桥梁工程专业外文翻译--桥梁的快速修复
道路桥梁专业 中英文对照---毕业设计论文 外文文献翻译

附录一英文翻译原文AUTOMATIC DEFLECTION AND TEMPERATURE MONITORING OFA BALANCED CANTILEVER CONCRETE BRIDGEby Olivier BURDET, Ph.D.Swiss Federal Institute of Technology, Lausanne, SwitzerlandInstitute of Reinforced and Prestressed Concrete SUMMARYThere is a need for reliable monitoring systems to follow the evolution of the behavior of structures over time.Deflections and rotations are values that reflect the overall structure behavior. This paper presents an innovative approach to the measurement of long-term deformations of bridges by use of inclinometers. High precision electronic inclinometers can be used to follow effectively long-term rotations without disruption of the traffic. In addition to their accuracy, these instruments have proven to be sufficiently stable over time and reliable for field conditions. The Mentue bridges are twin 565 m long box-girder post-tensioned concrete highway bridges under construction in Switzerland. The bridges are built by the balanced cantilever method over a deep valley. The piers are 100 m high and the main span is 150 m. A centralized data acquisition system was installed in one bridge during its construction in 1997. Every minute, the system records the rotation and temperature at a number of measuring points. The simultaneous measurement of rotations and concrete temperature at several locations gives a clear idea of the movements induced by thermal conditions. The system will be used in combination with a hydrostatic leveling setup to follow the long-term behavior of the bridge. Preliminary results show that the system performs reliably and that the accuracy of the sensors is excellent.Comparison of the evolution of rotations and temperature indicate that the structure responds to changes in air temperature rather quickly.1.BACKGROUNDAll over the world, the number of structures in service keeps increasing. With the development of traffic and the increased dependence on reliable transportation, it is becoming more and more necessary to foresee and anticipate the deterioration of structures. In particular,for structures that are part of major transportation systems, rehabilitation works need to be carefully planned in order to minimize disruptions of traffic. Automatic monitoring of structures is thus rapidly developing.Long-term monitoring of bridges is an important part of this overall effort to attempt to minimize both the impact and the cost of maintenance and rehabilitation work of major structures. By knowing the rate of deterioration of a given structure, the engineer is able to anticipate and adequately define the timing of required interventions. Conversely, interventions can be delayed until the condition of the structure requires them, without reducing the overall safety of the structure.The paper presents an innovative approach to the measurement of long-term bridge deformations. The use of high precision inclinometers permits an effective, accurate and unobtrusive following of the long-term rotations. The measurements can be performed under traffic conditions. Simultaneous measurement of the temperature at several locations gives a clear idea of the movements induced by thermal conditions and those induced by creep and shrinkage. The system presented is operational since August 1997 in the Mentue bridge, currently under construction in Switzerland. The structure has a main span of 150 m and piers 100 m high.2. LONG-TERM MONITORING OF BRIDGESAs part of its research and service activities within the Swiss Federal Institute of Technology in Lausanne (EPFL), IBAP - Reinforced and Prestressed Concrete has been involved in the monitoring of long-time deformations of bridges and other structures for over twenty-five years [1, 2, 3, 4]. In the past, IBAP has developed a system for the measurement of long-term deformations using hydrostatic leveling [5, 6]. This system has been in successful service in ten bridges in Switzerland for approximately ten years [5,7]. The system is robust, reliable and sufficiently accurate, but it requires human intervention for each measurement, and is not well suited for automatic data acquisition. One additional disadvantage of this system is that it is only easily applicable to box girder bridges with an accessible box.Occasional continuous measurements over periods of 24 hours have shown that the amplitude of daily movements is significant, usually amounting to several millimeters over a couple of hours. This is exemplified in figure 1, where measurements of the twin Lutrive bridges, taken over a period of several years before and after they were strengthened by post-tensioning, areshown along with measurements performed over a period of 24 hours. The scatter observed in the data is primarily caused by thermal effects on the bridges. In the case of these box-girder bridges built by the balanced cantilever method, with a main span of 143.5 m, the amplitude of deformations on a sunny day is of the same order of magnitude than the long term deformation over several years.Instantaneous measurements, as those made by hydrostatic leveling, are not necessarily representative of the mean position of the bridge. This occurs because the position of the bridge at the time of the measurement is influenced by the temperature history over the past several hours and days. Even if every care was taken to perform the measurements early in the morning and at the same period every year, it took a relatively long time before it was realized that the retrofit performed on the Lutrive bridges in 1988 by additional post-tensioning [3, 7,11] had not had the same effect on both of them.Figure 1: Long-term deflections of the Lutrive bridges, compared to deflections measured in a 24-hour period Automatic data acquisition, allowing frequent measurements to be performed at an acceptable cost, is thus highly desirable. A study of possible solutions including laser-based leveling, fiber optics sensors and GPS-positioning was performed, with the conclusion that, provided that their long-term stability can be demonstrated, current types of electronic inclinometers are suitable for automatic measurements of rotations in existing bridges [8].3. MENTUE BRIDGESThe Mentue bridges are twin box-girder bridges that will carry the future A1 motorway from Lausanne to Bern. Each bridge, similar in design, has an overall length of approximately 565 m, and a width of 13.46 m, designed to carry two lanes of traffic and an emergency lane. The bridges