高中直线的两点式方程教案

合集下载

直线的两点式方程教案

直线的两点式方程教案

直线的两点式方程教案一、知识点概述在平面直角坐标系中,直线可以用不同的方程式来表示,其中最常见的是点斜式和一般式。

而直线的两点式方程则是另一种常见的表示方式,它可以通过给定直线上的两个点来确定直线的方程式。

直线的两点式方程的基本形式为:y−y1 x−x1=y2−y1 x2−x1其中(x1,y1)和(x2,y2)分别为直线上的两个点。

二、教学目标1.理解直线的两点式方程的概念和基本形式;2.掌握如何根据给定的两个点确定直线的两点式方程;3.能够应用直线的两点式方程解决实际问题。

三、教学重点1.直线的两点式方程的概念和基本形式;2.如何根据给定的两个点确定直线的两点式方程。

四、教学难点如何应用直线的两点式方程解决实际问题。

五、教学过程1. 导入教师可以通过引入实际问题,如两个城市之间的距离、两个物体之间的运动轨迹等,来引出直线的两点式方程的概念和应用。

2. 讲解1.直线的两点式方程的概念和基本形式直线的两点式方程是通过直线上的两个点来确定直线的方程式。

其基本形式为:y−y1 x−x1=y2−y1 x2−x1其中(x1,y1)和(x2,y2)分别为直线上的两个点。

2.如何根据给定的两个点确定直线的两点式方程以两个点(1,2)和(3,4)为例,我们可以按照以下步骤确定直线的两点式方程:–计算斜率k:k=y2−y1x2−x1=4−23−1=1–选择其中一个点,代入斜率和基本形式中,解出截距b:y−2x−1=1⇒y=x−1因此,直线的两点式方程为y=x−1。

3. 练习让学生自行计算以下两个点的直线的两点式方程:1.(2,3)和(4,5)2.(−1,0)和(3,4)4. 应用让学生应用直线的两点式方程解决以下实际问题:1.两个城市之间的距离为500公里,汽车以每小时80公里的速度行驶,问需要多长时间才能到达目的地?2.一个物体从(0,0)出发,以每秒2米的速度向上运动,问5秒后它的位置坐标是多少?5. 总结教师可以让学生总结直线的两点式方程的概念和基本形式,以及如何根据给定的两个点确定直线的两点式方程。

直线方程两点式教案

直线方程两点式教案

直线方程两点式教案教案标题:直线方程两点式教案教学目标:1. 理解直线方程的两点式表示法;2. 能够根据给定的两点,确定直线的方程;3. 能够利用直线方程两点式解决与直线相关的问题。

教学准备:1. 教师准备:教师需要准备黑板、粉笔或白板、马克笔等教学工具;2. 学生准备:学生需要准备纸和笔。

教学过程:一、导入(5分钟)1. 引入直线方程的概念,简要介绍直线方程的两点式表示法,并与一般式和斜截式进行对比。

二、讲解直线方程的两点式表示法(15分钟)1. 通过示例,详细讲解直线方程的两点式表示法的定义和推导过程;2. 强调两点式表示法的优点,即可以直接通过给定的两点确定直线方程,无需进行其他转换。

三、练习与讨论(20分钟)1. 教师提供一些简单的两点式直线方程问题,让学生尝试解答,并进行讨论;2. 学生根据给定的两点,确定直线方程,并求解与直线相关的问题。

