕求出当时,风速y 〔千米/时〕与时间x 〔小时〕之间的函数关系式。
分析 〔1〕沙尘暴开始时,风速平均每小时增加2千米,那么4小时后,风速到达8千米,后来的6个小时中,风速每小时增加4千米,那么6个小时风速增加24千米,到达32千米/时,后来风速平均每小时减少1千米,那么已到达32千米/时的沙尘暴要32个小时才平息。
解 〔1〕8,32. 〔2〕〔小时〕,∴ 沙尘暴从发生到结束共经过57小时。
〔3〕设所求函数解析式为,由图像可知,该函数图像过点〔25,32〕和〔57,0〕,那么 解得∴.例2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费工程及收费标准如下表所示:运输工具运输费单价〔元/吨·千米〕 冷藏费单价〔元/吨·小时〕过路费〔元〕 装卸及管理费〔元〕汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米〞表示每吨货物每千米的运费,“元/吨·小时〞表示每吨货物每小时的冷藏费.〔1〕设该批发商待运的海产品有x〔吨〕,汽车货运公司和铁路货运公司所要收取的费用分别为〔元〕和〔元〕,试求与与x的函数关系式;〔2〕假设该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?分析在列函数式时要注意:等于运费加上冷藏费再加过路费,等于运费加上冷藏费再加上装卸及管理费.解〔1〕根据题意,得〔2〕分三种情况:①假设,,解得;②假设,,解得;③假设,,解得.综上所述,当所运海产品不少于30吨且缺乏50吨时,应选择汽车货运公司承担运输业务,当所运海产品刚好50吨时,可选择汽车货运公司,铁路货运公司中的任意一家承担运输业务;当所运海产品多于50吨时,应选择铁路货运公司承担运输业务.例3 某市20位下岗职工在近郊承包了50亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:蔬菜烟叶小麦每亩地所需职工数每亩地预计产值1100 750 600请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.分析此题中有两个相等的关系:〔1〕三种作物面积之和为50,〔2〕共有职工20人,有三个未知量:蔬菜、烟叶、小麦的种植亩数.由于未知数比相等关系多一个,因此无法求出这三种作物种植的亩数,只能找到它们之间的关系,从而通过分析这些关系得出问题的解.解设种植蔬菜x亩、烟叶y亩,那么种植小麦亩,根据题意,得.即,∴设预计总产值为W,那么,把代入上式,得.∵,∴,又由每亩蔬菜所需职工人数为可知x为偶数.由一次函数的性质知,当时,,此时W的值最大,为45000元.此时种蔬菜的人数为15人,种小麦的人数为5人.答:种蔬菜30亩,小麦20亩,不种烟叶,这时所有职工都有工作,且农作物预计总产值为45000元.例4 下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司方案装运甲、乙、丙三种蔬菜到外地销售〔每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜〕.甲乙丙每辆汽车能满载的吨数 2 1 1.5每吨蔬菜可获利润〔百元〕 5 7 4〔1〕假设用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?〔2〕公司方案用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售〔每种蔬菜不少于一车〕,如何装运,可使公司获得最大利润?最大利润是多少?分析〔1〕第〔1〕问比较简单,可以用一元一次方程求得其解.〔2〕第〔2〕问中,由于现在有甲、乙、丙三种蔬菜,而条件只有两个:20辆汽车、36吨菜,这样列式就比较困难.如果用y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,那么用辆汽车装运丙种蔬菜,根据蔬菜一共36吨,找到y与z之间的关系,由于每种蔬菜不少于一车,这样可以求出y的取值范围.在此根底上,可以列出所获利润S与y的函数关系,通过讨论y的值的情况,求出所获最大利润的情况.解〔1〕设用x辆汽车装运乙种蔬菜,那么用辆汽车装运丙种蔬菜.根据题意,得,∴即应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜.〔2〕设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,那么用辆汽车装运丙种蔬菜,根据题意:,化简,得,∵,∴.设获得利润为S百元,那么当时,,此时,∴安排15辆汽车装运甲种蔬菜,3辆汽车装运乙种蔬菜,2辆汽车装运丙种蔬菜,可获得最大利润1.83万元.说明:从此题的解题过程中看到,一次函数虽然没有最大值或最小值,但当自变量在某一个确定的范围内变化时,一次函数就有最大值或最小值了.例5 我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨〔0<x<200〕.〔1〕请写出y关于x的函数关系式;〔2〕假设估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.解:〔1〕因为荔枝为x吨,所以芒果为吨.依题意,得即所求函数关系式为:.〔2〕芒果产量最小值为:〔吨〕此时,〔吨〕;最大值为:〔吨〕.此时,〔吨〕.由函数关系式知,y随x的增大而减少,所以,y的最大值为:〔万元〕最小值为:〔万元〕.∴值的范围为68万元84万元.说明:此题主要考查一次函数的应用,用一次函数来解决实际问题。
冀教版初中数学八年级下册《21.4 一次函数的应用》同步练习卷

冀教新版八年级下学期《21.4 一次函数的应用》同步练习卷一.选择题(共10小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5<x<102.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A.Q=40﹣B.Q=40+C.Q=40﹣D.Q=40+3.平行四边形的周长为50,设它的长为x,宽为y,则y与x的函数关系为()A.y=25﹣x B.y=25+x C.y=50﹣x D.y=50+x4.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为xkm,油箱中剩油量为yL,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤5005.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B.C.D.6.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟7.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种关系.如表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为()A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米8.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70B.80C.90D.1009.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3﹣110.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2)D.(,)二.填空题(共10小题)11.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是Q=.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y(元)与买邮票的枚数x(枚)之间的关系式为.13.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是.14.从A地到B地的距离为60千米,一辆摩托车以平均每小时30千米的速度从A地出发到B地,则摩托车距B地的距离s(千米)与行驶时间t(时)的函数表达式为.15.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象.当快车到达甲地时,慢车离甲地的距离为千米.16.在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为m?17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有.(在横线上填写正确的序号)18.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.19.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E 的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为.20.