不对称合成简介
不对称合成名词解释

不对称合成名词解释
不对称合成是最常用的化学反应之一。
它的反应机理比其他反应更加复杂,可以利用这种反应将两种不同的反应物合成一种新的化合物。
其中一种反应物可能是一种有机物,而另一种可能是一种无机物。
不对称合成的反应比一般的化学反应更复杂,可用于制备一种新的、未曾存在的化合物,这种反应特别适合制备一些非常有用的有机化合物。
它不仅可以用于在实验室制备有机分子,而且还可以用于实际的工业应用,从而提高产品的品质。
不对称合成中最重要的因素是反应介质和反应条件。
反应介质是指合成反应用以完成化学反应所需要的溶剂。
一般来说,反应介质包括水、乙醇、甲醇等,而温度、pH值和溶液浓度也是非常重要的反应条件。
此外,不对称合成还可以利用光照或电催化来完成反应。
这种类型的光照或电催化可以加速合成反应的进行,从而可以提高反应的效率,并且对反应物的改变能够更加明显。
不对称合成也可以利用催化剂来加速反应。
催化剂是指在特定形式或活性位置上加作用,以使反应按预期发生,而不会影响反应物。
常用的催化剂有金属离子、有机催化剂、酶和活性氧等。
最后,不对称合成的反应机理可以用于大规模的生产。
一般来说,不对称合成的反应机制可以在工业生产中应用,可以利用这种反应机理生产出许多有用的有机化合物,从而为工业提供更多的资源。
总之,不对称合成是一种常见的化学反应,能够用来合成新的化
合物,其反应机理比其他反应更加复杂,可以利用不对称合成反应来合成许多非常有用的有机化合物。
它可以利用反应介质、反应条件、光照或电催化和催化剂等技术来完成化学反应,也可以在大规模的工业生产中应用。
13第十三章-不对称合成

羰基不对称加成——非螯合加成:
在无手性因素时,普通亲核试剂进攻羰基碳的 Re和Si面的几率相同,产物是一对外消旋体:
与手性碳相邻的羰基碳,由于手性碳的影响使 得Re面与Si面进攻能量存在差别,因此存在非 对映过量(de)
7:4
羰基不对称加成:非螯合加成
Cram(克拉姆)规则:
亲核进攻试剂主要通过位阻最小的一侧进攻
当存在特定金属时,它可与羰基氧及α-C上的 氧结合,这种螯合结构的形成导致亲核进攻试 剂只能通过相反的位置进攻羰基碳:
de>98%
螯合结构导致反应的立体选择性大大提高
手性辅助基团参与的羰基加成
螯合结构使得手性底物与小位阻试剂也能 实现高de值的手性合成
将无手性中心或手性中心不合适的底物引入手 性辅助基团,就能实现高产率的单一手性合成
由于双烯体或亲双烯体上难以存在手性基团, 因此控制不对称环合反应主要有两种方法:
通过在双烯体、亲双烯体上引入手性辅助基团
使用手性催化剂催化环合反应
12.5 不对称氢化与氧化
概述:
氢化反应可以将π键还原为单键而得到新的手 性中心,氧化则通过氧化π键而得到新的手性 中心。他们得到单一手性产物的前提是在手性 因素(如催化剂或试剂)存在下进行反应
e键稳定 含量90%
反应具有立体选择性
a键能量高 含量10%
立体专一性:
不同的立体异构体反应得到不同的单一产物的 反应称为立体专一性反应,如还原反应:
还原产物均为单一纯品,具有立体专一性
还原产物为外消旋体,不具有立体专一性
对映过剩(ee)与非对映过剩(de):手性合成 效率的标准
对映选择的反应使用ee:
通过特定方式反应,也能生成单一手性产物
有机化学中的不对称合成