四、拓展与应用(15分钟)1. 提供一些较为复杂的两点式直线方程问题,让学生进行拓展与应用;2. 学生根据实际问题,确定直线方程,并解决与直线相关的实际问题。

五、总结与评价(5分钟)1. 总结直线方程的两点式表示法的要点和应用;2. 对学生在课堂上的表现进行评价。

教学延伸:1. 学生可以通过使用计算机软件或在线工具,进一步练习和巩固直线方程的两点式表示法;2. 学生可以尝试寻找更多与直线方程相关的实际问题,并进行解答。

教学反思:本节课通过讲解直线方程的两点式表示法,引导学生理解和掌握该表示法的定义、推导过程和应用方法。

通过练习和讨论,学生能够熟练运用两点式表示法确定直线方程,并解决与直线相关的问题。

在教学过程中,可以适当增加一些拓展与应用的内容,提高学生的思维能力和问题解决能力。

同时,教师要及时给予学生反馈和指导,帮助他们克服困难,提高学习效果。

直线的两点式方程教案详案

直线的两点式方程教案详案

直线的两点式方程教案详案一、教学目标1.理解直线的两点式方程的含义和基本形式;2.掌握利用直线上两点确定直线方程的方法;3.能够灵活运用两点式方程解决与直线相关的问题。

二、教学准备1.教师准备:–教学课件或板书工具;–直线模型或实物示范。

2.学生准备:–笔、纸、尺等基础学习工具。

三、教学过程1. 导入与引入通过示范直线模型或实物,并提问引导学生思考:•直线是什么?你见过哪些直线?•直线有什么特点?进一步引出直线的两点式方程的概念和作用。

2. 直线的两点式方程的定义解释直线的两点式方程的定义:•直线的两点式方程是用直线上的两个点的坐标表示直线的方程。

•一个直线的两点式方程唯一确定这条直线。

3. 直线的两点式方程的基本形式介绍直线的两点式方程的基本形式:$y - y_1 = \\frac{{y_2 - y_1}}{{x_2 - x_1}}(x - x_1)$解释各项符号的含义,如P1(x1,y1)和P2(x2,y2)分别为直线上的两个已知点。

4. 求直线的两点式方程的步骤•步骤1:已知直线上两个点的坐标,记为P1(x1,y1)和P2(x2,y2);•步骤2:根据基本形式,代入已知点的坐标,得到直线的两点式方程;•步骤3:化简方程得到最简形式。

示范解题过程,让学生理解如何利用已知点求直线的两点式方程。

5. 实例练习提供若干道例题,让学生独立或小组合作完成,并进行讲解。

例题1:已知直线上两个点P1(2,3)和P2(−1,4),求该直线的两点式方程。

例题2:已知直线上两个点P1(−3,1)和P2(5,−2),求该直线的两点式方程。

例题3:已知直线上两个点P1(0,2)和P2(2,0),求该直线的两点式方程。

6. 拓展应用让学生利用直线的两点式方程解决与直线相关的问题,如求直线与坐标轴的交点、直线在平面直角坐标系中的图像等。

7. 总结与评价回顾直线的两点式方程的概念和求解步骤,让学生自己总结和梳理。

评价学生的学习情况,鼓励解答问题,纠正错误。

直线的两点式方程 说课稿 教案 教学设计

直线的两点式方程  说课稿  教案  教学设计

直线的两点式方程 教学目标1.知识与技能:(1)通过推导,会表示直线的两点式方程;(2)理解直线的两点式方程的限制条件;(3)会用直线的两点式方程解决实际问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节的核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想重点难点1.教学重点:会用直线的两点式方程解决实际问题2.教学难点:理解直线的两点式方程的限制条件.教学过程:(一)创设情景,引入新课思考:利用直线的点斜式方程解答下列问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程。

[)1(232-=-x y ] (2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。

(二)讲授新课1、直线的两点式方程:问题解答:因为21x x ≠,所以1212x x y y k --=,由直线的点斜式方程,得: )(112121x x x x y y y y ---=-,因为21y y ≠,所以),(2121121121y y x x x x x x y y y y ≠≠--=--为直线的两点式方程。

说明:(1)这个方程由直线上两点确定;(2)当直线没有斜率或斜率为0时,不能用两点式求出它们的方程。

(此时方程如何得到?) 思考:若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?(1)当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;(2)当21y y =时,直线与y 轴垂直,直线方程为:1y y =。

