山西省七年级数学下册第6章一元一次方程6.2解一元一次方程2导学案

合集下载

6.解一元一次方程(第2课时去分母解一元一次方程)教学课件--华师大版初中数学七年级(下)

6.解一元一次方程(第2课时去分母解一元一次方程)教学课件--华师大版初中数学七年级(下)
污染了看不清楚,被污染的方程是2y
1
-2
=
1
2
y-■,
怎么办呢?小明想了一想,便翻看了书后的答案,此方程
的解是y
5
=-3
3
是_____.
.很快补好了这个常数,这个常数应
随堂训练
4.解下列方程:
x 1 2x 1
(1)

1;
6
3
4 x 9 0.3 0.2 x x 5
(2)


.
边应该同乘以什么数?
方程两边每一
项都要乘以各
2. 去分母时要注意什么问题?
分母的最小公
倍数.
(1)不要漏乘不含分母的项;
(2)如果分子是一个多项式,
去分母时应将分子作为一个
整体加上括号.
知识讲授
3x 1
3x 2 2 x 3
2

2
10
5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 2(2 x 3)
5
0.3
2
解:(1)去分母(方程两边同乘6),得 (2)去分母(方程两边同乘30),得
(x-1) -2(2x+1) = 6.
6 (4x+9) -10(3+2x) = 15(x-5).
去括号,得 x-1-4x-2 = 6.
去括号,得 24x+54-30-20x = 15x-75.
移项,得 x-4x = 6+2+1.
再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的
宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的

列一元一次方程的应用导学案

列一元一次方程的应用导学案

6.2.2解一元一次方程导学案一、学习目标:1、进一步经历运用方程解决实际问题的过程,发展应用数学的意识,体会方程是刻画现实世界的数学模型。

2、学会列一元一次方程解决有关的实际问题,进一步理解运用方程解决实际问题的一般步骤。

3、通过列一元一次方程解决实际问题,经历思考、探究、交流等活动过程,提高分析问题、解决问题的能力。

【重点难点】:根据应用题题意列出方程。

关键在于弄清题意,找出能够表示应用题全部含义的相等关系。

一.课前准备列一元一次方程解应用题的步骤如下:1)审题。

弄清题意,找出已知量、未知量。

2)设未知数。

对所求的未知量用设未知数表示。

3)列方程。

根据题中的等量关系列出方程。

4)解方程。

解所列的方程。

5)检验解。

检验解出的未知数值是否符合题意。

6)答题。

回答题中的问题。

简记为:______________________________________复习引入:(1)校团委有65名新团员,男同学为X人,女同学有__________人。

(2)甲、乙两班共90人,期中考试后,由甲班转入乙班4人,这时甲班人数和乙班人数相等,问期中考试前两班各有多少人?分析:设期中考试前甲班有X人,根据题意列表找等量关系_______________=______________解:二,探究活动例7、学校团委组织65名团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人各搬4次。

总共搬了1800块.问这些新团员中有多少名男同学?分析:1、题目中告诉了我们哪些数量关系?__________+__________=________________________+__________=__________________________________________________2、设: 新团员中有x名男同学, 根据题意列表如下:找等量关系____________+_____________=________________ 解:三.归纳:用方程解实际问题的过程:解答分析和抽象过程包括(1)_____________________________________________(2)_____________________________________________(3)_____________________________________________课堂检测1.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?分析:设小刚在冲刺阶段的时间为X秒,根据题意列表找等量关系_____________+______________=______________解:2. 足球的表面是由一些呈多边形的黑、白皮块缝而成的,共计有32块,已知黑色皮块比白色皮块数的一半多2,问两种皮块各有多少?找等量关系: _____________+______________=______________找等量关系___________________=_____________________分析:如果设黑色块为X块,可以用哪些关系表示白色块?如果设白色块为X块,可以用哪些关系表示黑色块?你想出了几种解题方法?四.谈谈本节课收获及困惑。