有机化学中的不对称合成在有机化学领域中,不对称合成是一项重要的研究领域,它可以有效地合成具有手性的有机分子。
手性分子在药物合成、天然产物合成以及材料科学等领域中具有重要的应用价值。
本文将探讨不对称合成的基本概念、方法和应用,并介绍一些常见的不对称合成反应。
一、不对称合成的基本概念不对称合成是指通过使用手性起始原料或手性催化剂,合成出具有手性的有机分子的化学合成方法。
在不对称合成中,合成的产物具有不对称的结构或旋光性。
与对称合成相比,不对称合成可以得到具有更高的立体选择性和手性纯度的产物。
不对称合成的基本原理是利用手性诱导或手性催化剂来选择性地激活反应物中的一个面或一个手性中心,从而控制反应的立体选择性。
手性诱导合成方法包括拆分法、不对称催化、酶催化和手性助剂等。
其中,不对称催化是最为常见的方法,它通过使用手性催化剂,使化学反应以特定的立体选择性进行。
二、不对称合成的方法1. 手性诱导合成手性诱导合成是通过使用手性起始原料或手性诱导剂来进行的合成方法。
手性诱导合成包括手性拆分法和手性诱导剂法。
手性拆分法是通过将手性分子与反应物进行化学或物理上的拆分,使得反应物在反应过程中保持立体选择性。
手性拆分法包括光学拆分法、金属配合物拆分法和手性分子的稳定性拆分法等。
手性诱导剂法是通过使用手性诱导剂来引发反应中的手性识别过程,从而控制反应的立体选择性。
手性诱导剂法包括非手性基团诱导和手性感受性诱导。
2. 不对称催化合成不对称催化合成是通过使用手性催化剂来实现的合成方法。
手性催化剂能够选择性地提供一个特定的反应路径,从而控制反应的立体选择性。
不对称催化合成通常包括氢化、氧化、醇缩合、酯化、醚化等反应。
不对称催化合成中最有代表性的方法是手性配体催化法。
手性配体催化法通过使用手性配体配位于金属催化剂上,使催化剂具有手性识别能力,从而实现对反应物的选择性激活。
3. 酶催化合成酶催化合成是通过使用天然酶或人工改造酶来进行的合成方法。
不对称合成方法

不对称合成方法
不对称合成方法是一种利用立体选择性反应,使两个对映体中的一个占优势的合成方法。
这种方法又被称为手性合成。
在不对称合成中,至少要有一个化合物是手性化合物,才能使反应中生成的两种过渡态互为非对映关系,它们的活化能差决定了产物产生不等量的对映体。
不对称合成可以通过使用手性试剂、催化剂或者物理方法(如圆偏振光)来进行。
成功的标准通常包括高的对映体过量百分数、手性试剂易得且可循环使用、可以分别制得R与S异构体,以及最好是催化性的合成。
此外,根据手性的来源,不对称合成可以分为普通不对称合成和绝对不对称合成。
普通不对称合成是指依靠直接或间接由天然获得的手性化合物衍生的基团诱导产生手性化合物的合成。
而绝对不对称合成是指绝对脱离天然产物来源,通过物理方法(如通过圆偏光的照射)诱导产生手性的合成。
不对称合成在合成某些药物、香料、氨基酸及具有生物活性的化合物等方面具有很重要的意义。
第九章不对称合成

½¯ÊÏ ´ ß»¯¼Á
COOR1 R3 NHR2
H2 ´ ßቤተ መጻሕፍቲ ባይዱ¯¼Á R3
*
COOR1 NHR2
H, H 2O R3
+
COOH NH2
c. 酶动力学拆分
• 酶本身是一种手性分子,具有非常好的专一性催 化活性。 • 消旋化氨基酸的-氨基经乙酰化以后,用蛋白水 解酶水解。 • 水解酶只能识别并且水解由L-氨基酸形成酰胺键, 因此可以将L--氨基酸游离出来。 • 蛋白水解酶不能识别 D-氨基酸的酰胺键,因此仍 以乙酰氨基酸形式存在,从而达到分离目的(可 进一步用非酶水解的方法释放氨基酸)。
S A* S A* R *P A* A* P* (15.2)
优点,就是助剂可以回收并循环使用, 缺点:需要两步额外的合成步骤, 一个用于引入助剂;另一个用于脱除之。
1. 手性烯醇的烷基化
• 由缬氨酸衍生的唑啉环作为手性助剂,将烯醇锂 和含锆复杂基团交换更为有利,确保烯醇采取所 示构型11和醛反应得到手性产物12。
H H2N CH(CH3)2 CO2H S-(+)-valine (1) LiAlH4 (2) HCHO , H+ O NH (C2H5O)2O H O N COC2H5 H
(三步反应的总收率为71%)
含锆基团体积更大
O O N H H OH * CHO O N O- +ZrCp2Cl H H 11
H HO H NH2 OH O NH2+ XH HO H N O (1) NaH (2) CH3I (89%) H O H N O (72%)
15
氯霉素 副产物
手性助剂唑啉
CH3COOH +
HCl H2O H O H
有机化学基础知识点有机合成中的不对称合成方法

