高数8-2

合集下载

[高等教育]高数 9-2二重积分的计算_OK

[高等教育]高数 9-2二重积分的计算_OK
xd xd y d z D dxdy0 xdz
1x2 y
0 d z
z 1
1 2
y x1
1
xdx
1 2
(1
x)
(1
x
2
y)d
y
0
0
1
1
(
x
2x
2
x
3
)dx
1
40
48
2021/8/18
28
cz
例2. 计算三重积分
by a
x
解:
:
c2
c2x2 a2
c2 y2 b2
z
c2
c2x2 a2
c2 y2 b2
S1
D
(x, y)
y
y y2( x)
y y1( x)
简单区域:平行于 z 轴且穿过闭区域 内部的 直线与闭区域 的边界曲面 S 相交不多 于两点情形.
26
1)先将 x, y 看作定值,将 f (x, y, z)只看作 z 的函数,则
z
z z2(x, y)
F (x, y) z2(x,y) f (x, y, z)dz z1 ( x, y)
4
15
abc3
注:被积函数为一元函数时,多选用截面法
2021/8/18
33
例3 .计算积分
其中是两个球
( R > 0 )的公共部分.
D2z
z R
R
2
提示: 由于被积函数缺 x , y , 利用“截面法” 计算方便 .
D1 z
o x
y
原式 =
R2 z2 dz
0
dxdy
D1 z
R R
z2 dz