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.三.解答题(共30小题)21.已知等腰三角形的周长是20cm,设底边长为y,腰长为x,求y与x的函数关系式,并求出自变量x的取值范围.22.某汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定的重量,则需要购买行李票,行李票费用y(元)与行李重量x(千克)之间函数关系的图象如图所示.(1)求y与x之间的函数关系.(2)旅客最多可以免费携带多少千克的行李?23.已知等腰三角形的周长为24cm,腰长为xcm,底边为ycm,请你用x的式子表示y,并求x的取值范围.24.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.25.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x (天)之间的关系式是什么?并指出自变量的取值范围.26.小丽一家利用元旦三天驾车到某景点旅游,小汽车出发前油箱有油36L,行驶若干小时后,中途在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱余没油量Q与行驶时间t之间的函数关系式;(3)如果加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.27.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.28.如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问(1)在刚出发时我公安快艇距走私船多少海里?(2)计算走私船与公安快艇的速度分别是多少?(3)写出L1,L2的解析式(4)问6分钟时两艇相距几海里.(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?29.某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?30.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,请根据图象回答下列问题:(1)“基础电价”是元/度;(2)求出当x>240时,y与x的函数表达式;(3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?31.“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.32.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?33.某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?34.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.35.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?36.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?37.四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?38.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图:(1)填空:甲种收费的函数表达式是,乙种收费的函数表达式是;(2)该校某年级每次需印制320~350份学案,选择哪种印刷方式较合算?39.某商场代销甲、乙两种商品,其中甲种商品的进价为120元/件,售件为130元/件,乙种商品的进价为100元/件,售件为150元/件.(1)若商场用36000元购进这两种商品,销售完后可获得利润6000元,则该商场购进甲、乙两种商品各多少件?(2)若商场要购进这两种商品共200件,设购进甲种商品x件,销售后获得的利润为W元,试写出利润W(元)与x(件)函数关系式(不要求写出自变量x的取值范围);并指出购进甲种商品件数x逐渐增加时,利润W是增加还是减少?40.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还.租赁费用y(元)随时间x(天)的变化图象为折线OA﹣AB ﹣BC,如图所示.(1)当租赁时间不超过3天时,求每日租金.(2)当6≤x≤9时,求y与x的函数解析式.(3)甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元.请问乙租这款汽车多长时间?41.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P (1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.42.如图,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x 轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标;(2)求直线BC的解析式;(3)直线EF:y=2x﹣k(k≠0)交AB于E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,请说明理由.43.已知:如图1,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D 为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如图2,如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.44.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.45.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)点A的坐标是;点B的坐标是;点C的坐标是;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.46.已知一次函数的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x 轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.47.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.48.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为,点B的坐标为;(2)求OC的长度;(3)在x轴上有一点P,且△P AB是等腰三角形,不需计算过程,直接写出点P的坐标.49.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.50.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10 OC=8.在OC边上取一点D,将纸片沿AD 翻折,使点O落在BC边上的点E处(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与DE平行,当它与矩形OABC有公共点时,直接写出b的取值范围.冀教新版八年级下学期《21.4 一次函数的应用》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选:D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A.Q=40﹣B.Q=40+C.Q=40﹣D.Q=40+【分析】利用油箱内有油40L,每行驶100km耗油10L,进而得出余油量与行驶路程之间的函数关系式即可.【解答】解:∵汽车油箱内有油40L,每行驶100km耗油10L,∴汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式为:Q =40﹣.故选:C.【点评】此题主要考查了根据实际问题列一次函数关系,表示出油箱内余油量是解题关键.3.平行四边形的周长为50,设它的长为x,宽为y,则y与x的函数关系为()A.y=25﹣x B.y=25+x C.y=50﹣x D.y=50+x【分析】根据平行四边形的对边相等,周长表示为2x+2y,根据已知条件,建立等量关系,再变形即可.【解答】解:∵平行四边形的周长为50,∴2x+2y=50,整理,得y=25﹣x;故选:A.【点评】本题关键是根据长、宽与周长的关系,列出等式.4.