高中直线的两点式方程教案

高中直线的两点式方程教案

直线的两点式方程一、教学目标1、知识与技能:(1)掌握直线方程的两点的形式特点及适用范围; (2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观 (1)认识事物之间的普遍联系与相互转化; (2)培养学生用联系的观点看问题。

二、教学重点、难点教学重点:掌握直线的两点式方程。

教学难点:直线的两点式方程的推导过程和理解它。

三、、 四、 教具 :三角板。

学具:三角尺。

五、教学过程 (一)复习导入上节课我们学习了直线的点斜式方程,现在同学们利用点斜式解答如下问题:①已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程.②已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。

学生解得:①)1(232-=-x y ;②)(112121x x x x y y y y ---=- (二)新课讲解1 、直线两点式方程推导教师指出:对于上面的②当21y y ≠时,方程可以写成!),(2121121121y y x x x x x x y y y y ≠≠--=--由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式。

思考;若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么教师引导学生通过画图、观察和分析,发现当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y 轴垂直,直线方程为:1y y =; 使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。

告诉学生经过点),(),,(222211y x P x x P 的所有直线的方程可以写成:0))(())((121121=-----y y x x x x y y2、例题讲解例1、已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程。

《直线的两点式方程》教案与导学案和同步练习

《直线的两点式方程》教案与导学案和同步练习

《2.2.2直线的两点式方程》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习直线的两点式方程。

本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形。

直线方程的两点式可由点斜式导出,若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程。

由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便。

在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式。

解决问题的关键是理解理解直线方程的两点式和截距式的形式特点及适用范围。

教学中应充分体现坐标法建立方程的一般思路,为后续学习圆的方程及圆锥曲线的方程奠定基础。

发展学生数学抽象、逻辑推理、直观想象和数学运算的核心素养。

【教学目标与核心素养】课程目标学科素养A.掌握直线的两点式方程和截距式方程.B.会选择适当的方程形式求直线方程.C.能用直线的两点式方程与截距式方程解答有关问题. 1.数学抽象:直线的两点式方程和截距式方程2.逻辑推理:直线方程之间的关系3.数学运算:用直线的两点式方程与截距式方程求直线方程4.直观想象:截距的几何意义【教学重点】:掌握直线方程的两点式及截距式【教学难点】:会选择适当的方程形式求直线方程【教学过程】教学过程教学设计意图一、情境导学我们知道在直角坐标系内确定一条直线的几何要素:点和倾斜角(斜率),即已知直线上的一点和直线的斜率可以确定一条直线,或已知两点也可以确定一条直线。