高数第八章

高数第八章

第25,26讲 第八章 重 积 分上一章把一元函数微分学推广到多元函数情形.现在要把一元函数定积分推广为多元函数的多重积分、曲线积分和曲面积分.定积分(特定构造的和式极限,“高级和”)所讨论的是分布在某区间上的几何量(曲边梯形面积)或物理量(变速直线运动路程)的积累问题.而多重积分,曲线、曲面积分则能求出分布在平面区域,平面曲线,空间曲面上的整体量,以扩大积分学的应用范围.第一节 二重积分的概念和性质一、二重积分的概念 1.两个实例例1 求曲顶柱体的体积.曲顶柱体是指:以平面上的有界闭区域D 为底,以D 上方的曲面S 为顶,周围是母线平行于z 轴的柱面(见P.306图8-1)今设曲顶方程为(,),(,)z f x y x y D =∈,且设(,)f x y 连续,,(,)0f x y ≥,求该曲顶柱体的体积.V 解 第一步 :“分割”— 化整为零.用一组曲线网将区域D 分成n 个小区域:12,,,n σσσ∆∆∆ ,并用它们记各小区域的面积.,于是大体积相应被分割为n 个曲顶柱体,记体积为:12,,,n v v v ∆∆∆ (见P.306图8-2).第二步:“近似代替”— 以平代曲.i σ∆上任意取一点(,)i i ξη,(,)f x y 在D 上连续,∴当分割充分细小时,可用小平顶柱体体积,()i i i f ξησ∆近似代替小曲顶柱体的体积(,)(1,2,,).i i i i v f i n ξησ∆≈∆= 第三步:“求和”— 积零为整. 11(,)nni i i i i i V v f ξησ===∆≈∆∑∑.第四步:“取极限”— 由近似到精确.1l i m (,)ni i i i V f λξησ→==∆∑,其中λ是n 个小区域i σ∆的直径最大者,即 1max ()i i nd λσ≤≤=∆.例2 求不均匀平面薄板的质量(薄即厚度可忽略不计).设有一块质量分布不均匀的薄板,在xoy 平面上占有区域D (见P.307图8-3), 面密度为ρ(,)x y ,求该薄板 的质量M .解 也分四步完成.“ 分割”: 在xoy 平面上将薄板D 分割为n 小块:12,,,n σσσ∆∆∆ .“近似代替”:在i σ∆上任取一点(,)i i ξη,将此小块近似看作是均匀的,则小块质量为: i M ∆≈ρ(,),(1,2,,)i i i i n ξησ∆= . “求和”: 11nni i i M M ===∆≈∑∑ρ(,)i i i ξησ∆.“取极限”:01lim ni M λ→==∑ρ(,)i i i ξησ∆.以上两例,虽内容不同,但解决问题的方法是一样的,都归结为求一种具有相同结构的“和式的极限”,我们把它抽象出来,得到2.二重积分的定义设二元函数(,)z f x y =在有界闭区域D 上有定义,用任意的曲线网分D 为n 个小区域 12,,,n σσσ∆∆∆ , 并用它们记小区域的面积. 又记 i σ∆的直径为()i d σ∆,并令1max ()i i nd λσ≤≤=∆,在i σ∆上任取一点(,)i i ξη,作乘积 (,),(1,2,,)i i i f i n ξησ∆= , 作和数(称为积分和,或Rimann 和)1(,)nn i i i i S f ξησ==∆∑,令0λ→,若积分和有极限 Ⅰ(它不依赖于区域D 的分法及中间点的取法),则称此极限值为函数(,)z f x y =在区域D 上的二重积分,记作:Ⅰ=01lim (,)(,)ni i i i Df f x y d λξησσ→=∆=∑⎰⎰ (1)其中D 称为积分区域,(,)f x y 称为被积函数,(,)f x y d σ称为被积表达式,d σ称为面积元素.若二重积分(,)Df x y d σ⎰⎰存在,则称(,)z f x y =在区域D 上可积.重要结论:二元连续函数是可积的.(不证)由二重积分的定义知:例1中取顶柱体的体积V 是曲顶柱体函数(,)f x y 在底面区域D 上的二重积分,即 (,)DV f x y d σ=⎰⎰.例2中平面薄板的质量M 是面密度函数ρ(,)x y 在所占区域D 上的二重积分, 即 DM =⎰⎰ρ(,)x y d σ.3.二重积分的几何意义 (1)当(,)0f x y ≥时,则(,)Df x y ⎰⎰d σ表示以(,)z f x y =为顶,以D 为底的曲顶柱体的体积.(2)当(,)0f x y ≤时,则(,)Df x y d σ⎰⎰表示曲顶柱体体积前面加了一个负号.(但不能说是负体积)(3)当(,)1f x y ≡时,(,)DDf x y d d σσσ==⎰⎰⎰⎰为D 的面积.二、二重积分的性质 (P.308)性质1 “常数因子提出来” 若(,)f x y 在区域D 上连续,则(,)(,),(DDkf x y d k f x y d k σσ=⎰⎰⎰⎰为常数)性质2 “一项一项分开积” 若(,),(,)f x y g x y 在D 上连续,则[](,)(,)(,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰.性质3 设区域D 由1D 与2D 组成,且1D 与2D 除边界上点外无公共点,又(,)f x y 在D 上连续,则12(,)(,)(,).DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰性质4 若(,),(,)f x y g x y 在D 上连续,且 (,)(,)f x y g x y ≤,则有不等式(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰特殊地,由于(,)(,)(,)f x y f x y f x y -≤≤,又有不等式(,)(,).DDf x y d f x y d σσ≤⎰⎰⎰⎰性质5 设M ,m 分别是(,)f x y 在D 上的最大值和最小值,σ是D 的面积,则有 (,)Dm f x y d M σσσ≤≤⎰⎰ (估值不等式)性质6 (二重积分的中值定理)设(,)f x y 在闭区域D 上连续,σ为D 的面积,则在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅⎰⎰习 题 8-14 (1)—(4)5 (1)—(4)4. 根据二重积分的性质,比较下列积分的大小:(1) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由x 轴、y 轴与直线1x y +=所围成;(2) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由圆周22(2)(1)2x y -+-=所围成;(3)ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中D 是三角形闭区域,三顶点分别为(1,0),(1,1),(2,0);(4) ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中{(,)35,01}D x y x y =≤≤≤≤.解 (1) 在积分区域D 上,01x y ≤+≤,故有32()()x y x y +≤+,根据二重积分的性质4,可得32()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(2) 由于积分区域D 位于半平面{(,)|1}x y x y +≥内,故在D 上有23()()x y x y +≤+.从而23()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(3) 由于积分区域D 位于条形区域{(,)|12}x y x y ≤+≤内,故知D 上的点满足0l n ()1x y ≤+≤,从而有2[ln()]ln()x y x y +≤+.因此2[ln()]d ln()d .DDx y x y σσ+≤+⎰⎰⎰⎰ (4) 由于积分区域D 位于半平面{(,)|e}x y x y +≥内,故在D 上有ln()1x y +≥,从而有2[ln()]ln()x y x y +≥+.因此2[ln()]d ln()d .DDx y x y σσ+≥+⎰⎰⎰⎰5. 利用二重积分的性质估计下列积分的值:(1) ()d DI xy x y σ=+⎰⎰其中{(,)01,01}D x y x y =≤≤≤≤;(2) 22sin sin d DI x y σ=⎰⎰其中{(,)0,0}D x y x y ππ=≤≤≤≤;(3) (1)d DI x y σ=++⎰⎰其中{(,)01,02}D x y x y =≤≤≤≤;(4) 22(49)d DI x y σ=++⎰⎰其中22{(,)4}D x y x y =+≤.解 (1) 在积分区域D 上,01x ≤≤,01y ≤≤,从而0()2xy x y ≤+≤,又D 的面积等于1,因此0()d 2.Dxy x y σ≤+≤⎰⎰(2) 在积分区域D 上,0sin 1x ≤≤,0sin 1y ≤≤,从而220sin sin 1x y ≤≤,又D 的面积等于2π,因此2220sin sin d π.Dx y σ≤≤⎰⎰(3) 在积分区域D 上,014x y ≤++≤,D 的面积等于2,因此2(1)d 8.Dx y σ≤++≤⎰⎰(4) 在积分区域D 上,2204x y ≤+≤,从而22229494()925,x y x y ≤++≤++≤,又D 的面积等于4π,因此2236π(49)d 100π.Dx y σ≤++≤⎰⎰第27,28讲 第二节 二重积分的计算方法— 化为两个定积分,即累次积分. 一、在直角坐标系下计算二重积分当(,)f x y 在区域D 上可积时,其积分值与分割方法无关,因此取特殊的分割法来计算二重积分1.用两组分别平行于x 轴,y 轴的直线分割区域D ,这时面积元素d dxdy σ=, 从而(,)(,)DDf x y d f x y dxdy σ=⎰⎰⎰⎰.2.