图的点连通度边连通度总结

合集下载

CHAP 7 图的连通性

CHAP  7  图的连通性

离 散 数 学
10
断集
• 断集:设G是一个图,V1,V2 V(G),令 [V1,V2]={(u,v) ∈E(G) | u∈V1, v∈ V2},并称 [V1,V2]为G的一个断集。 • 若(G) >0,则存在断集[V1,V2],使得| [V1,V2]| = (G) 。 显然,存在边割E’,|E’| = (G)。令 V’={u| (u,v)∈E’且vV1}, V1 是V’和G-E’ 中 与V’ 中的某个顶点在同一连通分支中的顶点 的并集,V2=V(G)-V1,于是[V1,V2] 是G的一 个断集,且| [V1,V2]| = (G) 。
离 散 数 学
25
不可分图的任意两边同回路
• 推论7.2.2:若G是至少3个顶点的块,则G 的任意两条边都在G的某一条回路上。
证明:设e1和e2∈E(G),分别 在e1和e2 上添加顶点v1和v2, 得到新图G1。显然G1仍是块, 且至少有5个顶点。因此G1是 不可分图,由推论7.2.1 v1和v2 在G1的同一条回路上,从而e1 和e2都在G的同一条回路上。
离 散 数 学
3
点连通度
• 定义7.1.1:设G为连通的非完全图,令 (G)=min{|V | V是 G的顶点割}, 称(G)为G的点连通度,简称为G的连通度。 • 为统一起见,规定(Kn)=n–1,当G为平凡图或非 连通图时,(G)=0 . • k––连通图:对图G,若(G)k 0,则称图G为 k––连通图。 • 显然,k––连通图必是一个(k–1)––连通图,所有非 平凡的连通图都是1––连通图。
离 散 数 学
8
连通度不大于平均度
• 定理7.1.2:任何图G(p,q),有 (G) (G) 2q/p 其中 x 表示不超过x的最大整数。 证明:因为2q是G的顶点度之和,2q/p 是G的顶点的平均度,而(G)是G的最小 度,又(G)是整数,所以,(G) 2q/p 故由定理7.1.1有:(G) (G) 2q/p 。

图的连通度问题

图的连通度问题

图的连通度问题研究1.图的连通度的定义图要么是连通的,要么是不连通的。

但对于任意连通图来说,它们的连通程度也可能是不同的。

为了精确地体现连通的程度,下面将引入两个概念:边连通度和顶点连通度。

设G = (V, E)是一个n阶图。

如果G是完全图K n,那么我们定义它的顶点连通度为κ(K n) = n– 1否则,定义它的顶点连通度为κ(G) = min{|U| : G v-u是非连通的}即最小顶点数,删除这些顶点便是非连通图。

图G的边连通度定义为从图G中删除边而使G非连通的最小边数,用λ(G)表示。

这里的图G=(V, E)代表无向图或有向图,且没有自环和重边。

下面将主要讨论无向图的边连通度,有向图的边连通度和顶点连通图可以以此类推。

2.无向图的边连通度在无向图G中,令顶点v的度数deg(v)表示与顶点v相连的边的数目。

无向图G的最小度δ(G)定义为:δ(G) = min{deg(v) | v属于G}。

考虑有向图G中,v 的入度表示为in-deg(v),v的出度表示为out-deg(v),相应的最小度为:δ(G) = min{in-deg(v), out-deg(v)| v属于G}。

在整篇文章中,图的点数用n表示,边数用m表示。

另u和v表示图G中的一对不相同的点。

定义λ(u, v)表示从图G中删除最少的边,使得u和v之间不存在任何路径。

在有向图G中,λ(u, v)表示从G中删除最少的弧(有向边),使得不存在任何从u到v的有向路径。

注意到,在无向图中,有λ(u, v) =λ(v, u),在有向图中却不符合这个等式。

显然,λ(u, v)就是图中u和v的最小割。

求两点之间的最小割,根据最大流最小割定理,可以用最大流算法求解:令u为网络的源点,v为网络的汇点,每条边的容量为1,u到v的最大流便是u和v之间的最小割。

预流推进算法可以在O(nm)时间复杂度下求出最大流。

另外,每条边的容量都为1,可以用Hoproft算法在)O的时间复杂度下求出单位容量网络的最大流。

图的点连通度边连通度总结

图的点连通度边连通度总结

图的点连通度边连通度总结点连通度的定义:一个具有N个点的图G中,在去掉任意k-1个顶点后(1<=k<=N ), 所得的子图仍然连通,去掉K个顶点后不连通,则称G是K连通图,K称作图G的连通度,记作K(G)。

