八年级上册数学单元测试题CIB 第2章 特殊三角形

合集下载

八年级上册数学单元测试题FSB 第2章 特殊三角形

八年级上册数学单元测试题FSB 第2章 特殊三角形

八年级上册数学单元测试题第2章特殊三角形一、选择题1.如图,△ABC是等边三角形,CD是∠ACB的平分线,过D作BC的平行线交AC于E.已知△ABC的边长为 a,则EC的长是()A.12a B.a C.32a D.无法确定答案:A2.等腰三角形的周长为l8 cm,其中一边长为8 cm,那么它的底边长为()A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对答案:C3.等腰三角形的顶角是底角的 4倍,则其顶角为()A.20°B.30°C.80°D.120答案:D4.等腰三角形一个角为 40°,则它的顶角是()A.40° B.70° C. 100°D. 40°或 100°答案:D5.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对答案:D6.在△ABC 中,AB = BC,∠A =80°,则∠B 的度数是()A.100°B.80°C. 20 D. 80°或 20°答案:C7.如果△ABC是等腰三角形,那么∠A,∠B的度数可以是()A.∠A=60°,∠B=50°B.∠A=70°,∠B=40°C.∠A=80°,∠B=60°D.∠A=90°,∠B=30°答案:B8.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高所在的直线C.顶角平分线所在的直线D.腰上的高所在的直线答案:C9.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.答案:B10.已知等腰三角形的两边长分别为 2cm cm,那么它的周长为()A4) cm B.(2) cmC4) cm 或(2) cm D.以上都不对答案:B11.下列条件中,不能判定两个直角三角形全等的是()A.一条直角边和一个锐角分别相等B.两条直角边对应相等C.斜边和一条直角边对应相等D.斜边和一个锐角对应相等答案:A12.如图,在△ABC中,∠BAC=90°,AD⊥BC,则图中与∠B相等的角是()A.∠BAD B.∠C C.∠CAD D.没有这样的角答案:C13.如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .两处C .三处D .四处答案:D14.下列图形中,不是轴对称图形的是( )A .线段B .角C .直角三角形D .等腰三角形 答案:C15.等腰直角三角形两直角边上的高所的角是( )A . 锐角B .直角C .钝角D . 锐角或钝角 答案:B16.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( )A . 3B . 4.5C .3或4.5D . 以上都不正确 答案:B17.如图,图中等腰三角形的个数为( )A .2个B .3个C .4个D .5个答案:D二、填空题18.如图,AB ⊥BC ,DC ⊥BC ,当添加一个条件 时,Rt △ABC ≌△Rt △DCB(KL).解析:AC=BD19.在方格纸上有一个△ABC ,它的顶点位置如图,则这个三角形是 三角形.解析:等腰20.在△ABC 中,AB= AC= 6,BC= 5,AD⊥BC 于 D,则 CD= .解析:2.521.等边三角形三个角都是.解析:60°22.如图所示,等边三角形ABC中,AD、BE、CF分别是△ABC的三条角平分线,它们相交于点O,将△ABC绕点0至少旋转度,才能和原来的三角形重合.解析:12023.如图,将一等边三角形剪去一个角后,∠1+∠2= .解析:240°24.如图,在△ABC中,∠ACB=90°,∠B=25°,CD⊥AB于D,则∠ACD= .解析:25°25.如图所示,在Rt△ABC中,∠ACB=90°,且CD⊥AB于点D.(1)若∠B=50°,则∠A= ;(2)若∠B—∠A=50°,则∠A= .解析:(1)40°;(2)20°26.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.解析:n)2(27.如图,点D是△ABC内部一点,DE⊥AB于E,DF⊥BC于F,且DE=DF,若∠ABD=26°,则∠ABC= .解析:52°28.在等腰三角形ABC 中,腰AB的长为l2cm,底边BC的长为6cm,D为BC边的中点,动点P从点B出发,以每钞 lcm 的速度沿B A C→→的方向运动,当动点P重新回到点B位置时,停止运动. 设运动时间为t,那么当t= 秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中的一部分是另一部分的 2倍.解答题解析:7或l729.等腰三角形的一个外角是130°,它的一个底角是 .