化二重积分为累次积分 设(,)0f x y ≥,则(,)Df x y dxdy ⎰⎰表示曲顶柱体的体积V ,用“切片法”求V(1)设区域D 由直线,x a x b == 及曲线12(),()y x y x ϕϕ==围成: 12()()x y x a x bϕϕ≤≤⎧⎨≤≤⎩(这称x -型区域)回忆:已知平行截面面积,求立体体积公式 8-4 ()a ()baV A x dx =⎰, ()A x 是平行截面面积.现用平行于yoz 的平面0x x =去截曲顶柱体,得截面,其面积为A 0()x (图8-5)是一个曲边梯形,曲边方程为:0(,)z f x y =,因此,由定积分的几何意义,2010()00()()(,)x x A x f x y dy ϕϕ=⎰ (1)'让0x 取遍整个[],a b ,得到截面面积 21()()()(,)x x A x f x y dy ϕϕ=⎰ (1)''于是,由“已知平行截面面积求立体体积公式”⇒ 22111()()()()()(,)(,)bbx b x aax a x V A x dxf x y dy dx dx f x y dy ϕϕϕϕ''⎡⎤===⎢⎥⎣⎦⎰⎰⎰⎰⎰()代入 (1)这叫累次积分.第一次对y 的积分,是求x 处的截面面积()A x ,将x 看作常数,第二次对x 积分,是沿x 轴加这些薄片的体积()A x dx ,这时x 是积分变量.注 公式(1)成立的条件是“(,)f x y 在D 上连续”,并不要求(,)0.f x y ≥公式(1)是在x -型积分域下,将二重积分化为先对y 后对x 的两次定积分.如何确定两次的积分限呢?先用平行于y 轴的直线在[],a b 内一点x 处穿入D 的下边界,穿出上边界,其交点的坐标12(),()x x ϕϕ为第一次先对y 积的下限与上限,再将D 投影到x 轴上,得交点,a b 为第二次对x 积分的下限与上限.(称“穿口法”,定限口诀是:后积先定限(常数),限内画条线,先交下限写,后交上限见.) 例1 化二重积分(,)Df x y d σ⎰⎰为累次积分.其中;(1) D 由1,2,0,2x x y y =-===围成; (2)D 由2,y x =及2x y =围成. (3)D 由2,,2y x y x y x ==-=-围成. 解 计算二重积分时,先画好积分区域的草图.(1)积分域是x -型的矩型域,由公式(1)⇒221(,)(,)Df x y d dx f x y dy σ-=⎰⎰⎰⎰.(2)解方程组求交点,画积分域草图2201,01x x y x y y x y ==⎧=⎧⎧⇒⎨⎨⎨===⎩⎩⎩这时x -型积分域,由公式(1)⇒(先对y 积分,将x 看作常数,积分限是x 的函数,第二次对x 积分,积分限为常数)21(,)(,).xDf x y d f x y d yσ=⎰⎰⎰(3)解方程组求交点,画积分区域草图1212y x x y x =-⎧⇒=-⎨=-⎩, 2212y xx y x =⎧⇒=⎨=-⎩如先对y 积分时,用平行y 轴的直线不能一次穿过区域D 时,需将D 分为1D 域2D ,然后由积分的可加性质3及公式(1),得到22122121(,)(,)(,).x x xxDD D f x y d dx f x y dy dx f x y dy σ----=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰例2 求ⅠDxyd σ=⎰⎰,其中D 由,y x =与2y x =围成. 解 解方程组求交点,画区域草图 1220,1y xx x y x=⎧⇒==⎨=⎩由公式(1)⇒222111350()211().224x x x xDy xyd xdx ydy x dxx x dx σ===-=⎰⎰⎰⎰⎰⎰例3 求Ⅰ(32),D x y d D σ=+⎰⎰由2x y +=及,x y 轴围成.解 由积分区域草图及定理1 Ⅰ2222222020(32)(3)2(2).3xx dx x y dy xy y dx x x dx --=+=+=+-=⎰⎰⎰⎰(2)若积分区域D 是由,y c y d ==及12(),()x y x y ψψ==围成,这称y -型积分域. 二重积分化为累次积分时,应先对x 后对y 积分,这时积分公式为: 21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰(2)对y -型积分域,如何确定两次的积分限呢? 图8-6 ()a 先用平行于x 轴的直线在[],c d 内一点y 处,穿入D 的左边界,穿出右边界,交点的坐标12(),()y y ψψ为第一次先对x 积分的下限与上限(是y 的函数),然后将D 投影到y 轴上得交点,c d 为第二次对y 积分的下限与上限(是常数).例4 求Ⅰ22Dx d yσ=⎰⎰,其中D 由2,,1y y x xy ===围成.解 解方程组求交点的坐标,画出积分域的草图11x yy xy =⎧⇒=⎨=⎩ 这是y -型积分域,先选择对x 后对y 积分, 及公式(2)⇒Ⅰ224222235122111111111127().3332464yy yyy y dy x dx x dy y y dy y y --⎡⎤⎡⎤===-=+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ 注 如若选择先对y 积分时,需把D 分块,则繁. 例5求ⅠDxyd σ=⎰⎰其中D 由抛物线2y x =及直线2y x =-围成. 解 解方程组求交点,画积分域草图214,122x x y xy y y x ⎧===⎧⎧⇒⎨⎨⎨=-==-⎩⎩⎩ 强调 积分次序的选择原则:① 考虑积分域的特点; ② 被积函数(下例说明)本题D 即是x -型域,又是y -型域,这时,根据D 的特点,应选择先对x 积分(因为平行x 轴直线可一次穿过D 的左,右边界,而先对y 积分时,D 应分块). 故由公式(2)⇒ Ⅰ222222211145().28y y y y ydy xdx y x dy ++--===⎰⎰⎰例6 求Ⅰsin Dy d yσ⎰⎰,其中D 由2y x =及y x =围成.解 解方程组求交点,画出积分区域草图 20,1y xy y y x=⎧⇒==⎨=⎩这时不能选择先对y 积分,因考虑到被积函数,积不出来,故应先对x 积分,由公式(2)⇒ Ⅰ2211sin sin 1y yy yy y dy dx dy dx yy==⋅⎰⎰⎰⎰11120sin ()sin sin y y y dy ydy y ydy y=-=-⎰⎰⎰110cos11cos cos y yydy =-++-⎰cos11cos1sin11sin10.1585.=-++-=⋅≈习 题 8-21 (1)(3) 2(2)(4) 4(1)(3)(5)1. 计算下列二重积分:(1) 22()d D xy σ+⎰⎰,其中{(,)|||1,||1}D x y x y =≤≤;(2) (32)d Dx y σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域; (3)323(3)d D xx y y σ++⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤;(4) cos()d Dx x y σ+⎰⎰其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.解 (1) 1311112222221111128()d d ()d d (2)d .333Dy x y x x y y x y x x x σ-----⎡⎤+=+=+=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰ (2) D 可用不等式表示为03,02y x x ≤≤-≤≤,于是2222200022(32)d d (32)d [3]d 20(422)d .3xxDx y x x y y xy y xx x x σ--+=+=+=+-=⎰⎰⎰⎰⎰⎰(3)11323323(3)d d (3)d Dx x y y y x x y y x σ++=++⎰⎰⎰⎰ 1411333001d ()d 1.44x x y y x y y y y ⎡⎤=++=++=⎢⎥⎣⎦⎰⎰(4) D 可用不等式表示为0,0πy x x ≤≤≤≤,于是ππ00πcos()d d cos()d [sin()]d 3(sin 2sin )d π.2xxDx x y x x x y y x x y xx x x x σ+=+=+=-=-⎰⎰⎰⎰⎰⎰2. 画出积分区域,并计算下列二重积分:(1) Dσ⎰⎰,其中D是由两条抛物线y =,2y x =所围成的闭区域;(2)2d Dxy σ⎰⎰,其中D 是由圆周224xy +=及y 轴所围成的右半闭区域;(3) e d x y Dσ+⎰⎰,其中{(,)|||||1}D x y x y =+≤; (4)22()d Dxy x σ+-⎰⎰,其中D 是由直线2y =,y x =及2y x =所围成的闭区域.解 (1) D可用不等式表示为201x y x ≤≤≤≤,于是237111424000226d d (-)d .3355Dx x x y x y x x x x σ⎡====⎢⎥⎣⎦⎰⎰⎰⎰⎰(2) D可用不等式表示为022x y ≤≤-≤≤,于是22222222164d d d (4)d .215Dxy y y x y y y σ--==-=⎰⎰⎰⎰(3) 12D D D = ,其中1{(,)|11,10}D x y x y x x =--≤≤+-≤≤,1{(,)|11,01}D x y x y x x =-≤≤-+≤≤,于是121111101012112111e d e d e d e d e d e d e d (e e )d (e e )d e e .x y x y x yD D D x x x y x y x x x x x y x y x x σσσ+++++----+----=+=+=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4) D 可用不等式表示为,022y x y y ≤≤≤≤,于是22222023222232002()d d ()d 19313d d .322486yy Dyy x y x y x y x xx x y x y y y y σ+-=+-⎡⎤⎛⎫=+-=-=⎢⎥ ⎪⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰4. 