这样,在直角坐标系中,给定一个点通过对直线几何要素及点斜式方程的回顾,提出问题,让p 0(x 0,y 0)和斜率k,可得出直线方程。

若给定直线上两点p 1(x 1,y 1)p 2(x 2,y 2),你能否得出直线的方程呢?二、探究新知 1.直线的两点式方程(1)直线的两点式方程的定义 ________________就是经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2)的直线方程,我们把它叫做直线的两点式方程,简称两点式. y -y 1y 2-y 1=x -x 1x 2-x 1点睛:1.当两点(x 1,y 1),(x 2,y 2)的直线斜率不存在(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式方程表示,即两点式方程不能表示与坐标轴垂直的直线.2.对于两点式中的两个点,只要是直线上的两个点即可;另外,两点式方程与这两个点的顺序无关,如直线过点P 1(1,1),P 2(2,3),由两点 式可得y -13-1=x -12-1,也可以写成y -31-3=x -21-2.1. 把由直线上已知的两点坐标得到的直线方程化为整式形式(y-y 1)(x 2-x 1)=(y 2-y 1)(x-x 1),对两点的坐标还有限制条件吗?答案:这个方程对两点的坐标没有限制,即它可以表示过任意两点的直线方程.2.已知直线l 过点A(3,1),B(2,0),则直线l 的方程为 . 解析:由两点式,得y -10-1=x -32-3,化简得x-y-2=0. 答案:x-y-2=0二、直线的截距式方程 点睛:直线的截距式方程是直线的两点式方程的特殊情况,由直线的截距式方程可以直接读出直线在x 轴和y 轴上的截距,所以截距式在解决直线与坐标轴围成的三角形的面积和周长问题时非常方便. 3.在x ,y 轴上的截距分别是-3,4的直线方程是( ) A .x -3+y 4=1 B .x 3+y-4=1 C .x -3-y 4=1 D .x 4+y-3=1 答案A解析:由截距式方程知直线方程为x -3+y4=1.选A. 4.直线xa 2−yb 2=1(ab≠0)在y 轴上的截距是( )A.a 2B.b 2C.-b 2D.|b|答案:C解析:原直线方程化为截距式方程为x 2a 2+y 2-b 2=1,故在y 轴上的截距是-b 2.三、典例解析例1 已知三角形的三个顶点A(-4,0),B(0,-3),C(-2,1),求: (1)BC 边所在的直线方程; (2)BC 边上中线所在的直线方程.思路分析:已知直线上两个点的坐标,可以利用两点式写出直线的方程.解:(1)直线BC 过点B(0,-3),C(-2,1),由两点式方程得y+31+3=x -0-2-0,化简得2x+y+3=0.(2)由中点坐标公式,得BC 的中点D 的坐标为0-22,-3+12,即D(-1,-1).又直线AD 过点A(-4,0),由两点式方程得y+10+1=x+1-4+1,化简得x+3y+4=0.延伸探究例1已知条件不变,求: (1)AC 边所在的直线方程; (2)AC 边上中线所在的直线方程. 解:(1)由两点式方程,得y -01-0=x -(-4)-2-(-4),化简得x-2y+4=0.(2)由中点坐标公式得AC 边的中点E(-3,12),中线BE 所在直线的方程为y -(-3)12-(-3)=x -0-3-0,化简得7x+6y+18=0. 两点式方程的应用用两点式方程写出直线的方程时,要特别注意横坐标相等或纵坐标相等时,不能用两点式.已知直线上的两点坐标,也可先求出斜率,再利用点斜式写出直线方程.例2过点P(1,3),且与x 轴、y 轴的正半轴围成的三角形的面积等于6的直线方程是( ) A.3x+y-6=0 B.x+3y-10=0 C.3x-y=0D.x-3y+8=0思路分析:设出直线的截距式方程,然后利用点P 在直线上以及三角形的面积列出参数所满足的条件,解方程求出参数. 解析:设所求的直线方程为xa +yb =1(a>0,b>0),由于过点P(1,3)且与两坐标轴的正半轴所围成的三角形面积等于6, 因此有{1a+3b =1,12ab =6,解得{a =2,b =6,故所求直线的方程为3x+y-6=0.荒地上划出一块长方形地面(不改变方位)进行开发.问如何设计才能使开发的面积最大?最大开发面积是多少?思路分析将问题转化为在线段AB 上求一点P,使矩形面积最大,根据图形特征,可建立适当的坐标系,求出AB 的方程.这里设点P 的坐标是关键.解:以BC 所在直线为x 轴,AE 所在直线为y 轴建立平面直角坐标系(如图),由已知可得A(0,60),B(90,0), ∴AB 所在直线的方程为x 90+y60=1,即y=60(1-x90).∴y=60-23x.从而可设P(x,60-23x),其中0≤x≤90, ∴所开发部分的面积为S=(300-x)(240-y).故S=(300-x)(240-60+23x)=-23x 2+20x+54 000(0≤x≤90), ∴当x=-202×(-23)=15,且y=60-23×15=50时,S 取最大值为-23×152+20×15+54 000=54 150(m 2). 因此点P 距AE 15 m,距BC 50 m 时所开发的面积最大, 最大面积为54 150 m 2.归纳总结 二次函数最值问题,一方面要看顶点位置,另一方面还要看定义域的范围.结合图形求解,有时并非在顶点处取得最值. 三、达标检测四、小结五、课时练【教学反思】通过本节学习,要求学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程。