6.解一元一次方程(第1课时去括号解一元一次方程)教学课件--华师大版初中数学七年级(下)

6.解一元一次方程(第1课时去括号解一元一次方程)教学课件--华师大版初中数学七年级(下)
1
(7)
1
x6

知识讲授
2.去括号解一元一次方程
去括号法则:
去掉“+(
)”,括号内各项的符号不变.
去掉“–(
)”,括号内各项的符号改变.
用三个字母a、b、c表示去括号前后的变化规律:
a+(b+c) = a+b+c
a–(b+c) = a–b–c
知识讲授
例1 解方程:3(x-2)+1=x-(2x-1)
知识讲授
通过以上解方程的过程,你能总结出解含有括
号的一元一次方程的一般步骤吗?
去括号
移项
合并同类项
系数化为1
知识讲授
针对训练
解方程:(1)( − ) − ( + ) = ( − ) + .
解:去括号,得
− − − = - + .
移项,得
− − = - + + + .
-5+4-(-3+ ).
解: 原式= -;
原式= - + .
去括号法则
去掉“+ ( )”,括号
内各项的符号不变. a
+ (b + c) =a + b + c.
去掉“– (
)”,括
号内各项的符号改变.
a -(b + c) =a -b - c.
2.一元一次方程的解法我们学了哪几步?
移项
随堂训练
3.下列变形对吗?若不对,请说明理由,并改正.
解方程 − . + =



去括号,得 − . + = . ;

人教版数学七年级一元一次方程复习导学案

人教版数学七年级一元一次方程复习导学案

一元一次方程复习导学案一、教学目标:1、理解一元一次方程概念,掌握等式性质及一元一次方程的解法。

2、能列出一元一次方程解应用题,提高分析问题、解决问题的能力。

二、教学重点:等式性质及一元一次方程的解法.三、教学难点:用一元一次方程解决实际问题。

四、教学过程:<考点一> 一元一次方程的定义与等式性质1、下列方程中,是一元一次方程的是( )A 、()232x x x x +-=+B 、()40x x +-=C 、1x y +=D 、10x y+= 2、如果21m x -+8=0是一元一次方程,则m=3、下列变形正确的是( )A 4x -5=3x +2变形得4x -3x =-2+5B 6x =2变形得x =3C 3(x -1)=2(x +3)变形得3x -1=2x +6D 23 x -1=12x+3变形得4x -6=3x +18 4、下列等式变形中,正确的是( )<考点二> 解一元一次方程()()()y y y -=---161432 ()[]()x x x -=--121231411012=---x x 421312+-=-x x21132x x +--= 52221+-=--y y y4131312--=--n n nm m m 3213123+-=--1359232+-=-+x x x257352+-=--y y y3.07416.015x x --=- x x 23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-<考点三> 一元一次方程变式训练1、若()01222=++-y x ,则y x += 。

2、单项式4124192b a b a x x -+-与是同类项,则x =3、对于非零的两个实数a 、b ,规定a ⊗b =3a -b ,若1)1(1=+⊗x ,则x 的值为 。

4、若y=1是方程12()23m y y --=的解,则关于x 的方程(4)2(3)m x mx +=+的解是 。

第六章_一元一次方程教案 导学案 (共11课时)

第六章_一元一次方程教案 导学案 (共11课时)

§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。

【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。

【教学难点】会列一元一次方程解决一些简单的应用题。

【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。

小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。

2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得:x=6答:还要租用6辆客车。

答:还要租用6辆客车。

2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。

他的答案是正确的。

(2)你能列方程解答张老师的这道题吗?试一试。

三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。

2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。

(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。

华东师大版七年级下册数学课件:6.解一元一次方程2(共15张)