改换下列二次积分的积分次序:(1) 1d (,)d yy f x y x ⎰⎰ ; (2)2220d (,)d y y y f x y x ⎰⎰;(3) 10d (,)d y f x y x ⎰;(4)212d (,)d xx f x y y -⎰;(5)eln 1d (,)d xx f x y y ⎰⎰; (6)πsin 0sin2d (,)d xx x f x y y -⎰⎰.解 (1) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0,01}D x y x y y =≤≤≤≤,D 可改写为{(,)|1,01}x y x y x ≤≤≤≤,于是原式11d (,)d .xx f x y y =⎰⎰(2) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中2{(,)|2,02}D x y y x y y =≤≤≤≤,D可改写为{(,)|04}2x x y y x ≤≤≤≤,于是原式42d (,)d .x x f x y y =⎰⎰(3) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|01}D x y x y =≤≤≤,D可改写为{(,)|011}x y y x ≤≤-≤≤,于是原式110d (,)d .x f x y y -=⎰(4) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|212}D x y x y x =-≤≤≤≤,D可改写为{(,)|2101}x y y x y -≤≤+≤≤,于是原式1102d (,)d .yy f x y x -=⎰⎰(5) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0ln ,1e}D x y y x x =≤≤≤≤,D 可改写为{(,)|e e,01}y x y x y ≤≤≤≤,于是原式1ee d (,)d .yy f x y x =⎰⎰(6) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,将D 表示为12D D ,其中1{(,)|arcsin πarcsin ,01}D x y y x y y =≤≤-≤≤,2{(,)|2arcsin π,10}D x y y x y =-≤≤-≤≤,于是原式1πarcsin 0π0arcsin 12arcsin d (,)d d (,)d .yyyy f x y x y f x y x ---=+⎰⎰⎰⎰第29,30讲 二、在极坐标系下计算二重积分复习:直角坐标与极坐标(参见教材P.476附录4)的关系: (,)x y (,)r θcos sin x r y r θθ==tan r y xθ==1 圆心在极点,半径为a 的圆周222x y a += ,02r a θπ=≤≤ 2 圆心在(,0)a ,半径为a 的圆周222()x a y a -+= 22cos r ar θ= 222x y ax += 2cos ,22r a ππθθ=-≤≤3 圆心在(0,)a ,半径为a 的圆周22222()2x y a a x y ay+-=+=22sin 2sin ,0r ar r a θθθπ==≤≤在极坐标系下计算二重积分,需将被积函数(,)f x y ,积分域D 及面积元素d σ都用极坐标表示 :(,)f x y 的极坐标形式为 (cos ,sin )f r r θθ,为了得到极坐标系下面积元素d σ, 可用坐标曲线网去分割区域D , 即用 r =常数(一组同心圆) θ=常数 (一束射线),去分割D 面积元素可近似看作小矩形:两边长分别为dr 和(弧长)=rd θ(半径⨯圆心角) (见P.315图8-14) 所以 ()d rd dr rdrd σθθ=⋅=, 于是⇒ (,)(cos ,sin )DDf x y d f r r rdrd σθθθ=⎰⎰⎰⎰ (4)(ⅰ)当极点o 在D 的外部: 一般先对r 后对θ积分,定限时,用从极点出发的射线穿入区域, 入口的交线1()r θ,穿出区域出口的交线2()r θ为对r 积分的下限与上限,而θ的变范围则是后对θ积分的下限与上限. 图8-15(a )21()()(,)(cos ,sin (cos ,sin )DDr r f x y d f r r rdrd d f r r rdrβθαθσθθθθθθ⇒==⎰⎰⎰⎰⎰⎰(5)(ⅱ)当极点o 在D 的边界上,D 为曲边扇形()(cos ,sin ).r Dd f r r rdr βθαθθθ⇒=⎰⎰⎰⎰(6) 图8-17(ⅲ)当极点o 在D 的内部2()(cos ,sin ).r Dd f r r rdr πθθθθ⇒=⎰⎰⎰⎰(7)例1 化二重积分为累次积 图8-1822:,(0)D x y Rx R +=>解 222()()22RRx y -+= 这是圆心在(,0)2R ,半径为2R的圆,极坐标方程为:cos ,22r R ππθθ=-≤≤,这是极点在D 的边界上.由公式(6)⇒ cos 202(cos ,sin ).R Dd f r r rdr πθπθθθ-=⎰⎰⎰⎰例2 求Ⅰ=2Dxy d σ⎰⎰其中D 为 圆 221,x y +=和224x y +=之间在第一象限的部分(圆环) 解 这是极点在域D 外部的情形,由公式(5)⇒ Ⅰ=2cos (sin )Dr r rdrd θθθ⎰⎰=24221cos sin d r dr πθθθ⎰⎰=22421sin cos d r drπθθθ⎰⎰=用凑微分31.15例3 求Ⅰ=22x y De d σ--⎰⎰,其中D 是222,(0)x y a a +≤>在第一象限的部分. 解 因为 22,x y ee --的原函数不是初等函数,故在直角坐标系下积不出来.但D 是圆域,故可采用极坐标系.由于极点在边界上,由公式(6),得到 Ⅰ=2222(1).4ar r a oDe rdrd d e rdr e ππθθ--==-⎰⎰⎰⎰(这里用凑微分积) 利用此结果,可计算无穷积分(广义积分):2x e dx +∞-⎰(概率积分).例4利用二重积分证明概率积分22x e dx +∞-=⎰.(求正态分布的方差时用)证明22limax x a edx e dx +∞--→+∞=⎰⎰‘考虑正方形区域D ,在D 上计算二重积分 2222a axy x y De dxdy e dx e dy ----=⎰⎰⎰⎰=220a x e dx -⎡⎤⎢⎥⎣⎦⎰ 图8-19为了求出左端的二重积分,可以a (正方形对角线)为半径画圆,得到图中的区域12D D D ⊂⊂, 220xy e --> 22222212xy xy xy D DD e d e d e d σσσ------∴≤≤⎰⎰⎰⎰⎰⎰由例3知:22222(1)(1)44a xy a De e dxdy e ππ-----≤≤-⎰⎰(=22ax edx -⎡⎤⎢⎥⎣⎦⎰)令a →+∞,有 220lim 44a x a e dx ππ-→+∞⎡⎤≤≤⎢⎥⎣⎦⎰,即22044x e dx ππ+∞-⎡⎤≤≤⎢⎥⎣⎦⎰ 由极限的夹逼准则,所以 2204x e dx π+∞-⎡⎤=⎢⎥⎣⎦⎰ ,202x e dx +∞-==⎰例5 求球体22224x y z a ++≤被圆柱面222,(0)x y ax a +=>所截得部分的体积. 解 将圆柱面的方程化为:2222()x a y a -+= 被球面22224x y z a ++=所截,有对称性,只须求出图中第一卦限的体积1V ,再4倍,1V 的曲顶为z =11D V ⇒=其中 1D 如右图所示 采用极坐标系111D D V θ⇒==⎰⎰⎰⎰ 图8-20(a )(b )2cos 202cos 122222200322222cos 3320233301(4)(4)2128(4)((1sin )233882(sin )().32323a a a d d a r d a r a r d a d a d a πθπθππθπθθθθθππθθ==---=--⋅=-=-=-⎰⎰⎰⎰⎰⎰⎰所以 13224().323V V π==- 递推公式:3n =为奇数 Ⅰ212!!,1(21)!!m m m m +==+小结:何时用极坐标系计算二重积分? ① 积分区域是圆形或环形; ② 被积函数含22x y +.习 题 8-28(1)(3) 9(1)(4) 10(1)8. 化下列二次积分为极坐标形式的二次积分: (1) 11d (,)d x f x y y ⎰⎰ ;(2)2d (,)d xx f x y y ⎰;(3)11d (,)d xx f x y y -⎰ ; (4)21d (,)d x x f x y y ⎰⎰.解 (1) 用直线y x =将积分区域D 分成1D 、2D 两部分:1π{(,)|0sec ,0}4D ρθρθθ=≤≤≤≤,2ππ{(,)|0c ,}.42D cs ρθρθθ=≤≤≤≤, 于是原式sec csc 4204d (cos ,sin )d d (cos ,sin )d .f f ππθθπθρθρθρρθρθρθρρ=+⎰⎰⎰⎰(2) 在极坐标中,直线2,x y x ==和y =的方程分别是π2sec ,4ρθθ==和3πθ=。