直线的两点式方程-高中数学获奖教案

直线的两点式方程-高中数学获奖教案

2.2.2直线的两点式方程(人教A 版普通高中教科书数学选择性必修第一册第二章)一、教学目标1.探索并掌握直线的两点式方程;2.根据直线位置的不同几何要素,确定直线方程的不同形式.二、教学重难点重点:直线的两点式和截距式方程.难点:直线的两点式方程的建立.三、教学过程1.直线的两点式方程的建立1.1温故知新,引发思考我们知道确定直线位置的基本几何要素有两类:(1)直线上一点和方向(斜率);(2)两点确定一条直线.我们已经探索了过点,斜率为的直线的点斜式方程为. 特例:直线的斜截式方程.问题1:(1)已知直线经过两点,(其中,),因为两点确定一条直线,所以直线是唯一确定的.即是说,对于直线上的任意一点,它的坐标与点,的坐标之间具有唯一确定的关系.这一关系是什么?【预设答案】方案一:用点,的坐标可以唯一确定直线的方程,点的坐标是方程的解;方案二:由点与点,三点中任意两点确定的直线的斜率相等.【设计意图】通过方案一可以引导学生理解“直线上任意点的坐标都是直线方程的解”,从而领悟到“表示直线上任意点的坐标满足的关系,也就是确定直线的方程”.方案二可以直线建立点的坐标满足的关系式,两种方案中斜率均处于核心地位.1.2尝试探究,建立方程00()P x y ,k l 00()y y k x x -=-l y kx b =+l 111()P x y ,222()P x y ,12x x ≠12y y ≠l l ()P x y ,1P 2P 1P 2P l P P 1P 2P PP探究活动:以小组为单位在方案一和方案二中选取一种方案探究点的坐标与点,的坐标之间的关系,然后以组为单位汇报探究的过程和分享探究成果.【活动预设】让学生自主设计探究思路,规划探究步骤,经历数学探究过程,规范探究成果,从而积累数学活动经验.【设计意图】不同的方案将得到不果的探究成果,根据所得关系式的不同,进而引导学生思考,如何统一结论,规范探究成果.问题2:如何用统一的形式表示所得结果,谈谈你的想法?【活动预设】(1)从得到的关系式的形式上,分析其异同点;(2)化异为同,使得结果的结构特点更明确,形式更美.【设计意图】引导学生对所得成果,进一步分析,找出其区别与联系,并在此基础上进行优化,积累数学活动经验.问题3:在探究过程中,你认为关键步骤是什么,谈谈你的体会?【活动预设】引导学生发现两种方案中,斜率均处于核心地位.斜率公式是联系直线上任意点与两已知点桥梁,是化“两点”为“一点和方向”的关键,体会所得直线方程与点斜式方程的关系.【设计意图】引导学生体会斜率在建立直线方程的过程中处于核心地位,以斜率公式为桥梁,将问题“两点确定一条直线”转化为“一点和斜率唯一确定一条直线”,体会直线的两点式方程是点斜式方程的一个“变式”或推论.课堂新授:已知直线经过两点,,其中,.则直线的方程为 . 我们把它叫做直线的两点式方程,简称两点式(two-point form ).问题4:请分析直线的两点式方程的结构特点、适用条件,以及它与直线的点斜式方程的关系.【预设答案】(1)直线方程的结构特点:○1运算:两边均是分式形式;○2数量:左边均是纵坐标(),右边均是横坐标();○3下标:上下、左右下标序号一致;○4两边分子之比P 1P 2P l 111()P x y ,222()P x y ,12x x ≠12y y ≠112121y y x x y y x x --=--y x与分母之比相等,且都等于直线的斜率.