独立轨:A, B是图G (有向无向均可)的两个顶点,我们称为从A到B的两两无公共内顶点的轨为独立轨,其最大的条数记作p(A,B)。

在上图中有一个具有7个定点的连通图,从顶点1到顶点3有3条独立轨,即p(1,3)=3;1 —2 —3 , 1 —7—3 , 1 —6 —5—4 —3如果分别从这3条独立轨中,每条轨抽出一个内点,在G图中删掉,则图不连通。

若连通图G的两两不相邻顶点间的最大独立轨数最小的P(A,B)值即为K (G)。

若G为完全图(两两点可达),则K(G)=n-1 ,即完全把某个点的所有边删掉后才不连通。

既然独立轨是只能经过一次的边,那么可以构造网络流模型,其中每条边的容量为1,就可以限制只经过一次。

构建网络流模型:若G为无向图:(1)原G图中的每个顶点V变成N网中的两个顶点V'和V'',顶点V'至V''有一条弧容量为1 ;(2)原图G中的每条边e=UV,在N网中有两条弧e'=U''V',e''=V''U' 与之对应,e'与e''容量均为无穷;(3 )以A''为源点,B'为汇点,求最大流。

若G为有向图(1 )原G图中的每个顶点V变成N网中的两个顶点V'和V'',顶点V'至V''有一条容量为1的弧;(2)原G图中的每条弧e=UV变成一条有向轨U'U''V'V'', 其中轨上的弧U''V'的容量为无穷;(3 )以A''为源点,B'为汇点求最大流。

算法学习:图论之图的割点,桥,双连通分支

算法学习:图论之图的割点,桥,双连通分支

图的割点、桥与双连通分支[点连通度与边连通度]在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。

一个图的点连通度的定义为,最小割点集合中的顶点数。

类似的,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。

一个图的边连通度的定义为,最小割边集合中的边数。

注:以上定义的意思是,即有可能删除两个或两个以上点的时候才能形成多个连通块![双连通图、割点与桥]如果一个无向连通图的点连通度大于1,则称该图是点双连通的(point biconnected),简称双连通或重连通。

一个图有割点,当且仅当这个图的点连通度为1,则割点集合的唯一元素被称为割点(cut point),又叫关节点(articulation point)。

如果一个无向连通图的边连通度大于1,则称该图是边双连通的(edge biconnected),简称双连通或重连通。

一个图有桥,当且仅当这个图的边连通度为1,则割边集合的唯一元素被称为桥(bridge),又叫关节边(articulation edge)。

可以看出,点双连通与边双连通都可以简称为双连通,它们之间是有着某种联系的,下文中提到的双连通,均既可指点双连通,又可指边双连通。

[双连通分支]在图G的所有子图G’中,如果G’是双连通的,则称G’为双连通子图。

如果一个双连通子图G’它不是任何一个双连通子图的真子集,则G’为极大双连通子图。

双连通分支(biconnected component),或重连通分支,就是图的极大双连通子图。

特殊的,点双连通分支又叫做块。

[求割点与桥]该算法是R.Tarjan发明的。

对图深度优先搜索,定义DFS(u)为u在搜索树(以下简称为树)中被遍历到的次序号。

定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFS序号最小的节点。

图论常考知识点总结

图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。

顶点之间的连接称为边,边可以有方向也可以没有方向。

若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。

图的表示方式:邻接矩阵和邻接表。

邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。

2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。

强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。

弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。

3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。

广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。

4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。

弗洛伊德算法:用于计算图中所有顶点之间的最短路径。

5. 最小生成树普里姆算法:用于计算无向图的最小生成树。

克鲁斯卡尔算法:用于计算无向图的最小生成树。

6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。

以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。

当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。

图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。

彼得松图的点连通度和边连通度

彼得松图的点连通度和边连通度

彼得松图的点连通度和边连通度
彼得松图是一种被广泛应用于多种用途的数据结构,它的点连通度和边连通度也拥有其独特性。

首先,彼得松图的点连通度是指图中任意两个顶点之间的链接性能,高点连通度意味着任意两个节点都是互通的,可以彼此联系,这个联系有可能是距离非常近的,也有可能跨越很多中间节点,总之,任意两点可以相互联系。