高数第九章习题答案

高数第九章习题答案


∂z ∂z ∂z ∂z , 仍旧是复合函数,即 = f u′ ( u, v ), = f v′( u, v ), 而u = ϕ ( x , y ), v = ψ ( x , y ), ∂u ∂v ∂u ∂v
x ). y
( 2) z = f ( x ,
x (记(1))
z = f (或f ′ )
x (记( 2)) y
x→0 y = x→0
x2 y2 = 1. x 2 y 2 + ( x − y)2
若动点P ( x , y )沿y = 2 x趋于(0,0),则: lim
x2 y2 不存在. x 2 y 2 + ( x − y)2
x→0 y = 2 x→0
4x4 x2 y2 = lim = 0. x 2 y 2 + ( x − y ) 2 x→0 4 x 4 + x 2
证法 1:利用复合函数、隐函数的求导公式。
由F ( x , y , t ) = 0可知,t是x , y的函数:t = t ( x , y ).
∂z ∂ y ln( 1+ xy ) x xy = e [ln(1 + xy ) + y ⋅ ] = (1 + xy ) y [ln(1 + xy ) + ]. ∂y ∂y 1 + xy 1 + xy
(8) u = arctan( x − y )
z
解:
∂u z ( x − y ) z −1 ∂u − z ( x − y ) z −1 ∂u ( x − y ) z ln( x − y ) ; ; ; = = = ∂x 1 + ( x − y ) 2 z ∂y 1 + ( x − y ) 2 z ∂z 1 + ( x − y)2z