所以直线的两点式方程具有结构美、对称美、有序美、运算美等特点.(2)适用条件,由,的条件,可知当直线与坐标轴不垂直(或平行)时,才可以写出直线的两点式方程.(3)直线的两点式方程可以看作是直线的点斜式方程的“变式”或推论.【设计意图】引导学生认识直线的两点式方程的本质与结构特点,了解它与直线的点斜式方程之间的关系,发现感受数学之美.1.3操作确认,创新应用问题5:直线方程的斜截式是点斜式的特例,类比探索直线的两点式方程的特例,并对你的结果进行优化和评析.【预设答案】当直线的两点是它分别与轴,轴的交点时,两点式可改写成更简洁美观的形式(截距式).【设计意图】引导学生根据已有活动经验,利用特殊化的方法,类比斜截式的探索过程,自主探索直线的斜截式方程,对方程进行结构优化,并对方程结构特点进行评析,感受方程之美.培养学生的探索意识和创新精神,提升数学学科核心素养.课堂新授:已知直线与轴的交点为,与轴的交点为,其中,.则直线的方程为 . 我们把它叫做直线的截距式方程,简称截距式(intercept form ).其中是直线在轴上的截距,类似的叫做直线在轴上的截距.1.4典型例题,灵活应用例4 已知的三个顶点,,,求边所在直线的方程,以及这条边上的中线所在直线的方程.【思路分析】(1)直接写出所在直线的两点式方程,然后化简;(2)先确定边中点的坐标,然后写出中线所在直线的两点式方程,化简.【追问】你是否还有其他方案求解?12x x ≠12y y ≠x y l x (0)A a ,y (0)B b ,0a ≠0b ≠1x y a b+=b y a x ABC △(50)A -,(33)B -,(02)C ,BC AM BC BC M AMBC AM 【预设答案】先求斜率,再写出所在直线的斜截式方程,中线所在直线的点斜式方程,然后化简.【设计意图】例4主要是两点式方程的综合应用.既需要根据两点的坐标建立两点式方程,也需要确定线段中点坐标,由边的中点与对应顶点坐标建立三角形中线的方程.引导学生理解和感受用坐标和方程量化点和直线,从而把图形的几何特征转化为代数表达.AC变式若求边所在直线的方程,你能设计几种不同的方案?【预设答案】(1)斜截式;(2)两点式;(3)截距式.【设计意图】引导学生理解根据确定直线的几何要素不同可以建立不同形式的直线方程,但这些方程形异而质同,从而为进一步学习直线方程的一般式做铺垫.1.5反思总结,理解升华思考:直线的点斜式、斜截式、两点式、截距式方程,各有什么几何意义?它们本质是什么?它们之间存在怎样的联系?谈谈你的理解和认识.【预设答案】(1)直线的点斜式、斜截式、两点式、截距式方程,都具有明确的几何意义,都涉及确定直线位置的两个基本要素:两点或一点与斜率;(2)它们形式不同,但本质一致,都是对直线(几何图形)的定量(代数)刻画,并且在对直线的定量刻画中,斜率均处于核心地位;(3)点斜式方程是所有形式方程的基础,其他所有形式的方程都是点斜式方程在一定条件下的变式或推论;(4)所有不同形式的直线方程都有不同的适用条件,且都不能刻画斜率不存在的直线.【设计意图】梳理直线方程的不同形式,理解其区别与内在联系,认识到所有这些形式的方程在刻画直线时的局限性,从而为进一步学习直线的一般式方程做好必要的铺垫;在此基础上加深学生对直线方程本质的理解,初步加深对解析法研究几何问题的认识.1.5课堂练习,自我检测教材P64 练习四、课后作业教材P67 习题2.2 第1、4、9题。