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为xkm,油箱中剩油量为yL,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤500【分析】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,可得:L/km,60÷0.12=500(km),所以y与x之间的函数解析式和自变量取值范围是:y=60﹣0.12x,(0≤x≤500),故选:D.【点评】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B.C.D.【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【解答】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20﹣5t,是一次函数图象,即t越大,h越小,符合此条件的只有D.故选:D.【点评】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.6.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟【分析】由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.【解答】解:由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.故选:A.【点评】此题主要考查学生对分段问题的处理能力和往返问题的理解.7.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种关系.如表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为()A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米【分析】先根据题意求出一次函数的解析式,再把y=226代入即可求出答案.【解答】解:设这个一次函数的解析式是:y=kx+b,,解得:,一次函数的解析式是:y=9x﹣20,当y=226时,9x﹣20=226,x=27.3.故选:C.【点评】本题主要考查了一次函数的应用,在解题时要能根据题意求出一次函数的解析式是本题的关键.8.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70B.80C.90D.100【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【解答】解:设第一段折线解析式为y=kx+b,把(1.5,70)与(2,0)代入得:,解得:,即y=﹣140x+280,令x=0,得到y=280,即甲乙两对相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+40)千米,根据题意得:x+x+40=280,解得:x=120,即两车相遇时,乙行驶了120千米,则甲行驶了160千米,∴甲车的速度为80千米/时,乙车速度为60千米/时,根据题意得:(280﹣160)÷80=1.5(小时),1.5×60=90(千米),280﹣120﹣90=70(千米),则快车到达乙地时,慢车还有70千米到达甲地,故选:A.【点评】此题考查了一次函数的应用,弄清题意是解本题的关键.9.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3﹣1【分析】由P在直线y=﹣x+6上,设P(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.【解答】解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.故选:B.【点评】此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.10.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2)D.(,)【分析】作AD⊥x轴于D,CE⊥x轴于E,根据M的坐标求得直线OM的斜率﹣,进一步得出直线AC的斜率为,通过证得△COE≌△OAD,得出CE=OD,OE=AD,所以设A(a,b),则C(﹣b,a),然后根据待定系数法求得直线AC的斜率为,从而得出=,整理得b=7a,然后在RT△AOD中,根据勾股定理得出(7a)2+a2=128,解得a=,b=.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴直线AC的斜率为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选:D.【点评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式,正方形的性质,全等三角形的判定和性质,勾股定理的应用等,根据直线AC的斜率列出方程是本题的关键.二.填空题(共10小题)11.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是Q=50﹣8x.【分析】由:剩余的钱=原有的钱﹣用去的钱,可列出函数关系式.【解答】解:依题意得,剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50﹣8x.故答案为:50﹣8x.【点评】关键是明确剩余的钱与用去的钱之间的等量关系.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y(元)与买邮票的枚数x(枚)之间的关系式为y=5﹣0.8x.【分析】所剩钱数y(元)就是原来的钱数与买x枚邮票的差,据此即可求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.4 一次函数的应用
基础知识:
1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().
A.计时制B.包月制C.两种一样 D.不确定
2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③
3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:
①售2件时甲、乙两家售价一样;
②买1件时买乙家的合算;
③买3件时买甲家的合算;
④买1件时,售价约为3元,
其中正确的说法有.(填序号)
4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min 可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t (min)变化的图像是:()
A. B. C. D.
5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()
A .4小时
B .4.4小时
C .4.8小时
D .5小时
6、关于x 的一次函数)2()73(-+-=a x a y 的图像与y 轴的交点在x 轴的上方,则y 随x 的增大而减小,则a 的取值范围是 。
7、点A 为 直线y=-2x+2上一点,点A 到两坐标轴距离相等,则点A 的坐标是
8、将直线12
x y -=-向上平移1个单位,得到的直线的解析式是 .直线x y 2-=向上平移3个单位,再向左平移2个单位后直线解析式为:_____________
9、 为了增强居民节水意识,某市自来水公司对居民用水采
用以户为单位分段计费的方法收费,每月收取水费y (元)
与用水量x (吨)之间的函数关系如图.按上述分段收费标
准,小明家三、四月份分别交水费26元和18元,则四月份
比三月份节约用水 吨.
巩固练习:
10、某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
11、 在“美丽咸宁,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案: 方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;
方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.
设方案1的购买费和每月垃圾处理费共为元,交费时间为个月;方案2的购买费和每月垃圾处理费共为元,交费时间为个月.
(1)直接写出、与之间的函数关系式;
(2)在同一坐标系内,画出函数、的图象;
(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?
12、某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A和B共8吨,已知生产每吨A,B产品所需的甲、乙两种原料如下表:
销售A,B两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元.
(1)求y与x的函数关系式,并求出x的取值范围;
(2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?。