华东师大版七年级下册数学课件:6.解一元一次方程2(共15张)
合并同类项,得:-8x=-44,
系数化为-1,得:x 11. 2
课堂小结
一.去分母:
当方程中的系数出现分数,将方程的两边都乘以
同一个数(各分母的最小公倍数),去掉方程中的 分母的变形称为“去分母”. 注意:不要漏乘不含分母的项.
二.解一元一次方程的一般步骤是:
去分母;
去括号;
移项;
合并同类项; 系数化为1.
第6章 一元一次方程
6.2 解一元一次方程
2. 解一元一次方程
教学目标
1.巩固一元一次方程的概念。 2. 会解含分母的一元一次方程. 3.进一步提高学生解一元一次方程的技能.
教学重点与难点
重点:会解含分母的一元一次方程. 难点:去分母时,出现漏乘和忘记变号,从而不 能 正确解一元一次方程.
温故夯基
则m= -1 .
4.解下列方程:
3(x-3)-2(2x+1)=6;
解:去括号得: 3x-9-4x-2=6, 即 -x-11=6.
移项得:-x=17. 两边都除以-1,得:x=-17.
3(5x-1)-2(3x+2)=6(x-1).
解:去括号得: 15x-3-6x-4=6x-6,
移项得:15x-6x-6x=-6+3+4,
一.一元一次方程的概念: 只含有一个未知数,并且含有未知数的式子都是
整式,未知数的次数都是1的方程. 概念要点:
只含有一个未知数; (未知数的系数不能为0) 含有未知数的式子都是整式; 未知数的次数都是1. (未知数的次数只能等于1) 二.解含有括号的一元一次方程的步骤:
1.去括号;
2.移项;
3.合并同类项; 4.系数化为1.
例 解下列方程:

初中数学 导学案2:一次函数、一元一次方程和一元一次不等式

初中数学 导学案2:一次函数、一元一次方程和一元一次不等式

一次函数、一元一次方程和一元一次不等式一、学习目标1、经历实际问题中数量关系的分析、抽象,得出一元一次不等式与一元一次方程、一次函数的内在联系2、会利用不等式、方程、函数的内在联系解决问题3.根据具体的问题情景,选用合适的工具进行解决问题;4、通过解决实际问题,知道数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学习数学的信心和兴趣.二、学习重点:一元一次不等式与一元一次方程、一次函数的内在联系三、学习难点:根据情景中所表达的关系,选用合适的工具解决问题四、学习过程一、情境引入:一根长20cm的弹簧,一端固定,另一端挂物体。

在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.如果所挂物体的质量为x㎏,弹簧的长度是y cm。

(1)求y与x之间的函数关系式,并画出函数的图象。

(2)求弹簧所挂物体的最大质量是多少?二、概括总结:三、例1 :某人点燃一根长25cm的蜡烛,已知蜡烛每小时缩短5cm,设x h后蜡烛剩下的长度为y cm.(1)求y与x之间的函数关系式.(2)几小时后,蜡烛的长度不足10cm?四、练习一:取什么值时,函数y=-2(x+1)+4的值是正数?负数?非负数?大于6?2. 声音在空气中的传播速度y (m/s)(简称音速)与气温x(℃)满足。

求(1时的气温(2)音速超过340m/s时的气温范围五.例2 :兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20 m?谁先跑过100 m?六.练习二作出函数y1=2x-4与y2=-2x+8的图象,并观察图象回答下列问题:(1)x取何值时,y1>0?(2)x取何值时,y2>0?(3)x取何值时,y1>0与y2>0同时成立?(4)x取何值时, y1>y2?(5)你能求出函数y1=2x-4,y2=-2x+8的图象与x轴所围成的三角形的面积吗?写出过程.随堂演练1、在一次函数y=2x-3中,该函数与y 轴的交点是________;若点P 到x 轴距离为 2,则点P 的坐标是_______________2、当自变量x 时,函数y=3x+2的值大于0;当x 时,函数y=3x+2的值y>0 ?y ≤-2?3、如图,直线 经过点 和点,直线过点A ,则不等式 的解集为_________y kx b =+(12)A --,(20)B -,2y x =20x kx b <+<y一次函数、一元一次方程和一元一次不等式作业1、如图,直线是一次函数b kx y +=的图象,观察图象,可知:(1) ; ,函数y= (2)当 时,y>0; 当 时,y<0,当 时,y=0;(3)当4->y 时, ;当y<-4时,2、在一次函数23y x =-中,已知则 ;若已知2=y 则 ;3、当自变量 时,函数32y x =+的值大于0;当 时,函数32y x =+的值小于0。