cross a deep valley with steep sides (fig. 2). The balanced cantilever design results from a bridge competition. The 100 m high concrete piers were built using climbing formwork, after which the construction of the balanced cantilever started (fig. 3).4. INCLINOMETERSStarting in 1995, IBAP initiated a research project with the goal of investigating the feasibility of a measurement system using inclinometers. Preliminary results indicated that inclinometers offer several advantages for the automatic monitoring of structures. Table 1 summarizes the main properties of the inclinometers selected for this study.One interesting property of measuring a structure’s rotations, is that, for a given ratio of maximum deflection to span length, the maximum rotation is essentially independent from its static system [8]. Since maximal allowable values of about 1/1,000 for long-term deflections under permanent loads are generally accepted values worldwide, developments made for box-girder bridges with long spans, as is the case for this research, are applicable to other bridges, for instance bridges with shorter spans and other types of cross-sections. This is significant because of the need to monitor smaller spans which constitute the majority of all bridges.The selected inclinometers are of type Wyler Zerotronic ±1°[9]. Their accuracy is 1 microradian (μrad), which corresponds to a rotation of one millimeter per kilometer, a very small value. For an intermediate span of a continuous beam with a constant depth, a mid-span deflection of 1/20,000 would induce a maximum rotation of about 150 μrad, or 0.15 milliradians (mrad).One potential problem with electronic instruments is that their measurements may drift overtime. To quantify and control this problem, a mechanical device was designed allowing the inclinometers to be precisely rotated of 180° in an horizontal plane (fig. 4). The drift of each inclinometer can be very simply obtained by comparing the values obtained in the initial and rotated position with previously obtained values. So far, it has been observed that the type of inclinometer used in this project is not very sensitive to drifting.5. INSTRUMENTATION OF THE MENTUE BRIDGESBecause a number of bridges built by the balanced cantilever method have shown an unsatisfactory behavior in service [2, 7,10], it was decided to carefully monitor the evolution of the deformations of the Mentue bridges. These bridges were designed taking into consideration recent recommendations for the choice of the amount of posttensioning [7,10,13]. Monitoring starting during the construction in 1997 and will be pursued after the bridges are opened to traffic in 2001. Deflection monitoring includes topographic leveling by the highway authorities, an hydrostatic leveling system over the entire length of both bridges and a network of inclinometers in the main span of the North bridge. Data collection iscoordinated by the engineer of record, to facilitate comparison of measured values. The information gained from these observations will be used to further enhance the design criteria for that type of bridge, especially with regard to the amount of post-tensioning [7, 10, 11, 12, 13].The automatic monitoring system is driven by a data acquisition program that gathers and stores the data. This system is able to control various types of sensors simultaneously, at the present time inclinometers and thermal sensors. The computer program driving all the instrumentation offers a flexible framework, allowing the later addition of new sensors or data acquisition systems. The use of the development environment LabView [14] allowed to leverage the large user base in the field of laboratory instrumentation and data analysis. The data acquisition system runs on a rather modest computer, with an Intel 486/66 Mhz processor, 16 MB of memory and a 500 MB hard disk, running Windows NT. All sensor data are gathered once per minute and stored in compressed form on the hard disk. The system is located in the box-girder on top of pier 3 (fig. 5). It can withstand severe weather conditions and will restart itself automatically after a power outage, which happened frequently during construction.6. SENSORSFigure 5(a) shows the location of the inclinometers in the main span of the North bridge. The sensors are placed at the axis of the supports (①an d⑤), at 1/4 and 3/4 (③an d④) of the span and at 1/8 of the span for②. In the cross section, the sensors are located on the North web, at a height corresponding to the center of gravity of the section (fig.5a). The sensors are all connected by a single RS-485 cable to the central data acquisition system located in the vicinity of inclinometer ①. Monitoring of the bridge started already during its construction. Inclinometers①,②and③were installed before the span was completed. The resulting measurement were difficult to interpret, however, because of the wide variations of angles induced by the various stages of this particular method of construction.The deflected shape will be determined by integrating the measured rotations along the length of the bridge (fig.5b). Although this integration is in principle straightforward, it has been shown [8, 16] that the type of loading and possible measurement errors need to be carefully taken into account.Thermal sensors were embedded in concrete so that temperature effects could be taken into account for the adjustment of the geometry of the formwork for subsequent casts. Figure 6 shows the layout of thermal sensors in the main span. The measurement sections are located at the same sections than the inclinometers (fig. 5). All sensors were placed in the formwork before concreting and were operational as soon as the formwork was removed, which was required for the needs of the construction. In each section, seven of the nine thermal sensor (indicated in solid black in fig. 6) are now automatically measured by the central data acquisition system.7. RESULTSFigure 7 shows the results of inclinometry measurements performed from the end ofSeptember to the third week of November 1997. All inclinometers performed well during that period. Occasional interruptions of measurement, as observed for example in early October are due to interruption of power to the system during construction operations. The overall symmetry of results from inclinometers seem to indicate that the instruments drift is not significant for that time period. The maximum amplitude of bridge deflection during the observed period, estimated on