高一数学方程的根与函数的零点2

合集下载

二次函数的零点知识点高一

二次函数的零点知识点高一

二次函数的零点知识点高一二次函数是高中数学中的重要内容之一,也是数学课程中较为复杂的内容之一。

其中,二次函数的零点是学习二次函数的基础知识点之一。

本文将从定义、性质、求解等多个方面来探讨二次函数的零点知识点。

定义:二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数,且a≠0。

这个函数的图像是一条抛物线,开口的方向取决于a的正负。

零点(或者称为根)是指函数的值为0的点,即f(x) = 0的解。

对于二次函数f(x) = ax^2 + bx + c来说,求解零点就是要找到使得f(x) = 0的x的值。

性质:1. 零点的个数:二次函数一般有零点,但它的零点个数取决于判别式Δ = b^2 - 4ac 的值。

当Δ > 0时,有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,没有实根,但存在两个虚根。

这个性质也反映了二次函数图像与x轴的相交情况。

2. 零点的对称性:对于二次函数f(x) = ax^2 + bx + c,它的零点x1和x2满足x1 + x2 = -b/a,即两个零点的和与二次项系数a的比值为负。

这个性质称为二次函数零点的对称性,也可通过抛物线的轴对称性来解释。

求解方法:1. 因式分解法:如果二次函数能够被因式分解,即能写成f(x) = a(x - r)(x - s)的形式,其中r和s为实数,那么它的零点就是x = r和x = s。

2. 公式法:二次函数的根可以通过求解一元二次方程得出。

根据根的公式x = (-b±√Δ)/(2a),其中±表示取加减两种解,Δ = b^2 - 4ac为判别式。

通过这个公式,可以求出二次函数的零点。

3. 完全平方法:对于一些特殊的二次函数,可以利用完全平方公式将其转化为平方的形式。

例如,f(x) = (x - 3)^2 - 4的零点可以通过x - 3 = ±√4转化为求解一次方程的问题。

高一数学函数的零点与二分法教案

高一数学函数的零点与二分法教案

一. 教学内容:函数的零点与二分法二. 学习目标1、理解函数零点的概念与性质,会求函数的零点。

2、理解零点的意义,会求简单函数的零点,了解函数的零点与方程的根的关系;3、通过具体实例了解二分法是求方程近似解的常用方法,理解用二分法求函数零点的原理,从中体会函数与方程之间的联系及其在实际问题中的应用.4、在函数与方程的联系中,初步体会事物间相互转化的辩证思想;体验探究的过程、发现的乐趣。

三. 知识要点 1、函数的零点一般地,如果函数()y f x =在实数a 处的值等于零,即()0f a =,则a 叫做这个函数的零点。

归纳:函数的零点并不是“点”,它不是以坐标的形式出现的。

说明:(1)函数的零点是一个实数,即当函数的自变量取这一实数时函数值为零; (2)对于函数的零点问题我们只在实数X 围内讨论;(3)方程的根、函数的图象与x 轴交点的横坐标以及函数的零点是同一个问题的三种不同的表现形式2、函数零点的意义:函数)x (f y =的零点就是方程0)x (f =的实数根,亦即函数)x (f y =的图象与x 轴交点的横坐标.归纳:方程0)x (f =有实数根⇔函数)x (f y =的图象与x 轴有交点⇔函数)x (f y =有零点.3、函数零点存在性的判定方法对于函数相对应的方程能求解的,可以直接求解方程的实数根,从而确定函数的零点;对于函数相对应的方程不能直接求解的,又该怎样处理?如果函数)x (f y =在区间[]b ,a 上的图象是连续不断的一条曲线,并且有0)b (f )a (f <⋅,那么,函数)x (f y =在区间()b ,a 内有零点.即存在()b ,a c ∈,使得0)c (f =,这个c 也就是方程0)x (f =的根。

说明:(1)函数)x (f y =在区间[]b ,a 上有定义; (2)函数的图象是连续不断的一条曲线;(3)函数)x (f y =在区间[]b ,a 两端点的函数值必须满足0)b (f )a (f <⋅; (4)函数)x (f y =在区间()b ,a 内有零点,但不唯一;(5)用判定方法验证函数2x )x (f =,说明该方法仅是判断函数零点存在的一种方法,并不是唯一的方法。