解析:50°或65°30.一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,则这个等腰三角形的底边长是 cm.解析:9或1331.如图,AD 是ABC △的一条中线,45ADC ∠=.沿AD 所在直线把ADC △翻折,使点C 落在点C '的位置.则BC BC'= .解析:22 32.如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,则∠DBC= .解析:18°33. 现有两根长度分别为 8cm 和 l5cm 的木棒,要钉成一个直角三角形木架,则所需要第三根木棒的长度为 .解析:17cm cm34.如图,在△ABC 中,AB=AC ,AD 、CE 分别平分∠BAC 与∠ACB ,AD 与 CE 相交于点 F .若∠B =62° , 则∠AFC = .解析:121°35.已知等腰三角形的两边长x 、y 满足27(4222)0x y x y +-++-=,且底边比腰长,则它的一腰上的高于 .36.如图,在Rt △ABC 中,∠C=Rt ∠,AC=6,AB=BC+2,则斜边AB 长为 .解析:10三、解答题37.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法. 如图所示,火柴盒的一个侧面ABCD 倒下到AB ′C ′D ′的位置,连结CC ′,设AB=a ,BC=b ,AC=c ,请用四边形BCC ′D ′的面积说明勾股定理:222a b c +=.解析:根据S 四边形BCC ′D ′=S △AC ′D ′+S △ABC +S △ACC ′,说明222a b c +=38.已知等腰三角形△ABC 中,AB=AC ,AC 边上的中线BD 将它的周长分成9 cm 和8 cm 两部分,求腰长.解析:6cm 或163cm 39.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.解析:略40.如图,AC 和BD 相交于点0,且AB ∥DC ,OA=08,△0CD 是等腰三角形吗?说明理由.解析:是等腰三角形.说明∠C=∠D41.如图,在等边△ABC中,D、E分别是AB、AC上的一点,AD=CE,CD、BE交于点F.(1)试说明∠CBE=∠ACD;(2)求∠CFE的度数.解析:(1)说明△ACD≌△CBE;(2)60°42.如图,已知Rt△ABC中,∠ACB=90°,AB=8 cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和DE的长.解析:BC=4cm,CD=4 cm,DE=2 cm43.如图,在四边形ABCD中,BD⊥AD,AC⊥BC,E是AB的中点,试判断△CDE的形状并说明理由?解析:△CDE为等腰三角形44.如图,AD、BE分别是△ABC的边BC、AC上的高,F是DE的中点,G是AB的中点,则FG⊥DE,请说明理由.解析:先说明EG=DG.再利用三线合一来说明45.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?解析:陈华同学的说法正确,理由略46.如图,在△DEF 中,已知DE=17cm ,EF=30 cm ,EF 边上的中线DG=8 cm ,试说明△DEF 是等腰三角形.解析:说明DG 是EF 是中垂线47.某农场要建造一个周长为 20m 的等腰三角形围栏,若围栏的腰长为 xm ,试求腰长x 的取值范围.解析:根据题意,得22022020x x x >-⎧⎨->⎩, 解得5<x<10. ∴腰长的取值范围是5<x<l0.48.如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC .说明:△EBC 是等腰三角形.解析:说明Rt △ABC ≌△Rt △DCF49.仅用一块没有刻度的直角三角板能画出任意角的平分线吗?(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么?(2)你还有别的方法吗?请叙述过程并说明理由.解析:(1)正确,理由略;(2)略50..有一块菜地,地形如图,试求它的面积s(单位:m).解析:24m251.如图是斜拉桥的剖面图.BC是桥面,AD是桥墩,设计大桥时工程师要求斜拉的钢绳AB= AC.大桥建成以后,工程技术人员要对大桥质量进行验收,由于桥墩AD很高,无法直接测量钢绳AB、AC的长度.请你用两种方法检验AB、AC的长度是否相等,并说明理由.解析:方法一:测量BD、ED的长度,看是否相等;方法二:测量∠B、∠C的度数,看是否相等52.如图,△ABC中,∠ABC=100°,AM=AN,CN=CP,求∠MNP的度数.解析:40°53.已知:如图,在△ABC中,AD是么BAC的平分线,AD的垂直平分线交BC的延长线于F.试说明∠BAF=∠ACF成立的理由.解析:略54.