the basis of the inclinometers results, is around 40 mm. More accurate values will be computed when the method of determination ofdeflections will have been further calibrated with other measurements. Several periods of increase, respectively decrease, of deflections over several days can be observed in the graph. This further illustrates the need for continuous deformation monitoring to account for such effects. The measurement period was .busy. in terms of construction, and included the following operations: the final concrete pours in that span, horizontal jacking of the bridge to compensate some pier eccentricities, as well as the stressing of the continuity post-tensioning, and the de-tensioning of the guy cables (fig. 3). As a consequence, the interpretation of these measurements is quite difficult. It is expected that further measurements, made after the completion of the bridge, will be simpler to interpret.Figure 8 shows a detail of the measurements made in November, while figure.9 shows temperature measurements at the top and bottom of the section at mid-span made during that same period. It is clear that the measured deflections correspond to changes in the temperature. The temperature at the bottom of the section follows closely variations of the air temperature(measured in the shade near the north web of the girder). On the other hand, the temperature at the top of the cross section is less subject to rapid variations. This may be due to the high elevation of the bridge above ground, and also to the fact that, during the measuring period, there was little direct sunshine on the deck. The temperature gradient between top and bottom of the cross section has a direct relationship with short-term variations. It does not, however, appear to be related to the general tendency to decrease in rotations observed in fig. 8.8. FUTURE DEVELOPMENTSFuture developments will include algorithms to reconstruct deflections from measured rotations. To enhance the accuracy of the reconstruction of deflections, a 3D finite element model of the entire structure is in preparation [15]. This model will be used to identify the influence on rotations of various phenomena, such as creep of the piers and girder, differential settlements, horizontal and vertical temperature gradients or traffic loads.Much work will be devoted to the interpretation of the data gathered in the Mentue bridge. The final part of the research project work will focus on two aspects: understanding the very complex behavior of the structure, and determining the most important parameters, to allow a simple and effective monitoring of the bridges deflections.Finally, the research report will propose guidelines for determination of deflections from measured rotations and practical recommendations for the implementation of measurement systems using inclinometers. It is expected that within the coming year new sites will be equipped with inclinometers. Experiences made by using inclinometers to measure deflections during loading tests [16, 17] have shown that the method is very flexible and competitive with other high-tech methods.As an extension to the current research project, an innovative system for the measurement of bridge joint movement is being developed. This system integrates easily with the existing monitoring system, because it also uses inclinometers, although from a slightly different type.9. CONCLUSIONSAn innovative measurement system for deformations of structures using high precision inclinometers has been developed. This system combines a high accuracy with a relatively simple implementation. Preliminary results are very encouraging and indicate that the use of inclinometers to monitor bridge deformations is a feasible and offers advantages. The system is reliable, does not obstruct construction work or traffic and is very easily installed. Simultaneous temperature measurements have confirmed the importance of temperature variations on the behavior of structural concrete bridges.10. REFERENCES[1] ANDREY D., Maintenance des ouvrages d’art: méthodologie de surveillance, PhD Dissertation Nr 679, EPFL, Lausanne, Switzerland, 1987.[2] BURDET O., Load Testing and Monitoring of Swiss Bridges, CEB Information Bulletin Nr 219, Safety and Performance Concepts, Lausanne, Switzerland, 1993.[3] BURDET O., Critères pour le choix de la quantitéde précontrainte découlant de l.observation de ponts existants, CUST-COS 96, Clermont-Ferrand, France, 1996.[4] HASSAN M., BURDET O., FAVRE R., Combination of Ultrasonic Measurements and Load Tests in Bridge Evaluation, 5th International Conference on Structural Faults and Repair, Edinburgh, Scotland, UK, 1993.[5] FAVRE R., CHARIF H., MARKEY I., Observation à long terme de la déformation des ponts, Mandat de Recherche de l’OFR 86/88, Final Report, EPFL, Lausanne, Switzerland, 1990.[6] FAVRE R., MARKEY I., Long-term Monitoring of Bridge Deformation, NATO Research Workshop, Bridge Evaluation, Repair and Rehabilitation, NATO ASI series E: vol. 187, pp. 85-100, Baltimore, USA, 1990.[7] FAVRE R., BURDET O. et al., Enseignements tirés d’essais de charge et d’observations à long terme pour l’évaluation des ponts et le choix de la précontrainte, OFR Report, 83/90, Zürich, Switzerland, 1995.[8] DAVERIO R., Mesures des déformations des ponts par un système d’inclinométrie,Rapport de maîtrise EPFL-IBAP, Lausanne, Switzerland, 1995.[9] WYLER AG., Technical specifications for Zerotronic Inclinometers, Winterthur, Switzerland, 1996.[10] FAVRE R., MARKEY I., Generalization of the Load Balancing Method, 12th FIP Congress, Prestressed Concrete in Switzerland, pp. 32-37, Washington, USA, 1994.[11] FAVRE R., BURDET O., CHARIF H., Critères pour le choix d’une précontrainte: application au cas d’un renforcement, "Colloque International Gestion des Ouvrages d’Art: Quelle Stratégie pour Maintenir et Adapter le Patrimoine, pp. 197-208, Paris, France, 1994. [12] FAVRE R., BURDET O., Wahl einer geeigneten Vorspannung, Beton- und Stahlbetonbau, Beton- und Stahlbetonbau, 92/3, 67, Germany, 1997.[13] FAVRE R., BURDET O., Choix d’une quantité appropriée de précontrain te, SIA D0 129, Zürich, Switzerland, 1996.[14] NATIONAL INSTRUMENTS, LabView User.s Manual, Austin, USA, 1996.[15] BOUBERGUIG A., ROSSIER S., FAVRE R. et al, Calcul non linéaire du béton arméet précontraint, Revue Français du Génie Civil, vol. 1 n° 3, Hermes, Paris, France, 1997. [16] FEST E., Système de mesure par inclinométrie: développement d’un algorithme de calcul des flèches, Mémoire de maîtrise de DEA, Lausanne / Paris, Switzerland / France, 1997.[17] PERREGAUX N. et al., Vertical Displacement of Bridges using the SOFO System: a Fiber Optic Monitoring Method for Structures, 12th ASCE Engineering Mechanics Conference, San Diego, USA, to be published,1998.译文平衡悬臂施工混凝土桥挠度和温度的自动监测作者Olivier BURDET博士瑞士联邦理工学院,洛桑,瑞士钢筋和预应力混凝土研究所概要:我们想要跟踪结构行为随时间的演化,需要一种可靠的监测系统。