当然,这并不是说点连通度越高越好,比如对欧拉网而言,它具有很高的点连通度(每个顶点可以用一条边与另一个顶点相连),但它的边连通难以实现,因此,彼得松图可以解决这一问题,既满足了高点连通度,又保持了较高的边连通度。

此外,彼得松图的边连通度是指图中任意两个边之间的实现性能,也就是说任意两边都可以被链接起来,当边连通度较高的时候,网络的容量将大大提高,并且由于节点数量较少,因此整个网络负载会减轻,有效避免了多重路由的出现,以及在一定的范围内服务的一致性得到了改善,这对于用户友好性和服务质量的提高是非常重要的。

总而言之,彼得松图的点连通度和边连通度给网络行业带来了极大的便利,它更合理地组织数据,改善了整体的负载性能,提升了服务质量,不仅仅满足了用户的需求,而且也为网络的发展和运营者的利益提供了有益的补充。

图的点连通度边连通度总结

图的点连通度边连通度总结

图的点连通度边连通度总结点连通度的定义:一个具有N个点的图G中,在去掉任意k-1个顶点后(1<=k<=N),所得的子图仍然连通,去掉K个顶点后不连通,则称G是K连通图,K称作图G的连通度,记作K(G)。

独立轨:A,B是图G(有向无向均可)的两个顶点,我们称为从A到B的两两无公共内顶点的轨为独立轨,其最大的条数记作p(A,B)。

在上图中有一个具有7个定点的连通图,从顶点1到顶点3有3条独立轨,即p(1,3)=3; 1—2—3 , 1—7—3 , 1—6—5—4—3如果分别从这3条独立轨中,每条轨抽出一个内点,在G图中删掉,则图不连通。

若连通图G的两两不相邻顶点间的最大独立轨数最小的P(A,B)值即为K(G)。

若G为完全图(两两点可达),则K(G)=n-1,即完全把某个点的所有边删掉后才不连通。

既然独立轨是只能经过一次的边,那么可以构造网络流模型,其中每条边的容量为1,就可以限制只经过一次。

构建网络流模型:若G为无向图:(1)原G图中的每个顶点V变成N网中的两个顶点V`和V``,顶点V`至V``有一条弧容量为1;(2)原图G中的每条边e=UV,在N网中有两条弧e`=U``V`,e``=V``U`与之对应,e`与e``容量均为无穷;(3)以A``为源点,B`为汇点,求最大流。

若G为有向图(1)原G图中的每个顶点V变成N网中的两个顶点V`和V``,顶点V`至V``有一条容量为1的弧;(2)原G图中的每条弧e=UV变成一条有向轨U`U``V`V``,其中轨上的弧U``V`的容量为无穷;(3)以A``为源点,B`为汇点求最大流。

上面的模型只是求出了以A为源点B为汇点的最大流max_flow,等价于在G中只要去掉max_flow个点就会使得A与B不连通。

而图的连通度是要求去掉最少的点使得整个图不连通,做法是固定一个点为源点,枚举与源点不相邻的点为汇点,求最大流。

在所有的枚举结果中最小的max_flow值就是要求的K(G).注意如果某次枚举的汇点求出的最大流为无穷则说明此此枚举的源点与汇点是强连通的。

图论课件第三章图的连通性

图论课件第三章图的连通性

Bellman-Ford算法
总结词
Bellman-Ford算法是一种用于查找带权图中单源最短路径的算法。
详细描述
Bellman-Ford算法的基本思想是从源节点开始,通过不断更新节点之间的距离,逐步找到从源节点到 其他节点的最短路径。该算法可以处理带有负权重的边,并且在图中存在负权重环的情况下也能正确 处理。
THANKS
感谢观看
Floyd-Warshall算法
总结词
Floyd-Warshall算法是一种用于查找所有节点对之间最短路 径的动态规划算法。
详细描述
Floyd-Warshall算法的基本思想是通过动态规划的方式,逐 步构建最短路径矩阵。该算法首先初始化一个距离矩阵,然 后通过一系列的转移操作,逐步更新距离矩阵,直到找到所 有节点对之间的最短路径。
欧拉回路
总结词
欧拉回路是指一个路径的起点和终点是同一点,且经过图中的每条边且仅经过 一次的路径,并且该路径闭合。
详细描述
欧拉回路是欧拉路径的一种特殊情况,它不仅满足欧拉路径的所有条件,而且 起点和终点是同一点,形成一个闭合的路径。在图论中,欧拉回路具有重要的 应用价值。
欧拉回路的判定
总结词
判断一个图是否存在欧拉回路是一个NP 难问题,目前没有已知的多项式时间复 杂度的算法。
连通度
总结词
连通度是描述图中任意两点之间可达性的度量,表示图中节点之间的连接紧密程度。
详细描述
在图论中,连通度是衡量图连通性的一个重要参数。对于一个无向图,连通度通常用K表示,表 示图中任意两点之间是否存在路径。对于有向图,连通度分为入度和出度,分别表示从一个节 点到另一个节点是否存在路径和从另一个节点到这个节点是否存在路径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图的点连通度边连通度总结
点连通度的定义:一个具有N个点的图G中,在去掉任意k-1个顶点后(1<=k<=N),所得的子图仍然连通,去掉K个顶点后不连通,则称G是K连通图,K称作图G的连通度,记作K(G)。