有机化学基础知识点有机合成中的不对称合成方法有机化学基础知识点:不对称合成方法不对称合成是有机化学中一种重要的合成策略,用于制备具有高立体选择性的有机分子。
本文将介绍不对称合成的基本原理和常用方法。
1. 不对称合成的原理不对称合成是在化学反应中控制立体选择性的方法。
通常情况下,有机分子具有手性,即它们可以存在两种依据空间构型的镜像异构体。
对于手性化合物的合成,通常需要选择性地生成一种手性异构体而不生成另一种。
不对称合成通过引入手性诱导剂或催化剂,以及具有手性中心的原料分子,来实现选择性合成手性分子的目的。
2. 常用的不对称合成方法2.1 催化不对称合成催化不对称合成是一种利用手性催化剂来控制反应立体选择性的方法,常用的手性催化剂包括金属配合物、有机小分子等。
例如,铑催化的酮还原反应、钯催化的Suzuki偶联反应等都是常见的不对称催化合成方法。
2.2 手性试剂参与的不对称合成手性试剂通常是指具有手性中心的化合物,它们可以作为手性源与底物反应,从而导致产物的手性选择性。
典型的手性试剂包括手性醇、手性酸等。
例如,进行不对称亲核取代反应时,可以使用手性的亲核试剂与底物反应来实现不对称合成。
2.3 手性配体参与的不对称合成手性配体在金属催化反应中起到了关键作用。
配体的选择可以导致反应的选择性以及对映选择性。
通常,配位基团与金属离子形成配合物,在反应过程中通过改变立体构型来控制手性产物的生成。
常用的手性配体包括膦配体、氨配体等。
2.4 手性溶剂参与的不对称合成手性溶剂是一种可以通过溶解性质改变反应体系手性选择性的方法。
在不对称合成过程中,手性溶剂可以与底物或催化剂形成氢键或其他作用力,从而促使产物的手性选择性。
手性溶剂的选择需要考虑溶解性、选择性和化学稳定性等因素。
3. 应用案例不对称合成方法在有机化学领域有着广泛的应用。
例如,药物合成中常使用不对称合成方法来合成药物的对映异构体,从而提高药物的效果和减少副作用。
不对称合成简介

例:光学活性的氨基酸,e.e值可达96%~99%
反应过程:
H N NH2 C OH CH3+
O
H
O C OR''
N N C
H C
R'
C
H CH3 O C O
Al-Hg
铝汞齐还 原CN双键
氨基吲哚啉
H N H R' N CH C H CH3 O C O
乙醛酸酯
H2/Pd H3O+
取代
R
腙-内酯类化合物
手性化合物的获得途径:
①从天然产物中提取手性药物; —早期,有限。
②拆分法分离手性药物;(外消旋体拆分) —只利用了一半原料;从原子经济学角度看,是一 种浪费。 ③不对称合成; —产率高,污染小,符合绿色化学要求。
不对称合成的定义和表述
按照现今对这个命题的最完整理解,Morrison和Mosher提 出一个广义的定义,将不对称合成定义为“一个反应,其中 底物分子整体中的非手性单元由反应试剂以不等量的生成立 体异构产物的途径转化为手性单元。也就是说,不对称合成 是这样一个过程,它将潜手性单元转化为手性单元,使得产 生不等量的立体异构产物”。所说的反应剂可以是化学试剂、 生物试剂、溶剂、催化剂或物理因素(如圆偏振光)。
H O O H L1* CH2P(Ph)2 CH2P(Ph)2
L2*
L3*
.. Ph2P
H3C
.. P OMe
(-)-
OMe Ph P Ph OMe L4* CH2 CH2 P
L* :手性膦
具有这种手性配体的铑对碳-碳双键、碳-氧双键及碳 氮双键发生不对称催化氢化反应。
①烯烃的不对称催化加氢
通过大量研究,已发现双键上带有极性基团,如氨基、 羟基、羰基、羧酸酯基、酰胺基等的烯烃在不对称催化氢化 反应中通常可以获得较高的光学产率。可能因极性基团可与 催化剂的金属配位,使烯烃处在确定的位置,按一定的取向 进行加氢反应,从而提高了反应的对映选择性。
化学合成中的不对称合成技术