(完整版)桥梁毕业设计外文翻译

外文资料The Tenth East Asia-Pacific Conference on Structural Engineering and ConstructionAugust 3-5, 2006, Bangkok, ThailandStructural Rehabilitation of Concrete Bridges with CFRPComposites-Practical Details and ApplicationsRiyad S. ABOUTAHA1, and Nuttawat CHUTARAT2 ABSTRACT: Many old existing bridges are still active in the various highway transportation networks, carrying heavier and faster trucks, in all kinds of environments. Water, salt, and wind have caused damage to these old bridges, and scarcity of maintenance funds has aggravated their conditions. One attempt to restore the original condition; and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites. There appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. In this paper, guidelines for nondestructive evaluation (NDE), nondestructive testing (NDT), and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges are also discussed and presented.KEYWORDS: Concrete deterioration, corrosion of steel, bridge rehabilitation, CFRP composites.1 IntroductionThere are several destructive external environmental factors that limit the service life of bridges. These factors include but not limited to chemical attacks, corrosion of reinforcing steel bars, carbonation of concrete, and chemical reaction of aggregate. If bridges were not well maintained, these factors may lead to a structural deficiency, which reduces the margin of safety, and may result in structural failure. In order to rehabilitate and/or strengthen deteriorated existing bridges, thorough evaluation should be conducted. The purpose of the evaluation is to assess the actual condition of any existing bridge, and generally to examine the remaining strength and load carry capacity of the bridge.1 Associate Professor, Syracuse University, U.S.A.2 Lecturer, Sripatum University, Thailand.One attempt to restore the original condition, and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites.In North America, Europe and Japan, CFRP has been extensively investigated and applied. Several design guides have been developed for strengthening of concrete bridges with CFRP composites. However, there appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. This paper presents guidelines for repair of deteriorated concrete bridges, along with proper detailing. Evaluation, nondestructive testing, and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. Successful application of CFRP composites requires good detailing as the forces developed in the CFRP sheets are transferred by bond at the concrete-CFRP interface. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges will also be discussed and presented.2 Deteriorated Concrete BridgesDurability of bridges is of major concern. Increasing number of bridges are experiencing significant amounts of deterioration prior to reaching their design service life. This premature deterioration considered a problem in terms of the structural integrity and safety of the bridge. In addition, deterioration of a bridge has a considerable magnitude of costs associated with it. In many cases, the root of a deterioration problem is caused by corrosion of steel reinforcement in concrete structures. Concrete normally acts to provide a high degree of protection against corrosion of the embedded reinforcement. However, corrosion will result in those cases that typically experience poor concrete quality, inadequate design or construction, and harsh environmental conditions. If not treated a durability problem, e.g. corrosion, may turn into a strength problem leading to a structural deficiency, as shown in Figure1.Figure1 Corrosion of the steel bars is leading to a structural deficiency3 Non-destructive Testing of Deteriorated Concrete Bridge PiersIn order to design a successful retrofit system, the condition of the existing bridge should be thoroughly evaluated. Evaluation of existing bridge elements or systems involves review of the asbuilt drawings, as well as accurate estimate of the condition of the existing bridge, as shown in Figure2. Depending on the purpose of evaluation, non-destructive tests may involve estimation of strength, salt contents, corrosion rates, alkalinity in concrete, etc.Figure2 Visible concrete distress marked on an elevation of a concrete bridge pier Although most of the non-destructive tests do not cause any damage to existing bridges, some NDT may cause minor local damage (e.g. drilled holes & coring) that should be repaired right after the NDT. These tests are also referred to as partial destructive tests but fall under non-destructive testing.In order to select the most appropriate non-destructive test for a particular case, thepurpose of the test should be identified. In general, there are three types of NDT to investigate: (1) strength, (2) other structural properties, and (3) quality and durability. The strength methods may include; compressive test (e.g. core test/rebound hammer/ ultrasonic pulse velocity), surface hardness test (e.g. rebound hammer), penetration test (e.g. Windsor probe), and pullout test (anchor test).Other structural test methods may include; concrete cover thickness (cover-meter), locating rebars (rebar locator), rebar size (some rebar locators/rebar data scan), concrete moisture (acquameter/moisture meter), cracking (visual test/impact echo/ultrasonic pulse velocity), delamination (hammer test/ ultrasonic pulse velocity/impact echo), flaws and internal cracking (ultrasonic pulse velocity/impact echo), dynamic modulus of elasticity (ultrasonic pulse velocity), Possion’s ratio (ultrasonic pulse velocity), thickness of concrete slab or wall (ultrasonic pulse velocity), CFRP debonding (hammer test/infrared thermographic technique), and stain on concrete surface (visual inspection).Quality and durability test methods may include; rebar corrosion rate –field test, chloride profile field test, rebar corrosion analysis, rebar resistivity test, alkali-silica reactivity field test, concrete alkalinity test (carbonation field test), concrete permeability (field test for permeability).4 Non-destructive Evaluation of Deteriorated Concrete Bridge PiersThe process of evaluating the