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时。

2、分数指数幂。

正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。

数学高一专题------零点及其二分法求解

数学高一专题------零点及其二分法求解

数学高一专题零点及其二分法求解零点:函数图像与横轴的交点的横坐标称为这个函数的零点。

1.判断函数零点所在区间的常用方法(1)利用零点存在性定理,使用该定理的首要条件是函数在某一闭区间上的图像是连续的。

(2)数形结合法:画出函数的图像,用估算确定区间。

2.判断函数零点个数的常用方法(1)解方程法:(2)利用零点存在性定理:(3)数形结合法:二分法求解函数值:考点一:函数与方程1.函数f(x)=-x2+4x-4在区间[1,3]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点2. 函数f(x)=2x+x3-2在区间(0,2)内的零点个数是()A.0 B.1C.2 D.33.函数f(x)的图像如图所示,则函数f(x)的变号零点个数为()A.1 B.2 C.3 D.44.用二分法求函数f(x)=x3+5的零点可以取的初始区间是()A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]5.函数y =f (x )在区间[a ,b ]上的图像是不间断的,并且f (a )·f (b )<0,则这个函数在该区间上( )A .只有一个零点B .有二个零点C .不一定有零点D .至少有一个零点6. 若函数y =mx 2+x -2没有零点,则实数m 的取值范围是________.变式练习1.函数y =ln(x +1)与y =1x的图像交点的横坐标所在区间为 ( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.函数f (x )=x 3-x 2-x +1在[0,2]上 ( )A .有3个零点B .有2个零点C .有1个零点D .没有零点 3.对于函数n mx x x f ++=2)(,若0)(>a f ,0)(>b f ,则函数)(x f 在区间(a ,b )内( )A .一定有零点B .一点没有零点C .可能有两个零点D .至多有一个零点4.若函数)(x f y =是偶函数,定义域}0|{≠∈x x 且,且)(x f 在),0(+∞上是减函数,0)2(=f ,则函数)(x f 的零点有( )A .惟一一个B .两个C .至少两个D .无法判断5.已知函数f (2x )=3x 2+1,则f (x +5)有________个零点.6.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上.考点二:二分法求零点求函数f (x )=x 3-x -1在区间[1,1.5]内的一个零点(精确到0.1)变式练习1.若函数f (x )=x 3+x 2-2x -2的一个零点附近的函数值的参考数据如下表:求方程x 3+x 2-2x -22.用二分法求方程0212-0.9 x x 的实数解,精确到0.1.课后练习1.函数f (x )在区间(0,2)内有零点,则( )A .f (0)>0,f (2)<0B .f (0)·f (2)<0C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0D .以上说法都不正确2.函数f (x )=x 2+2x +b 的图像与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是() A .0 B .1C .2D .1或23.设函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是( )A .(-1,-log 32)B .(0,log 32)C .(log 32,1)D .(1,log 34)4.方程2x -x -2=0在实数范围内的解的个数是________.5.函数y =(12)x 与函数y =lg x 的图像的交点的横坐标是________.(精确到0.1)6.方程4x 2-6x -1=0位于区间(-1,2)内的解有____________个.7.当a 取何值时,方程ax 2-2x +1=0的一个根在(0,1)上,另一个根在(1,2)上.。