2024级经管类高数(二)期末试题与解答A

2024级经管类高数(二)期末试题与解答A

2024级本科高等数学(二)期末试题与解答A(本科、经管类)一、选择题(本大题共5小题,每小题3分,共15分)1.到两点4L-1,0)和8(2,0,-2)距离相等的点的轨迹为(C ).C. x+y-2z-3=0;D.x+y+2z-3=0.2 .微分方程y 〃-2y+y=e'+x 的非齐次特解形式可令为(八).A. Ax:2^+Bx+C ;B. Ae x Λ-Bx+C ;C.Ae x +x 2(Bx+C)↑D.Axe x +Bx+C.3 .函数/®y)=(4y -y2)(6x_“2)的驻点个数为(b ).Λ.9;B.5;C.3; D.1.4.设。

是My 面上以(1,1),(-1,1),为顶点的三角形区域,R 是。

中在第一象限的部分,则积分JJ(XU+COS^xsiny)db=(D).A.2∫∫cos 3xsin ydσ; C.4∫∫(x 3j+cos 3xsin y)dσ;q5 .下列级数中,绝对收敛的级数为(A∑<-ιr ,√b∙T严舄;C∙S(7)i∕;D.∑(-1)H -,-J=.n=l3n=l√11二、填空题(本大题共5小题,每小题3分,共15分)6 .函数/(羽丁)=@心也*2+产)_]11/2\^2^的连续域为,(工,')(<12+'2«].7 .设级数为(。

〃一万)收敛,则Iim(〃“+∫∫2dσ)=3π.”=1 ° χ2+y 2≤∣8 .设Z=In (X+lny ),则,包-包=0.y∂x∂y9 .交换,由,心/(无,丁)①;积分次序得,为:J ;f (x,y )dy.A. x-y-2z-3 = 0;B. x+y-2z + 3 = 0; B. 2∫∫x 3 yJσ ;D ∖D. 0.C ).10 .投资某产品的固定成本为36(万元),且成本对产量X 的改变率(即边际成本)为C ,(x )=2x+40(万元/百台),则产量由4(百台)增至6(百台)时总成本的增值为幽万元.三、试解下列各题(本大题共6小题,每小题8分,共48分)11 .求解微分方程孙'-y=/满意初始条件MT=1的特解.解:分别变量得一^二四(2分)y (y+i )X两端积分得In 上=lnx+InC,即上=CX (5分)y+1y+1由HT=1,得C=;故所求通解为X =工匕或),=—匚(8分)>,+l -2-x13 .z=∕(ei,2),即可微,求自乎.X oxoy解:寺=*/一与月(4分) ∂x X ^=-e x -y f^-f; (8分)∂yX14 .设/(x,y)=xsin(x+y),求九弓弓),&(三)•解:∕r =sin(x+j)+Xcos(x+y),f y =xcos(x+1y)(2分) f xx =2CoS(X +y)-X Sin(X+y) f yy =-xsin(x+y)几弓弓)二一2,启(多9=0(8分)12.设Z = z (x, y )由方程/ +孙- z = 3所确定,求包∂x x=2÷√ry=2->∕e Z=Ix≈2-^y∕e y≈2-∙Je(4分)(8分)(4分) (6分) 解:令尸(x,y,z) = "+Λy -z-3,则15.求嘉级数£心"的收敛区间与和函数.w=l解:收敛半径为R=I,收敛区间为(-覃)(2分)2.=XZnX"T,令S(X)=SnyI,则(4分)/1=1 /1=1 n=l£S(X)必:=£(J。

高数8-1,8-2习题解答

高数8-1,8-2习题解答

习题8-11. 解:737135851=⋅-⋅=-2. 解:()()()2452453261563a b b a b b b a b ab-=-⋅--⋅-=--3. 解:1082101512312152032121012128320215322012232310121580=⋅⋅+⋅⋅+⋅⋅-⋅⋅-⋅⋅-⋅⋅=将第,列顺次安放在右边4. 解:()()()()121200123111012031213011011222--=⋅⋅+-⋅⋅+-⋅⋅-⋅⋅--⋅⋅-⋅⋅-=将第,列顺次安放在右边 5. 解:系数行列式:()3132117012D -==⋅-⋅-=≠,()3132811482x D -==⋅-⋅-=3338132118y D ==⋅-⋅=。

方程组有唯一解:14212,377y x D D x y D D ======。

6. 解:系数行列式:()2123117013D -==⋅-⋅-=≠,10153x D -==()10351⋅-⋅-35=,21025110015y D ==⋅-⋅=。

方程组有唯一解:355,7x D x D ===,y D y D == 007==系数行列式1212111121211218112121211D =---⋅-⋅+⋅=----利用二阶行列式计算211111111110214312123231x D =---⋅-⋅+⋅=---利用二阶行列式计算1012111121211014132321213y D =⋅-⋅+⋅=利用二阶行列式计算1221111212112012113131311z D =---⋅-⋅+⋅=----利用二阶行列式计算方程组有唯一解:4141123,,828282y x z D D D x y z D D D -===-===-===---。

8. 解:系数行列式1111111121121121112112*********D =--=---=---+--=----;1111111111111111121211*********x D =--=---=---+--=----1111111121121121114122312112112y D =-=-=-+-+-=1111111121121121212114511211211z D =-=--=-+-++-=----方程组有唯一解:423155,,636266y x z D D D x y z D D D --======-===---(1) 空间点()3,1,2A 关于三个坐标面,,xy yz zx 对称的点分别为()()3,1,2,3,1,2B C --与()3,1,2D -。