structural condition of an existing concrete bridge consists of collecting information, e.g. drawings and construction & inspection records, analyzing NDT data, and structural analysis of the bridge. The evaluation process can be summarized as follows: (1) Planning for the assessment, (2) Preliminary assessment, which involves examination of available documents, site inspection, materials assessment, and preliminary analysis, (3) Preliminary evaluation, this involves: examination phase, and judgmental phase, and finally (4) the cost-impact study.If the information is insufficient to conduct evaluation to a specific required level, then a detailed evaluation may be conducted following similar steps for the above-mentioned preliminary assessment, but in-depth assessment. Successful analytical evaluation of an existing deteriorated concrete bridge should consider the actual condition of the bridge and level of deterioration of various elements. Factors, e.g. actual concrete strength, level of damage/deterioration, actual size of corroded rebars, loss of bond between steel and concrete, etc. should be modeled into a detailed analysis. If such detailed analysis is difficult to accomplish within a reasonable period of time, thenevaluation by field load testing of the actual bridge in question may be required.5 Bridge Rehabilitation with CFRP CompositesApplication of CFRP composite materials is becoming increasingly attractive to extend the service life of existing concrete bridges. The technology of strengthening existing bridges with externally bonded CFRP composites was developed primarily in Japan (FRP sheets), and Europe (laminates). The use of these materials for strengthening existing concrete bridges started in the 1980s, first as a substitute to bonded steel plates, and then as a substitute for steel jackets for seismic retrofit of bridge columns. CFRP Composite materials are composed of fiber reinforcement bonded together with a resin matrix. The fibers provide the composite with its unique structural properties. The resin matrix supports the fibers, protect them, and transfer the applied load to the fibers through shearing stresses. Most of the commercially available CFRP systems in the construction market consist of uniaxial fibers embedded in a resin matrix, typically epoxy. Carbon fibers have limited ultimate strain, which may limit the deformability of strengthened members. However, under traffic loads, local debonding between FRP sheets and concrete substrate would allow for acceptable level of global deformations before failure.CFRP composites could be used to increase the flexural and shear strength of bridge girders including pier cap beams, as shown in Figure3. In order to increase the ductility of CFRP strengthened concrete girders, the longitudinal CFRP composite sheets used for flexural strengthening should be anchored with transverse/diagonal CFRP anchors to prevent premature delamination of the longitudinal sheets due to localized debonding at the concrete surface-CFRP sheet interface. In order to prevent stress concentration and premature fracture of the CFRP sheets at the corners of concrete members, the corners should be rounded at 50mm (2.0 inch) radius, as shown in Figure3.Deterioration of concrete bridge members due to corrosion of steel bars usually leads in loss of steel section and delamination of concrete cover. As a result, such deterioration may lead to structural deficiency that requires immediate attention. Figure4 shows rehabilitation of structurally deficient concrete bridge pier using CFRP composites.Figure3 Flexural and shear strengthening of concrete bridge pier with FRP compositesFigure4 Rehabilitation of deteriorated concrete bridge pier with CFRP composites6 Summary and ConclusionsEvaluation, non-destructive testing and rehabilitation of deteriorated concrete bridges were presented. Deterioration of concrete bridge components due to corrosion may lead to structural deficiencies, e.g. flexural and/or shear failures. Application of CFRP composite materials is becoming increasingly attractive solution to extend the service life of existing concrete bridges. CFRP composites could be utilized for flexural and shear strengthening, as well as for restoration of deteriorated concrete bridge components. The CFRP composite sheets should be well detailed to prevent stress concentration and premature fracture or delamination. For successful rehabilitation of concrete bridges in corrosive environments, a corrosion protection system should be used along with the CFRP system.第十届东亚太结构工程设计与施工会议2006年8月3-5号,曼谷,泰国碳纤维复合材料修复混凝土桥梁结构的详述及应用Riyad S. ABOUTAHA1, and Nuttawat CHUTARAT2摘要:在各式各样的公路交通网络中,许多现有的古老桥梁,在各种恶劣的环境下,如更重的荷载和更快的车辆等条件下,依然在被使用着。
道桥工程中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)英文:1.1Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girderAbstract:A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity。
influenceoftheconstruction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge withstiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.Key words: Ultimate strength, Concrete filled steel tubular (CFST) arch bridge, Stiffening girder, Fiber model beam element, Construction processdoi:10.1631/jzus.2007.A0682NTRODUCTIONWith the increasing applications of concrete filled steel tubular (CFST) structures in civil engi-neering in China, arch bridges have become one of the competitive styles in moderate span or long span bridges. Taking the Fuxing Bridge in Hangzhou (Zhao et al., 2004), and Wushan Bridge in Chongqing (Zhang et al., 2003), China, as representatives, the structural configuration, the span and construction scale of such bridges have surpassed those of existing CFST arch bridges in the world. Therefore, it is of great importance to enhance the theoretical level in the design of CFST arch bridges for safety and economy.he calculation of ultimate bearing capacity is a significant issue in design of CFST arch bridges. As an arch structure is primarily subjected to compres-sive forces, the ultimate strength of CFST arch bridge is determined by the stability requirement. A numberof theoretical studies were conducted in the past to investigate the stability and load-carrying capacity of CFST arch bridges. Zeng et al.(2003) studied the load capacity of CFST arch bridge using a composite beam element, involving geometric and material nonlin-earity. Zhang et al.(2006) derived a tangent stiffness matrix for spatial CFSTpole element to consider the geometric and material nonlinearities under largedisplacement by co-rotational coordinate method. Xie et al.