直线的两点式方程教案

直线的两点式方程教案

直线的两点式方程教案教案标题:直线的两点式方程教案教案目标:1. 学生能够理解直线的两点式方程的概念和含义。

2. 学生能够根据已知的两点坐标,确定直线的两点式方程。

3. 学生能够应用直线的两点式方程解决实际问题。

教案步骤:引入(5分钟):1. 创造一个实际情境,例如:假设学生是一名城市规划师,需要在地图上连接两个重要地点。

请学生思考如何用直线来表示这两个地点之间的路径。

概念解释(10分钟):1. 介绍直线的两点式方程的定义:直线的两点式方程是通过已知两点坐标来表示直线的方程。

2. 解释两点式方程的一般形式:y - y1 = (y2 - y1) / (x2 - x1) * (x - x1),其中(x1, y1)和(x2, y2)是已知的两点坐标。

示例演练(15分钟):1. 给出一个具体的例子,例如:已知点A(2, 3)和点B(5, 7),请学生根据这两个点的坐标确定直线的两点式方程。

2. 引导学生按照两点式方程的一般形式计算,解释过程并给予指导。

练习与巩固(15分钟):1. 分发练习题,要求学生根据给定的两点坐标,确定直线的两点式方程。

2. 鼓励学生独立完成练习,并在需要时提供帮助和解释。

3. 随堂检查学生的练习成果,解答学生的问题。

应用拓展(10分钟):1. 提供一个实际问题,例如:已知一辆汽车从点A(1, 2)出发,经过点B(4, 6),最终到达点C(7, 10)。

请学生利用直线的两点式方程计算汽车的行驶路线。

2. 引导学生将问题转化为数学模型,解释计算过程并给予指导。

总结与反思(5分钟):1. 总结直线的两点式方程的概念和应用。

2. 鼓励学生分享他们在解决实际问题时的思考和方法。

3. 提供反思时间,让学生思考他们在学习过程中遇到的困难和问题。

教案评估:1. 观察学生在课堂上的参与度和理解程度。

2. 检查学生在练习和应用拓展中的表现。

3. 收集学生的作业和练习题,评估他们对直线的两点式方程的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中直线的两点式方程
教案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
直线的两点式方程
一、教学目标
1、知识与技能:(1)掌握直线方程的两点的形式特点及适用范围; (2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观 (1)认识事物之间的普遍联系与相互转化; (2)培养学生用联系的观点看问题。

二、教学重点、难点
教学重点:掌握直线的两点式方程。

教学难点:直线的两点式方程的推导过程和理解它。

三、教具 :三角板。

学具:三角尺。

四、教学过程 (一)复习导入
上节课我们学习了直线的点斜式方程,现在同学们利用点斜式解答如下问题:①已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程.②已知两点
),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。

学生解得:①)1(232-=-x y ;②)(11
21
21x x x x y y y y ---=- (二)新课讲解
1 、直线两点式方程推导
教师指出:对于上面的②当21y y ≠时,方程可以写成
),(21211
21
121y y x x x x x x y y y y ≠≠--=--
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式。

思考;若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?
教师引导学生通过画图、观察和分析,发现当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y 轴垂直,直线方程为:
1y y =;
使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。

告诉学生经过点),(),,(222211y x P x x P 的所有直线的方程可以写成:
0))(())((121121=-----y y x x x x y y
2、例题讲解
例1、已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中
0,0≠≠b a ,求直线l 的方程。

解得直线方程:1=+b
y
a x
教师指出:b a ,的几何意义和截距式方程的概念。

例2、已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程。

教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC 所在的直线方程和该边上中线所在直线方程。

在此基础上,学生交流各自的作法,并进行比较。

3、课堂练习
课本107页的1.2.3题
4、课堂小结
先问学生:这节课学到哪些知识可以解决哪些问题让学生自由发言,教师再作补充。

5、作业
课本110页第1和第3题。

五、教学反思
本节主要讲授了直线的亮点是方程,是一节讲解课。

本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,所以在教学过程中,教师不仅可以了解学生掌握旧知的情况,同时还要引导学生过渡到新知。

在解决问题的时候,教师要留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力。

在教学设计上,不仅关注学生的思考过程,还要关注学生的思考习惯,本节的推理逻辑性较强,让学生动手、动脑、动笔去推导公式,让学生体会到数学的严谨性,并获得数学活动的经验,提高机自己的逻辑思维能力。

不足之处就是引用的例题不够理想,只是按照教材顺序进行,自己未能创新。

相关文档
最新文档