高数8-2,3

高数8-2,3

z
z = f ( x, y) y = y0

M0
y
z = f ( x, y)
(x0 , y0 ) y x0 • z = f (x , y ) • x y = y0 df ( x, y0 ) ′ ( x0 , y0 ) = 轴的斜率 斜率。 在点 M 0 ( x0 , y0 , z 0 ) 处的切线对 x 轴的斜率。 f x dx x=x0 类似地, f y ( x0 , y0 ) 在几何上表示空间曲线 类似地
存在, 存在,则称此极限值为函数 f ( x , y )在点( x 0 , y 0 ) 处对 x的偏导数。 的偏导数。
f ( x 0 + ∆x , y 0 ) − f ( x 0 , y 0 ) lim ∆x → 0 ∆x
∂z , 记作 = ∂x x= x0 y y
0
∂f ∂x

f ( x0 + ∆x, y0 ) − f ( x0 , y0 ) f x ( x0 , y0 ) = lim ∆x→0 ∆x
∂f ∂x df ( x, y0 ) = x= x0 dx y= y
0
;
x= x0
∂f ∂y
=?
x= x0 y= y0
4
z = x 2 + 3 xy + y 2 在点 (1,2 ) 处的偏导数 处的偏导数. 例1 求
∂z ∂z = 3x + 2 y. 解 法一: = 2 x + 3 y; 法一: ∂x ∂y ∂z ∂z = 8; = 7. ∂y x =1 ∂ x x =1
3
∂ 3z ∂ ∂2z = 2 = −18 x , 3 ∂y ∂y ∂y
∂ ∂2z ∂3z 2 = 12 xy , = 2 ∂ x ∂ y ∂y ∂ x

经管类高等数学答案

经管类高等数学答案

经管类高等数学答案【篇一:《高等数学》(经管类)期末考试试卷】class=txt>《高等数学》(经管类)期末考试试卷班级:姓名:学号:分数:1. ???0e?4xdx? 2. 已知点a(1,1,1),b(2,2,1),c(2,1,2)则?bac?3. 交换二次积分次序:?dy?0112?yf(x.y)dxxn4. 已知级数 ?n,其收敛半径r= 。

n?12?n?5. 已知二阶线性常系数齐次常微分方程的特征根为1和?2则此常微分方程是6. 差分方程2yx?1?3yx?0的通解为1. 求由x?0,x??,y?sinx,y?cosx 所围平面图形的面积。

《高等数学》(经管类)第 1 页共8页2. 求过点(2,0,且与两平面x?2y?4z?7?0,3x?5y?2z?1?平行的直线方?3)0程。

3.求x y??00 《高等数学》(经管类)第 2 页共8页4. 设可微函数z?z(x,y)由函数方程 x?z?yf(x2?z2) 确定,其中f有连续导数,求?z。

?x?z?2z5. 设 z?f(xy,xy),f具有二阶连续偏导数,求 ,2。

?x?x22《高等数学》(经管类)第 3 页共8页6. 计算二重积分???x2?y2d?,其中d为圆域x2?y2?9。

d7. 求函数 f(x,y)?x3?y3?3x2?3y2?9x 的极值。

《高等数学》(经管类)第 4 页共8页n221. 判断级数 ?nsinnx 的敛散性。

n?12?2. 将f(x)?x展开成x的幂级数,并写出展开式的成立区间。

x2?x?2《高等数学》(经管类)第 5 页共8页【篇二:高等数学经管类第一册习题答案】1.1 --1.1.3函数、函数的性质、初等函数一、选择题1.c;2.d;3.d 二、填空题1.x?5x?11;2. 1;3. ?0,1?2三、计算下列函数的定义域。

1. ???,2???3,???;2. ???,0???3,???;3. ?2,3???3,???;4. ?0,1?四、(1)y?u2,u?sinv,v?lnx.(2) y?u2,u?lnt,t?arctanv,v?2x.?sinx?1,x?1?五、 f?x???sinx?1,0?x?1??sinx?3,x?0?1.2.1 数列的极限一、选择题1.c;2.d;3.d 二、填空题1.111;2. ;3. 22311三、计算下列极限1. . 2. . 3. 1.4.231.2.2 函数的极限?2???. 5. 10 ?3?4一、选择题1.c;2.d;3.d 二、填空题1. a?4,b??2;2. 1;3.三、计算下列极限1. 2. 2. 6 . 3. 2x.4.1. 5. 1 33?;3. ;4. 05?1.2.3---1.2.5 无穷小与无穷大;极限的运算法则和极限存在准则;两个重要极限一、选择题1.ab;2.c;3. c 二、填空题1. ?1;2.?3?6三、计算下列极限1. e. 2. ?? . 3. e.4.?2??6205. e21.2.5--1.2.6 两个重要极限;无穷小的比较一、选择题1.c;2.b;3.a二、填空题1.1;2. k?0;3. 高. 21?1?22三、计算下列极限1. 1. 2. . 3. e.4. e2. 5. e41.3.1 函数的连续性与间断点一、选择题1.b;2.c;3.a 二、填空题1. x?0,?1;2. 三、求下列函数的不连续点并判别间断点的类型。