(2005) proposed a numerical method to determine the ultimate strength of CFST arch bridges and revealed that the effect of the constitutive relation of confined concrete is not significant. Hu et al.(2006) investigated the effect of Poisson’s ratio of core concrete on the ultimate bearing capacity of a long span CFST arch bridge and found that the bearing capacity is enhanced by 10% if the Poisson’s ratio is variable. On the other hand, many experimental studies on the ultimate strength of naked CFST arch rib or CFST arch bridge model hadbeenconducted. Experimental studies on CFST arch rib under in-plane andout-of-plane loads were carried out by Chen and Chen 2000) and Chen et almetrical nonlinearity was significant for the out-of-plane strength and less significant for the in-plane strength. Cui et al.(2004) introduced a global model test of a CFST arch bridge with span of 308 m, and suggested that the influence of initial stress should be considered.The above papers mainly focused on the ultimate strength of CFST naked arch ribs or CFST arch bridges with floating deck. No attempt was made to study the ultimate strength of CFST arch bridges with stiffening girders whose nonlinear behavior and CFST arch should be simulated due to the redistribution of inner forces between arch ribs and stiffening girders. In general, stiffening girders can be classified into steel girder, PC (prestressing concrete) girder and teel-concrete combination girder. It is most difficult to simulate the nonlinear behavior of PC girder, due to the influence of prestressing reinforcement. In contrast to steel or steel-concrete combination beam, the prestressing reinforcements in PC girders not only offer strength and stiffnessdirectly, but their tension greatly affects the stiffness and distribution of the initial forces in the structure. The aims of this paper are (1) to present an elas-tic-plastic analysis of the ultimate strength of CFST arch bridge with arbitrary stiffening girders;(2) to study the ultimate load-carrying capacity of a complicated CFST arch bridge with abnormal arch ribs and PC stiffening girders; and (3) to investigate the effect of construction methods on the ultimate strength of the structure. ANALYTICAL THEORYElasto-plastic large deformation of PC girder element The elasto-plasic large deformation analysis of PC beam elements is based on the following fundamental assumptions:(1) A plane section originally normal to the neutral axis always remains a plane and normal to the neutral axis during deformation;(2) The shear deformation due to shear stress isneglected;(3)The Saint-Venant torsional principle holds in(4) The effect of shear stress on the stress-strain relationship is ignored. The cross-section of a PC box girder with onesymmetric axis is depicted in Fig.1, where, G and s denote the geometry center and the shear center re-spectively. According to the first and the third as-sumptions listed above, the displacement increments of point A(x,y) in the section can be expressed in terms of the displacement increments at the geometry center and the shear center aswhere Ktoris the coefficient factor which is related to the geometry shape of the girder cross-section.Similar to 3D elastic beam theory, the displacement increment of the girder can be expressed in terms of the nodal displacement increments asin which L denotes the element length, and z is the axial coordinate of the local coordinate system of an element. Then, the displacement vector of any section of the element can be written aswhere ∆u is the displacement vector of any section of the beam element, N is the shape function matrix and ∆ue is the displacement vector of the element node. They are respectively expressed asAccording to Eq.(2), the linear strain can be ex-pressed asin which BL is the linear strain matrix of the element Correspondingly, the nonlinear strain may be expressed aswhere BNL is the nonlinear strain matrix of the ele-mentThe stress increment ∆σ can be approximatedusing the linear strain increment aswhere D is the material property matrix. Neglecting the influence of the shear strain, D can be expressedwhere E(ε) is the tangent modulus of the material which is dependent on the strain state, and G is the elastic shearing modulus regarded as a constant. According to the principle of virtual work, we have in which σ and ∆σ are the stress vector and stress increment of the current state, q and P are the dis-tributed load and concentrated load vector, ∆q and ∆P are the increments of distributed load and concen-trated load, δ∆u and δ∆ε are the virtual displacement and virtual strain, and V isthe volume of the element. Substitute Eqs.(9), (11) and (14) into Eq.(16) and ignore the infinitesimal variable ∆σ∆εN, we have where ∆Fe is the increment of element load vectorcorresponding to ∆ue, the element displacement vec-tor. Kepand Kσare the elasto-plastic and geometric stiffness matrixes of the beam element respectively as followsThe distribution of elastic and plastic zones is non-uniform in the element, and varies during de-formation. It is very difficult to present an explicit expression of the property matrix D for the whole section. Hence, the section is divided into many subareas, as shown in Fig.2, and the fiber model is adopted to calculate the element’s stiffness matrix, i.e.Obviously, if the number of subareas is suffi-ciently large, the result of Eq.(19) will approach the exact solution. The value of Kep is calculated using numerical integration, with Di being regarded as i. To compute the geometric stiffness matrix Kσ, the normal stress should be expressed in terms of axial force and bending moment, which actually has very little contribution to the geometric stiffness, so where N is the axial force, and A is the sectional area. Prestressing reinforcement element The reinforced bars parallel to the beam axis may be regarded as fibers, whose contributions to the stiffness could be readily accounted for in Eq.(19). The contributions to the stiffness from those not par-allel to the beam and the prestressing reinforcement (PR), will however be calculated in the following section. The displacement increment of two ends of the prestressing reinforcement in Fig.3 can be expressed by Eq.