化学合成中的不对称合成技术在有机化学领域中,合成手段的发展一直是研究的重要方向之一。
不对称合成技术是一种能够合成具有立体异构体的有机分子的方法,被广泛应用于药物、农药、天然产物合成等领域。
本文将探讨不对称合成技术的原理、应用以及未来的发展方向。
一、不对称合成技术的原理不对称合成技术是指通过引入具有手性性质的试剂或催化剂,使得反应只生成一种立体异构体的合成方法。
其中,手性试剂或催化剂是实现不对称合成的关键。
这些手性试剂或催化剂能够选择性地与底物发生反应,产生具有特定立体结构的产物。
主要的不对称合成技术包括手性配体催化、手性分子催化、手性荧光探针和手性相系统。
手性配体催化是最常见的不对称合成技术之一,其中金属催化剂与手性配体配对,通过底物与催化剂之间的相互作用,实现对立体构型的选择性催化。
手性分子催化是一种最近兴起的不对称合成技术,它利用手性有机小分子作为催化剂,实现对底物的不对称催化。
手性荧光探针和手性相系统则利用手性小分子的发光性质或手性结构对底物进行选择性响应,实现不对称合成。
二、不对称合成技术的应用不对称合成技术在有机合成中有着广泛的应用。
它不仅可以用于合成具有特定立体构型的有机分子,还可以用于解决合成中的对映体纯度和产物选择性的问题。
在药物合成中,不对称合成技术被广泛应用于合成具有药效活性的手性药物。
通过选择合适的手性试剂或催化剂,可以选择性地合成单一对映体,从而提高药物的治疗效果和减少副作用。
例如,利巴韦林和普鲁卡因就是应用不对称合成技术合成的手性药物。
在农药合成中,不对称合成技术可以用于合成具有高效杀虫活性的手性农药。
不对称催化反应和手性分子催化反应是常用的合成手段。
利用不对称合成技术,可以合成出对映体纯度高的农药,提高农作物保护的效果。
在天然产物合成领域,不对称合成技术可以用于合成复杂天然产物的手性中间体。
许多天然产物具有复杂的结构和多种生物活性,合成难度很大。
不对称合成技术的应用可以大大提高合成效率,并获得对映体纯度高的天然产物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不对称合成(Asymmetric Synthesis)在有机合成,特别是手性药物等合成中具有相当重要的意义。
定义
按照IUPAC金皮书的定义,不对称合成(Asymmetric synthesis),也称手性合成、立体选择性合成、对映选择性合成,是研究向反应物引入一个或多个具手性元素的化学反应的有机合成分支。
按照Morrison和Mosher的定义,不对称合成是“一个有机反应,其中底物分子整体中的非手性单元由反应剂以不等量地生成立体异构产物的途径转化为手性单元”。
这里,反应剂可以是化学试剂、催化剂、溶剂或物理因素。
不对称合成目前在药物合成和天然产物全合成中都有十分重要的地位。
但无疑,现在最完善的不对称合成技术,要数存在于生物体内的酶。
能否实现像酶一样高效的催化体系,是对人类智慧的挑战。
不对称合成介绍
首先说,什么是手性?
在有机化合物中,化合物分子主要是以彼此相互连接的碳碳键构成骨架。
碳原子在成键时,采取了sp3的杂化方式,使得碳原子的四个价键彼此成109度28分,为一正四面体形。
正是因为这样的成键特性,导致了他们当中的有些碳原子,虽然其结合的四个基团的种类相同,但却始终无法重合,两者互为镜像,就像我们的左手和右手一样。
这样的性质就称之为手性。
我们称两种互为镜像的分子为对映异构体。
其次,什么是不对称合成?
为了得到同一物质中的其中一种手性分子,我们就需要采取特定的合成方法,这种方法就是不对称合成。
然后,我们再来讨论,经过不对称合成得到的具有某一手性的分子有什么样的特性?
手性分子最大的特点在于它的光学活性,它可以使通过它的偏振光发生一定角度的偏转,就是我们通常意义上的旋光性。
若光的旋转方向是顺时针,称为右旋;反之,称为左旋。
不对称合成的意义
那么了解了一些基本常识以后,不对称合成有什么样的意义?
举几个简单的例子,大家就知道了。
青霉素我们再熟悉不过了,作为一种药力强,副作用小的抗生素药物,长期以来一直被人们广泛的使用。
然而近来人们发现,青霉素分子同样存在两种手性分子,其中一种有药效,而另一种却根本没有。
换句话说,我们花了一瓶青霉素的钱,有用的部分却只有半瓶,这其实是一种很大的浪费。
当然如果光是浪费,都可以接受,但事实上有的药物两种手性分子中,其中一种不仅没有药效,反而还有相当强的毒副作用。
上个世纪中叶,怀孕妇女经常使用一种叫“反应停”的药物来抑制妊娠反应,却产生了大量的畸形胎儿。
后来才发现该药物两种手性分子中的其中一种具有致畸形胎儿的作用。