川大版高数_物理类专用_第三册_答案

川大版高数_物理类专用_第三册_答案

第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证:
x z 1 z y x ln x y
例3. 求
2z
的偏导数 .
解:
2x x r 2 2 2 x 2 x y z r r z z r
机动 目录 上页 下页 返回 结束
例4. 已知理想气体的状态方程
求证: p V T 1
(R 为常数) ,
V T p RT RT p 2 , 证: p V V V RT V R V , p T p
说明: 此例表明, 偏导数记号是一个 整体记号, 不能看作 分子与分母的商 !
p V T RT 1 V T p pV
机动 目录 上页 下页 返回 结束
下页
返回
结束
定义1. 设函数 z f ( x , y )在点( x0 , y0 ) 的某邻域内
极限
x0 x
x
x0
存在, 则称此极限为函数z f ( x , y ) 在点 ( x0 , y0 ) 对 x 的偏导数,记为
f ; zx x ( x 0 , y0 )
( x0 , y0 ) ;
二、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
z f x ( x, y) , x
z f y ( x, y) y
若这两个偏导数仍存在偏导数, 则称它们是z = f ( x , y ) 的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导 数:
z 2z z 2z ( ) f x y ( x, y) ( ) 2 f x x ( x , y ); y x x y x x x
f ( x0 x , y0 ) f ( x0 , y0 ) 注意: f x ( x0 , y0 ) lim f ( x x 0x) f ( x0 ) x dy 0 ( x0 ) lim f x 0 x d x x x0
机动 目录 上页 下页 返回 结束
显然
x2 y2 0 x2 y2 0
0 0
在上节已证 f (x , y) 在点(0 , 0)并不连续!
上节例 目录 上页 下页 返回 结束
例1 . 求 z x 2 3 x y y 2 在点(1 , 2) 处的偏导数. z z 解法1: 2 x 3 y , 3x 2 y x y z z y (1, 2) x (1, 2)
机动 目录 上页 下页 返回
二 者 不 等
结束
例6. 证明函数
满足拉普拉斯
2u 2u 2u 方程 u 2 2 2 0 x y z
证:
2
3 x r 1 3 x2 u 1 3 4 3 5 r x r r x2 r 2u 1 3 y2 2u 1 3 z2 利用对称性 , 有 2 3 5 , 3 5 2 z r r y r r 2 2 2 u u u 3 3( x2 y2 z 2 ) 2 2 0 2 3 5 x y z r r
是曲线
x x0 y y0
d f ( x , y0 ) x x0 dx
z
M0
Tx
y0
Ty
y
在点M0 处的切线 M 0T y 对 y 轴的
斜率.
机动 目录 上页 下页 返回 结束
注意: 函数在某点各偏导数都存在,
但在该点不一定连续.
xy , 2 2 例如, z f ( x , y ) x y 0 ,
x
f y ( x, y, z ) ?
f z ( x, y, z ) ?
(请自己写出)
机动
目录
上页
下页
返回
结束
二元函数偏导数的几何意义:
f x
z f ( x, y) 在点 M0 处的切线 是曲线 y y0 o M 0Tx 对 x 轴的斜率. x0 f d f ( x0 , y) x x x0 y y0 y y y0 d y
解法2: z
y 2
x 6x 4
2
z x ( 1, 2)
z
x 1 1 3 y
y
2
z y ( 1, 2)
机动 目录 上页 下页 返回 结束
求证 例2. 设z x y ( x 0, 且 x 1 , )
x z 1 z 2z y x ln x y
机动 目录 上页 下页 返回 结束
r2
若 , 定理. f x y ( x,y ) 和 f y x ( x,y ) 都在点( x0 , y0 ) 连续则
f x y ( x0 , y0 ) f y x ( x0 , y0 )
本定理对 n 元函数的高阶混合导数也成立.
(证明略)
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
f1( x0 , y0 ) .
同样可定义对 y 的偏导数
f y ( x0 , y0 ) lim
f ( x0 , y0 y) f ( x0 , y0 )
y 0
y
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x
或 y 偏导数存在 , 则该偏导数称为偏导函数, 也简称为 偏导数 , 记为
说明: 因为初等函数的偏导数仍为初等函数 , 而初等
函数在其定义区பைடு நூலகம்内是连续的 , 故求初等函数的高阶导 数可以选择方便的求导顺序.
证明 目录 上页 下页 返回 结束
内容小结
1. 偏导数的概念及有关结论
• 定义; 记号; 几何意义
• 函数在一点偏导数存在 • 混合偏导数连续 2. 偏导数的计算方法 • 求一点处偏导数的方法 • 求高阶偏导数的方法 函数在此点连续 与求导顺序无关 先代后求 先求后代 利用定义 逐次求导法
2 z 2z z z ( ) f y x ( x , y ); ( ) 2 f y y ( x , y ) x y y x y y y
机动 目录 上页 下页 返回 结束
类似可以定义更高阶的偏导数.
例如,z = f (x , y) 关于 x 的三阶偏导数 为 z = f (x , y) 关于 x 的 n –1 阶偏导数 , 再关于 y 的一阶 偏导数为
z f , , z y , f y ( x, y) , f2 ( x, y) y y
机动 目录 上页 下页 返回 结束
偏导数的概念可以推广到二元以上的函数 . 例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的 偏导数定义为
x x
x
x2 y
3
机动 目录 上页 下页 返回 结束
例如, f ( x , y )
4
x2 y2 2 2 xy 2 , x y 0 2 x y 2 2 0, x y 0
2 2 4
x 4x y y y , x2 y2 0 2 2 2 f x ( x, y) (x y ) 0, x2 y2 0 x4 4 x 2 y2 y4 x , x2 y2 0 f y ( x, y) ( x 2 y 2 )2 2 2 0, x y 0 f x (0, y ) f x (0, 0) y lim 1 f x y (0,0) lim y 0 y 0 y y f y ( x , 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
( y
z ) n1 x y
n
机动
目录
上页
下页
返回
结束
z . 的二阶偏导数及 例5. 求函数 z e 2 y x z z 解: 2 e x 2 y e x 2 y y x 2 2z z e x2 y 2 e x2 y 2 x y x 2 2 z z x2 y x2 y 4e 2 e 2 y y x 3 2 z z ( ) 2 e x2 y 2 x y x y x 2z 2z 注意:此处 ,但这一结论并不总成立. x y y x
(与求导顺序无关时, 应选择方便的求导顺序)
机动 目录 上页 下页 返回 结束
备用题 设
确定 u 是 x , y 的函数 ,
方程
连续, 且
解:

机动
目录
上页
下页
返回
结束
第二节 偏 导 数
一、 偏导数 二 、高阶偏导数
第八章
机动
目录
上页
下页
返回
结束
一、 偏导数定义及其计算法
引例: 研究弦在点 x0 处的振动速度与加速度 , 就是 将振幅
中的 x 固定于 x0 处, 求
关于 t 的
一阶导数与二阶导数.
u o
u ( x0 , t )
u(x , t )
x0
x
机动
目录
上页
相关文档
最新文档