(苏教版)七年级下册数学配套练习册答案

(苏教版)七年级下册数学配套练习册答案

第6章⼀元⼀次⽅程§6.1 从实际问题到⽅程⼀、1.D 2. A 3. A⼆、1. x = - 6 2. 2x-15=25 3. x =3(12-x)三、1.解:设⽣产运营⽤⽔x亿⽴⽅⽶,则居民家庭⽤⽔(5.8-x)亿⽴⽅⽶,可列⽅程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列⽅程为: 4x+3(5-x)=173.解:设原来课外数学⼩组的⼈数为x,则可列⽅程为:§6.2 解⼀元⼀次⽅程(⼀)⼀、1. D 2. C 3.A⼆、1.x=-3,x= 2.10 3. x=5三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=§6.2 解⼀元⼀次⽅程(⼆)⼀、1. B 2. D 3. A⼆、1.x=-5,y=3 2. 3. -3三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-22. (1)设初⼀(2)班乒乓球⼩组共有x⼈, 得:9x-5=8x+2. 解得:x=7 (2)48⼈3. (1)x=-7 (2)x=-3§6.2 解⼀元⼀次⽅程(三)⼀、1. C 2. D 3. B 4. B⼆、1. 1 2. 3. 10三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=2. 3( x-2) -4(x- )=4 解得 x=-33. 3元§6.2 解⼀元⼀次⽅程(四)⼀、1. B 2.B 3. D⼆、1. 5 2. , 3. 4. 15三、1. (1)y = (2)y =6 (3)(4)x=2. 由⽅程3(5x-6)=3-20x 解得x= ,把x= 代⼊⽅程a- x=2a+10x,得a =-8.∴当a=-8时,⽅程3(5x-6)=3-20x与⽅程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解⼀元⼀次⽅程(五)⼀、1.A 2. B 3. C⼆、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x⼈, 根据题意,得27+x=2[19+(20-x)]. 解得:x=172. 设该⽤户5⽉份⽤⽔量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得 x=8. 于是1.4x=11.2(元) .3. 设学⽣⼈数为x⼈时,两家旅⾏社的收费⼀样多. 根据题意,得240+120x=144(x+1),解得 x=4.§6.3 实践与探索(⼀)⼀、1. B 2. B 3. A⼆、1. 36 2. 3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得 x=9. 则原来两位数是29.2.设⼉童票售出x张,则成⼈票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400⼈. 则⼉童票售出300张,成⼈票售出400张.§6.3 实践与探索(⼆)⼀、1. A 2. C 3. C⼆、1. x+ x+1+1=x 2. 23.75% 3. 2045三、1. 设⼄每⼩时加⼯x个零件,依题意得,5(x+2)+4(2x+2)=200 解得x=14.则甲每⼩时加⼯16个零件,⼄每⼩时加⼯14个零件.2. 设王⽼师需从住房公积⾦处贷款x元,依题意得,3.6%x+4.77%(250000-x)=10170. 解得 x=150000.则王⽼师需从住房公积⾦处贷款150000元,普通住房贷款100000元.3. 设⼄⼯程队再单独做此⼯程需x个⽉能完成,依题意,得解得 x = 14. ⼩时第7章⼆元⼀次⽅程组§7.1 ⼆元⼀次⽅程组和它的解⼀、1. C 2. C 3. B⼆、1. 2. 5 3.三、1. 设甲原来有x本书、⼄原来有y本书,根据题意,得2. 设每⼤件装x罐,每⼩件装y罐,依题意,得 .3. 设有x辆车,y个学⽣,依题意§7.2⼆元⼀次⽅程组的解法(⼀)⼀、1. D 2. B 3. B⼆、1. 2.略 3. 20三、1. 2. 3. 4.§7.2⼆元⼀次⽅程组的解法(⼆)⼀、1. D 2. C 3. A⼆、1. , 2. 18,12 3.三、1. 2. 3. 4.四、设甲、⼄两种蔬菜的种植⾯积分别为x、y亩,依题意可得:解这个⽅程组得§7.2⼆元⼀次⽅程组的解法(三)⼀、1. B 2.A3.B 4. C⼆、1. 2. 9 3. 180,20三、1. 2. 3.四、设⾦、银牌分别为x枚、y枚,则铜牌为(y+7)枚,依题意,得解这个⽅程组, , 所以 y+7=21+7=28. §7.2⼆元⼀次⽅程组的解法(四)⼀、1. D 2. C 3. B⼆、1. 2. 3, 3. -13三、1. 1. 2. 3. 4. 5. 6.四、设⼩明预订了B等级、C等级门票分别为x张和y张. 