已知:如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.试说明AC+CD=AB成立的理由.解析:略55.如图,在四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,CD =13,求BC的长.解析:12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学单元测试题第2章特殊三角形一、选择题1.三角形的三边长a、b、c满足等式22a b c ab+-=,则此三角形是()()2A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形答案:B2.如图,图中等腰三角形的个数为()A.2个B.3个C.4个D.5个答案:D3.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有()A.4个B.3个C.2个D.1个答案:B4.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.答案:B5.如图,在等边△ABC中,点D是边BC上的点,DE⊥AC于E,则∠CDE的度数为()A.90°B.60°C.45°D.30°答案:D6.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.有一个角是60°的等腰三角形是等边三角形D.有两个角相等的等腰三角形是等边三角形答案:D7.连结等边三角形各边的中点所得到的三角形是()A.等边三角形B.直角三角形C.非等边三角形D.无法确定答案:A8.如图,在等腰△ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()A. 68°B.46°C.44°D.22°答案:D9.如图所示,在△ABC中,AB=AC,∠B=14∠BAC,AD⊥AB垂足为A,AD=1,则BD=()A.1 B C.2 D.3答案:C10.在△ABC 中,AB =AC,∠A=70°,则∠B的度数是()A.l10°B.70°C.55°D.40°答案:C11.如图AB=AC ,DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,则图中的全等三角形有( )A .1对B .2对C .3对D .4对答案:C12.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于( )A .50°B .40°C .25°D .20°答案:D13.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( )A .B .C .D .答案:A14.如图,CD 是Rt △ABC 斜边AB 上的高,∠A=40°,则∠1=( )A .30°B .40°C .45°D .60°答案:B15.已知一个三角形的周长为l5 cm ,且其中两边长都等于第三边的2倍,那么这个三角形的最短边为( )A .1cmB .2cmC .3 cmD .4 cm答案:C16.如图,△ABC 中,∠ACB=120°,在AB 上截取AE=AC ,BD=BC ,则∠DCE 等于( )A .20°B .30°C .45°D .60°答案:B17.在△ABC中,∠BAC=90°,AD⊥BC于D,若AB=3,BC=5,则DC的长度是()A.85B.45C.165D.225答案:C18.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为()A. 3 B. 4.5 C.3或4.5 D.以上都不正确答案:B19.如图,在 Rt△ABC 中,∠B = 90°,ED 垂直平分AC,交AC边于点D,交BC边于E. ∠C= 35°,则∠BAE为()A. 10°B.15°C.20°D.25°答案:C20.如图,在△ABC中,∠B = 90°,DE∥AC,交AB边于点 D,交BC边于点E. 若∠C = 30°,则∠1 等于()A.40°B.50°C.60°D.70°答案:C21.已知等腰三角形的两边长分别为 2cm cm,那么它的周长为()A4) cm B.(2) cmC4) cm 或(2) cm D.以上都不对答案:B22.如图,D是∠BAC内部一点,DE⊥AB,DF⊥AC,DE=DF,则下列结论不正确...的是()A.AE=AF B.∠DAE=∠DAF C.△ADE≌△ADF D.DE=12 AE答案:D二、填空题23.某同学从学校出发向南走了10米,接着又向东走了 5米到达文化书店,则学校与文化书店之间的距离是米.24.在Rt△ABC中,∠C = 90°,∠B = 35°,则∠A = .解析:55°25.若等腰三角形的顶角为34°,则它的底角的度数为. .解析:73°26.