(21):n which kep and kσare respectively the elasto-plastic and the geometric stiffness matrixes, ∆δis the nodal displacement vector, and ∆f is the nodal force vector of the prestressingreinforcementelement in the local coordinate system. According to Fig.4, ∆δand ∆f can be written in the form Then the stiffness matrix ep( k + k)σof the rein-accordingly. CFST arch rib, steel girder or steel-concrete girder element The fiber model mentioned above can also be used to simulate the CFST arch rib, steel stiffening girder or steel-concrete composite stiffening girder, with similar elasto-plastic stiffness matrix and stiff-ness equation. The detailed description of the deduction can be found in (Xie et al., 2005). However, for the CFST arch rib, the stress-strain relation of structure is very complex due to the com-bined influence of the confined concrete and outer steel tube. In this paper, the following stress-strain relation considering the confinement effect of the steel tube ring (Han, 2000) is adopted: where σytand σycare the yield strengths of the tension and compression sides of the steel tube respectively, βt and βc are the corresponding coefficients. Fig.5b depicted the bilinear stress-strain relationship con-The secondary modulus of the steel tube tendency of local buckling of the steel tube, is assumed to be 1% of the initial elastic modulus. Hanger element The mechanical behavior of cables such as that of hangers and tie bars, is similar to that of truss ele-ments, except that cables cannot bear compressive elasto-plastic computation theory of flexible cable considering the effect of sag was presented by (Xie eal., 1998). In most bridges, however, sag has little fect on the mechanical behavior of hangers. Hence, hangers of arch bridges are treated as elasto-plastic trusses with no compression strength, and the stiff-ness equation is expressed by Eq.(22). PROGRAM SCHEME FOR ULTIMATE BEARING CAPACITY CALCULATIOerection without brackets, and consists of many construction stages. Thus, the func-tion of simulating the construction process mustbe taken into account in the developed program for cal-culating ultimate bearing capacity, including the gradual action of load, the step-by-step formation of the structure, the influence of initial displacement and initial stress. The scheme for the program is indicated in Fig.6. The modified arc-length increment tecnique is adopted to solve the resulting nonlinear equation (Crisfield, 1981). VALIDATION OF THE METHOD FOR A PC GIRDER The accuracy of computation of the ultimate strength for CFST element has been confirmed in (Xie et al., 2005). In this paper, the precision of the present theory is checked for a PC girder by comparison with the experimental result. Fig.7 shows the cross-section and reinforcements of the girder, which spans 13 m, with 9 bundles of prestressing reinforcements and 11 branches of nonprestressing reinforced bars. The design strength of the concrete is 22.4 MPa, and those of nonprestressing reinforced bars A and B depicted in Fig.7a are 195 MPa and 280 MPa respectively of which the diameters are 12 mm and 8 mm. The prestressing reinforcement is high-strength low-rela- xation steel strand with design strength of 1860 MPa and the control force of each bundle is Nk=195 kN. More detailed information about the experiment on this PC girder is available in (Chen, 2005). Comparison of the deflection at the midspan is depicted in Fig.8, showing good consistency between he numerical simulation and experimental result. Fig.5 Stress-strain curves of steel tube (a) Yield condition; (b) Stress-strain relationship APPLICATION IN BRIDGE DESIGNThe ultimate strength of Fenghuajiang Bridge in Ningbo, Zhejiang, China is studied involving the effect of construction process to demonstrate the applicability of the present approach in bridge design. Fig.9 shows the design scheme of Fenghuajiang Bridgewhich is a girder and arch combination bridgewith central span of 138 m. The central span of the stiffening girder is made up of steel and PC composite box. The side span of the stiffening girder is made up of PC box. The abnormal CFST arch in the central span is composed of three arches, with one main archrib in the center and two secondary arch ribs. The diameter of the main arch rib is 1.8 m, and those of the other two are 1.5 m. The design strength of the concrete used in the bridge is 22.4 MPa. The arch ribs are linked with steel pipes and I-steel bearing members, forming a truss arch bridge. The main arch and the deck are connected with vertical hangers. The secondary arches and the deck are connected with inclined hangers. To take into account the effect of the construction method on the ultimate bearing capacity, it is assumed that the bridge is constructed by two kinds of methods. In Case I, there is only a construction process, the supporting frames for construction falling once after the completion of the whole bridge. In Case II, there are two construction processes, as shown in Fig.10. The first process is construction ofthe PC girder on the supporting frames. The second process is to fix the steel girder, assemble the arch rib, and tension the tie-bar and hangers to separate the steel girder from the frame. Prestressing reinforcements in the girder are properly simulated in construction stages, but the reinforced bars are not modelled due to their large number. The elasto-plastic mechanical behaviors of CFST arch ribs, hanger, bearing member, steel pipe, tie-bar, etc. are analyzed.The ultimate strength analysis process is shown in Fig.11. First,the initial stress of the established bridge is calculated under dead load and prestressing force including initial tension of the hangers, the tie and prestressing reinforcements. Then the stress and isplacement under live load are computed. At last,The out-of-plane deformation curves at the quarter points of the main arch rib are shown in Fig.14. The vertical axis denotes the load coefficient µ which does not contain the original dead load and live load exerted in Figs.11a and 11b. When 3.1≤µ≤3.2, the nonlinear behavior of the arch rib becomes obvious in the lateral direction. As shown in the figure, the buckling modes in both cases are antisymmetric out-of-plane, and the buckling load factor of the arch rib is about 4.1 considering the initial dead and live load.A comparison of the lateral and vertical deforMations at the quarter point of the main arch between two cases is shown in Fig.15, showing that the deviation of the load-displacement curves of the two cases is very small, indicating that the influence of the construction method on the stability strength is very slight. Besides, when out-of-plane buckling occurs, the bridge