独立轨:A,B是图G(有向无向均可)的两个顶点,我们称为从A到B的两两无公共内顶点的轨为独立轨,其最大的条数记作p(A,B)。

在上图中有一个具有7个定点的连通图,从顶点1到顶点3有3条独立轨,即p(1,3)=3; 1—2—3 , 1—7—3 , 1—6—5—4—3
如果分别从这3条独立轨中,每条轨抽出一个内点,在G图中删掉,则图不连通。

若连通图G的两两不相邻顶点间的最大独立轨数最小的P(A,B)值即为K(G)。

若G为完全图(两两点可达),则K(G)=n-1,即完全把某个点的所有边删掉后才不连通。

既然独立轨是只能经过一次的边,那么可以构造网络流模型,其中每条边的容量为1,就可以限制只经过一次。

构建网络流模型:
若G为无向图:
(1)原G图中的每个顶点V变成N网中的两个顶点V`和V``,顶点V`至V``有一条弧容量为1;
(2)原图G中的每条边e=UV,在N网中有两条弧e`=U``V`,e``=V``U`与之对应,e`与e``容量均为无穷;
(3)以A``为源点,B`为汇点,求最大流。

若G为有向图
(1)原G图中的每个顶点V变成N网中的两个顶点V`和V``,顶点V`至V``有一条容量为1的弧;
(2)原G图中的每条弧e=UV变成一条有向轨U`U``V`V``,其中轨上的弧U``V`的容量为无穷;
(3)以A``为源点,B`为汇点求最大流。

上面的模型只是求出了以A为源点B为汇点的最大流max_flow,等价于在G中只要去掉max_flow个点就会使得A与B不连通。

而图的连通度是要求去掉最少的点使得整个图不连通,做法是固定一个点为源点,枚举与源点不相邻的点为汇点,求最大流。

在所有的枚举结果中最小的max_flow值就是要求的K(G).注意如果某次枚举的汇点求出的最大流为无穷则说明此此枚举的源点与汇点是强连通的。

如果所有的枚举结果都为无穷,则说明整个图G 是强连通的,需要去掉n-1个点才能破坏其连通性。

所有具有流量为1的弧(V`,V``)对应的V顶点组成一个割顶集
通过求连通度可以得到一个结论:G是K的连通图,k>=2,则任意K个顶点共圈。

求边连通度总结:
同样引入独立轨的概念,只是在这里叫弱独立轨,同样在每条弱独立轨中只有去掉某一条边就可以使起点到终点不连通,现在整个图G的边连通度就是要找出任意两点的弱独立轨的最小值。

如果图G为完全图,则K`(G)为n-1。

构建一个网络N
若G为无向图:
1. 原G图中的每条边e=UV变成两条边e`=UV,e``=VU,容量都为1;
2. 固定一个点为源点,枚举与源点不相邻的为汇点,求最大流max_flow,保留最小的max_flow即为图的边连通度。

若G为有向图:
1. 原G图中每条有向边容量为1;
2. 此步骤与无向图的步骤2相同。

求出的残余网络中,流量为1的弧e`=(u,v),则e`就是桥。

从图的边连通度中可以得到以下结论:
1.A是有向图G的一个顶点,如果A与G的其他所有点V间的最小值为K,则G中存在以A为根的K棵无公共边的生成树;
2.设G是有向图,0<k<=K`(G),L是0至k之间任意一个整数,对于图G的任意一对顶点(u,v)来说,存在U到V的L条弱独立有向轨,同时存在从V到U的L-k条弱独立有向轨。

相关文档
最新文档