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .解析:135°27.和对应相等的两个直角三角形全等,简写成“斜边直角边”或“”.解析:斜边,直角边,HL28.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A、B、C、D的面积的和为 cm2.解析:4929.如图,从电线杆离地面8 m处拉一条缆绳,这条缆绳在地面上的固定点距离电线杆底部6m,则这条缆绳的长为 m.解析:1030.如图,阴影部分是一个正方形,则此正方形的面积为.解析:64 cm231.如图,将一等边三角形剪去一个角后,∠1+∠2= .解析:240°32.等腰三角形△ABC 中,AB=AC,∠BAC=70°,D是BC的中点,则∠ADC= ,∠BAD= .解析:90°,35°33.如图,在△ABC 中,AB=AD=DC,∠BAD=26°,则∠C= .解析:38.5°34.等腰三角形的对称轴最多有条.解析:335.等腰三角形的周长是l0,腰比底边长2,则腰长为.解析:436.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.解析:11或l3三、解答题37.已知△ABC 中,∠C=Rt ∠,BC=a ,AC=b .(1)若a=1,b=2,求c ;(2)若a=15,c=17,求b .解析:(12)838.如图,在△ABC 中,CA=CB ,CD 是高,E 、F 分别是AB 、BC 上的点,求作点E 、F 关于直线CD 的对称点(只要求作出图形).解析:略39.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.解析:略40.如图,在△ABC 中,AB=AC ,∠A =30°,BD 是△ABC 的高,求∠CBD 的度数.解析:15°41.如图,△ABC 中,AB=AC,D、E、F分别在 AB、BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由.解析:△BDE≌△CEF(ASA)42.取出一张长方形的纸,沿一条对角线折叠,如图所示,问:重叠部分是一个什么三角形?并说明理由.解析:等腰三角形,说明∠ABD=∠C′DB=∠BDC43.如图,在等边△ABC中,点D、E分别是边AB,AC的中点,说明BC=2DE的理由.解析:说明△ADE是等边三角形44.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为多少?并说明理由.解析:45°或l35°45.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?解析:陈华同学的说法正确,理由略46.如图所示,在△ABC中,∠B=∠C,AD是△BAC的平分线,点E、F分别是AB、AC的中点,问DE、DF的长度有什么关系?解析:DE=DF,理由略47.如图,在5×5 的正方形网格中,小正方形的边长为 1,横、纵线的交叉点称为格点,以AB 为其中一边作等腰三角形,使得所作三角形的另一个顶点也在格点上,可以作多少个?请一一作出.解析:如图所示.可以作8个48.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.解析:是直角三角形,理由略49.如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC .说明:△EBC 是等腰三角形.解析:说明Rt △ABC ≌△Rt △DCF50.如图,已知AC=BD ,AD ⊥AC ,BD ⊥BC ,则AD=BC ,请说明理由.解析:说明Rt△ACD≌Rt△BDC51.如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点。

请写出图中两组全等的三角形,并选出其中一组加以证明.(要求:写出证明过程中的重要依据)解析:答案:△ACD≌△AEB,△DBC≌△ECB,证明略52.如图,某人从点A出发欲横渡一条河,由于水流影响,实际上岸地点C偏离欲到达的地点B有140 m(AB⊥BC),结果他在水中实际游了500 m,求这条河的宽度为多少米?解析:480m53.如图,∠ABC的平分线BF 与△ABC 中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?并说明理由.(2)BD,CE,DE之间存在着什么关系?请证明.解析:(1)2个等腰三角形:△BDF和△CEF,理由略(2)BD=DE+CE,理由略54.你画一个等腰三角形,使它的腰长为 3cm.解析:略55.房梁的一部分如图所示,其中BC⊥AC,∠A=30°,AB=7.4 m,点D是AB的中点,且DE⊥AC,求BC、DE的长.解析:BC=3.7 m,DE=1.85 m。

相关文档
最新文档