依题意,得解这个⽅程组得§7.2⼆元⼀次⽅程组的解法(五)⼀、1. D 2. D 3. A⼆、1. 24 2. 6三、1. (1)加⼯类型项⽬精加⼯粗加⼯加⼯的天数(天)获得的利润(元)6000x 3. 28元,20元8000y(2)由(1)得:解得∴答:这批蔬菜共有70吨.2.设A种篮球每个元,B种篮球每个元,依题意,得解得3.设不打折前购买1件A商品和1件B商品需分别⽤x元,y元,依题意,得解这个⽅程组,得因此50×16+50×4-960=40(元).§7.3实践与探索(⼀)⼀、1. C 2. D3.A⼆、1. 72 2. 3. 14万,28万三、1.设甲、⼄两种商品的原销售价分别为x元,y元,依题意,得解得2. 设沙包落在A区域得分,落在B区域得分,根据题意,得解得∴答:⼩敏的四次总分为30分.3.(1)设A型洗⾐机的售价为x元,B型洗⾐机的售价为y元,则据题意,可列⽅程组解得(2)⼩李实际付款:(元);⼩王实际付款:(元).§7.3实践与探索(⼆)⼀、1. A 2. A 3.D⼆、1. 55⽶/分, 45⽶/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃⼦笑”荔枝收获x千克,“⽆核Ⅰ号”荔枝收获y千克.根据题意得解这个⽅程组得2.设⼀枚壹元硬币克,⼀枚伍⾓硬币克,依题意得:解得:3.设原计划⽣产⼩麦x吨,⽣产⽟⽶y吨,根据题意,得解得 10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章⼀元⼀次不等式§8.1 认识不等式⼀、1.B 2.B 3.A⼆、1. <;>;> ; > 2. 2x+3<5 3. 4. ω≤50三、1.(1)2 -1>3;(2)a+7<0;(3) 2+ 2≥0;(4)≤-2;(5)∣ -4∣≥ ;(6)-2<2 +3<4. 2.80+20n>100+16n; n=6,7,8,…§8.2 解⼀元⼀次不等式(⼀)⼀、1.C 2.A 3.C⼆、1.3,0,1,,- ;,,0,1 2. x≥-1 3. -2<x<2 4. x<三、1.不能,因为x<0不是不等式3-x>0的所有解的集合,例如x=1也是不等式3-x>0的⼀个解. 2.略§8.2 解⼀元⼀次不等式(⼆)⼀、1. B 2. C 3.A⼆、1.>;<;≤ 2. x≥-3 3. >三、1. x>3; 2. x≥-2 3.x< 4. x>5四、x≥-1 图略五、(1) (2) (3)§8.2 解⼀元⼀次不等式(三)⼀、1. C 2.A⼆、1. x≤-3 2. x≤- 3. k>2三、1. (1)x>-2 (2)x≤-3 (3)x≥-1 (4)x<-2 (5)x≤5 (6) x≤-1 (图略)2. x≥3.⼋个⽉§8.2 解⼀元⼀次不等式(四)⼀、1. B 2. B 3.A⼆、1. -3,-2,-1 2. 5 3. x≤1 4. 24三、1. 解不等式6(x-1)≤2(4x+3)得x≥-6,所以,能使6(x-1)的值不⼤于2(4x+3)的值的所有负整数x的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x张⼴告单,依题意得 80+0.3x≤1200,解得x≤3733.答:该公司最多可印制3733张⼴告单.3. 设购买x把餐椅时到甲商场更优惠,当x>12时,得 200×12+50(x-12)<0.85(200×12+50x),解得x<32 所以12<x<32; 当0<x≤12时,得200×12<0.85(200×12+50x)解得x> ,所以<x ≤12 其整数解为9,10,11,12.所以购买⼤于或等于9张且⼩于32张餐椅时到甲商场更优惠.§8.3 ⼀元⼀次不等式组(⼀)⼀、1. A 2. B⼆、1. x>-1 2. -1<x≤2 3. x≤-1三、1. (1) x≥6 (2) 1<x<3 (3)4≤x<10 (4) x>2 (图略)2. 设幼⼉园有x位⼩朋友,则这批玩具共有3x+59件,依题意得 1≤3x+59-5(x-1)≤3,解得30.5≤x≤31.5,因x为整数,所以x=31,3x+59=3×31+59=152(件)§8.3 ⼀元⼀次不等式组(⼆)⼀、1. C 2. B. 3.A⼆、1. m≥2 2. <x<三、1. (1)3<x<5 (2)-2≤x<3 (3)-2≤x<5 (4) x≥13(图略)2×3+2.5x<204×3+2x>202. 设苹果的单价为x元,依题意得解得4<x<5,因x恰为整数,所以x=5(元)(答略)3. -2<x≤3 正整数解是1,2,34. 设剩余经费还能为x名⼭区⼩学的学⽣每⼈购买⼀个书包和⼀件⽂化衫,依题意得 350≤1800-(18+30)x≤400,解得29≤x≤30,因⼈数应为整数,所以x=30.5.(1)这批货物有66吨 (2)⽤2辆载重为5吨的车,7辆载重为8吨的车.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
四、 【巩固训练】
1.当 x=______时,代数式