《函数的零点与方程的解》教学设计

《函数的零点与方程的解》教学设计

《函数的零点与方程的解》教学设计一、教学内容解析1.内容本节课是《普通高中教科书数学A版必修第一册》第四章第五节函数的应用(二)第一课时的内容.2.内容解析函数与方程是描述客观世界变化规律的基本数学模型,也是中学数学的重要数学思想之一,在高中数学教学中占有非常重要的地位.本节内容是学生在学习了函数的概念及性质、基本初等函数等知识的基础上,结合函数图象及性质,探究函数零点与方程的根之间的关系以及函数在某个区间上存在零点的条件是函数作为解决数学问题的工具在数学知识内部的应用,同时本节课的学习也是为下节“用二分法求方程的近似解”奠定基础,具有承前启后的作用.本节课要求学生通过二次函数的零点的定义抽象出一般函数的零点的概念,并通过对一元二次方程的根与相应的二次函数的零点以及二次函数的图像与x轴的交点的横坐标之间的关系的判断,推断出一般的方程的根与相应的函数图像与x轴交点横坐标、函数零点的等价关系,通过分析具体二次函数零点附近的图像和函数值的特征,结合其他函数零点所在区间的函数值特征,总结归纳出函数零点存在的条件,得出函数零点存在定理,最后利用函数零点存在定理研究具体方程根的问题,并利用信息技术作出函数图像帮助学生直观形象地理解本节内容,体现函数的应用价值.函数作为解决数学问题的基本工具,把函数在解方程中加以应用,渗透了许多重要的数学思想,比如函数与方程思想,数形结合思想,转化与化归思想.对培养学生的数学抽象、直观想象、数学运算和数学建模等学科核心素养,以及树立学数学、用数学的观念与信心具有至关重要的作用.故本节课的教学重点是:函数零点的概念、函数零点与方程的解的关系,以及函数零点存在定理.二、学生学情分析本节课的教学对象是刚进入高中的高一学生,在初中,学生已经对一元二次方程的根的三种情况有了深刻的认识,对二次函数的图象也比较熟悉,通过前面章节的学习,学生已经了解了一些基本初等函数的模型,掌握了函数图象的一般画法及函数的一些性质(如奇偶性、单调性、最值等).本节内容是将函数的零点与方程的解的关系进行进一步讨论,通过几个学生熟悉的具体函数,抽象出零点的概念,归纳函数在某区间有零点的条件,从而得出函数零点存在定理.进一步从代数与几何两个角度判断零点的个数.从代数到几何,从几何到代数全方位理解函数的零点与方程的解之间的关系,几何与代数之间的转化对学生认知水平的要求属“最近发展区”,但学生对知识之间的有机联系把握不到位,应用意识不强,其观察、归纳能力还有待进一步提高.故函数零点的存在定理的生成过程对学生来说是一个难点.这种从学生已有的知识出发理解探究新知识的过程既符合学生的认知规律,也是解决数学问题的一般方法.故本节课的难点是:函数零点存在定理的导出,以及理解函数零点存在定理中的两个条件是函数在某区间上存在零点的充分不必要条件,借助函数图像判断函数零点的个数.三、教学目标设置1.根据二次函数零点的定义抽象出一般函数)(x f y =零点的定义.在此过程中培养学生的数学抽象核心素养;2.通过对一元二次方程的根与相应的二次函数的零点以及二次函数的图像与x 轴的交点的横坐标之间的关系的认识,推断出一般的方程的根与相应的函数图像与x 轴交点横坐标、函数零点的等价关系.在此过程中培养学生的逻辑推理能力以及对数形结合思想的应用;3.通过分析具体二次函数零点附近的图像和函数值的特征,再结合更多函数图像,通过观察、对比、分析、总结归纳出函数零点存在的条件,得出函数零点存在定理。

高一数学必修一知识点梳理

高一数学必修一知识点梳理

高一数学必修一知识点梳理1.高一数学必修一知识点梳理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,能够将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△2.高一数学必修一知识点梳理函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不能够等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯3.高一数学必修一知识点梳理指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根能够合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高一数学重点:零点问题的解题方法

高一数学重点:零点问题的解题方法

谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x) (x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒] 此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y =0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y=ax2+bx+c (a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2)C .(2,3)D .(3,4)【解析】法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f (x )=ln(x +1)-1x的零点,∵f (x )在(0,+∞)上为增函数,且f (1)=ln 2-1<0,f (2)=ln 3-12>0,∴f (x )的零点所在区间为(1,2).【答案】B3.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.【解析】求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.【答案】24.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【解析】本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内.【答案】A5.(2014·高考湖北卷)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【解析】令x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.【答案】D确定函数f (x )零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看解得的根是否落在给定区间上. (2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.1.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )。

高一数学必修一知识点复习

高一数学必修一知识点复习

高一数学必修一知识点复习【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考核的知识和思维触点广的特点,找寻一套行之有效的学习方法。

作者为各位同学整理了《高一数学必修一知识点复习》,期望对您的学习有所帮助!1.高一数学必修一知识点复习1.函数的零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点,函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理):如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系3.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐渐靠近零点,进而得到零点近似值的方法叫做二分法.4.函数的零点不是点:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5.对函数零点存在的判定中,必须强调:(1)f(x)在[a,b]上连续;(2)f(a)·f(b)<0;(3)在(a,b)内存在零点.这是零点存在的一个充分条件,但不必要.6.对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.2.高一数学必修一知识点复习【两角和公式】sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)3.高一数学必修一知识点复习空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)4.高一数学必修一知识点复习函数的解析表达式,及函数定义域的求法1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式成心义的实数x的集合称为函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档