的值相等.
2.当 a=___ ___时,方程
的解等于
.
3.已知
是方程
的解,那么关于 x 的方程
的解是_________ _.
4.
去分母,得
;再去
括号,得_______ _____________;移项,得__ _______ _________. 5.若 m 为整数,则当 m=______________时,关于 x 的方程
二、 【设问导读】 1.解方程 2(x+3)=2 .5(x-3) 去括号,得 2x+6=2.5x-7.5 移项及合并,得-0.5x=-13.5 系数化为 1,得 x=27 2.你注意到去括号时应注意什么了么?
三、 【自学检测】 : 1、(x+1)-2(x-1)=1-3x
2.2(x-2)-6(x-1)=3(1-x)
的解是正整数.
五、 【拓展延伸】
x yz x y z 0 已知: 3 4 6 ,求 x y z 的值.Βιβλιοθήκη 2板书设 计 教学反思
安全提示
3
专题课件 解一元一次方程
学习内容 学习目标 学习重点 学习难点 解一元一次方程(去括号) 掌握去括号的法则,然后移项解方程。 去括号时,前面是负号的时候,里面每项都要变符号。 去括 号时,前面是负号的时候,里面每项都要变符号。 导学方案 一、 【温故互 查】 1、什么是移项? 复备 栏
2、移项时要注意什么问题?
相关文档
最新文档