still has certain vertical stiffness.CONCLUSIONIn analyzing the ultimate strength of the CFST arch bridges with stiffening girders, simulating the nonlinear behavior of stiffening girders is as impor-tant as that of the CFST arch rib due to the redistribution of inner force between arch ribs and stiffening girders. In this paper, an analytical approach for estimating the ultimate bearing capacity of CFST arch bridge with stiffening girder is proposed, which takes account of the effects of material and geometric nonlinearity and the contribution of prestressing reinforcement. Based on the fiber beam element theory,the degrees of freedom of the whole structure can be reduced, making it very feasible to predict the ultimate strength of the complex structure. The accuracy of the present method was examined by comparison with the experimental results for a PC girder.To demonstrate the applicability of the present approach in bridge design, the ultimate strength of an abnormal CFST arch bridge with stiffening girder is studied considering the effect of construction process. The result shows that the construction process influences the initial internal force of the bridge significantly. But it has little effect on the ultimate strength of the bridge. Therefore, the relatively accurate stability strength can be obtained by ignoring the influence of the construction process.ReferencesChen, H.Z., 2005. Research of Calculation and Analysis of PCBox Girder Structure with Long Span. Ph.D Thesis,Zhejiang University (in Chinese).Chen, B.C., Chen, Y.J., 2000. Experimental study on me-chanic behaviors of concrete-filled steel tubular rib archunder in-plane loads. Engineering Mechanics,17(2):44-50 (in Chinese).Chen, B.C., Wei, J.G., Lin, J.Y., 2006. Experimental study on concrete filled steel tubular (single tube) arch with onerib under spatial loads. Engineering Mechanics,23(5):99-106 (in Chinese).Crisfield, M.A., 1981. A fast incremental iterative solution procedure that handles “snap through”. Computer and Structures, 13(1-3):55-62. [doi:10.1016/0045-7949(81) 90108-5]Cui, J., Sun, B.N., Lou, W.J., Yang, L.X., 2004. Model test study on concrete-filled steel tube truss arch bridge.Engineering Mechanics, 21(5):83-86 (in Chinese).e, X., Chen, H.Z., Li, H., Song, S.R., 2005. Numerical analysis of ultimate strength of concrete filled steel tu- bular arch bridges. Journal of Zhejiang University SCI-ENCE, 6A(8):859-868. [doi:10.1631/jzus.2005.A0859]Zeng, G.F., Fan, L.C., Zhang, G.Y., 2003. Load capacity analysis of concrete filled steel tube arch bridge with the composite beam element. Journal of the China RailwaySociety, 25(5):97-102 (in Chinese).Zhang, Z.A., Sun, Y., Wang, M.Q., 2003. Key technique in theerection process of the rib steel pipe truss segments forWushan Yangze River bridge. Highway, 12:26-32 (in Chinese).Zhang, Y., Shao, X.D., Cai, S.B., Hu, J.H., 2006. Spatial nonlinear finite element analysis for long-span trussedCFST arch bridge. China Journal of Highway andTransport, 19(4):65-70 (in Chinese).Zhao, L.Q., Xu, R.H., Zheng, X.Z., 2004. Overall design of thefourth Qiantangjiang River Bridge in Hangzhou. BridgeConstruction, 1:27-30 (in Chinese).翻译:分析钢管混凝土拱桥与加劲梁的极限强度的方法摘要:提出的方法是分析和研究负载承载能力的终极钢管混凝土钢管混凝土(加劲梁与钢管混凝土拱桥)。
桥梁工程英语专业词汇

轴向拉力, 轴向拉伸: axial tension
轴向拉力 轴向张力: axialtensileforce
承台
cushion cap
承台: bearing platform|cushioncap|pile caps
桩承台: pile cap|platformonpiles
弹性
elasticity
springiness
spring
give
flexibility
弹性: elasticity|Flexibility|stretch
彈性: Elastic|Elasticidad|弾性
弹性体: elastomer|elastic body|SPUA
平ቤተ መጻሕፍቲ ባይዱ面假定
plane cross-section assumption
主梁
主梁: girder|main beam|king post
桥主梁: bridge girder
主梁翼: main spar
单墩
单墩: single pier
单墩尾水管: single-pier draught tube
单墩肘形尾水管: one-pier elbow draught tube
结构优化设计
刚强度: stiffness|stiffne|westbank stiffness
光强度: light intensity|intensity
箍筋
hooping
箍筋: stirrup|reinforcement stirrup|hooping
箍筋柱: tied column|hooped column
道路与桥梁工程中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
桥梁工程英语专业词汇

抗拉强度
intensity of tension
tensile strength
安全系数
safety factor
标准值
standard value
标准值: standard value,|reference value
作用标准值: characteristic value of an action
低桩承台: low pile cap
拱桥
arch bridge
拱桥: hump bridge|arch bridge|arched bridge
拱橋: Arch bridge|Puente en arco|Pont en arc
鸠拱桥: Khājū
强度
intensity
strength
强度: intensity|Strength|Density
懸索橋: Suspension bridge|Puente colgante
加劲悬索桥: stiffenedsuspensionbridge
预应力混凝土
prestressed concrete
预应力混凝土: prestressed concrete|prestre edconcrete
预应力混凝土梁: prestressed concrete beam
最大弯矩图: maximum bending moment diagram
剪力
shearing force
剪力: shearing force|shear force|shear
剪力墙: shear wall|shearing wall|shear panel
桥梁工程毕业设计外文翻译

Review of assessment and repair of fire-damaged RChighway bridgesAbstract:This paper presents a review of the progress of the research and engineering practice of assessment and repair of fire-damaged RC highway bridges,based on which existing and pressing problems of the evaluation method are pointed out.At last,Prospect for the development of assessment and repair of fire-damaged highway bridges is also proposed.Key words:fire damage;assessment;repair techniques;RC structure;bridge 1 PrefaceFires can cause great structural damage to bridges and major disruption to highway operations.These incidents stem primarily from vehicle accident (often oil tanker) fires,bridges might also be damaged by fires in adjacent facilities and from other causes.Quite a few of them,though rarely happened,lead to severe structural damage or collapse and casualty.On June 2,2008,fire disaster broke out under the 18th span of Nanjing Yangtze River Bridge and lasted for approximate 75min.During the fire’s development and extinguishment,the structure experienced the sharp rise and fall in temperature causing severe damage to fire- stricken segments.On April 29,2007,a gasoline tanker overturned on the connector from Interstate 8O to Interstate 880 in California.The intense heat from the subsequent fuel spill and fire weakened the stee1 underbelly of the elevated roadway ,collapsing approximately 165 feet of this elevated roadway onto a section of I—880below.On March 25,2004,Connecticut,United States,a tanker truck carrying fuel swerved to avoid a car and overturned,dumping 8000 gallons of home heating oil onto the Howard Avenue overpass.The consequent towering inferno melted the bridge structure and caused the southbound lanes to sag several feetUndocumented number of bridge fires occurring throughout the world each year cause varying degrees of disruption,repair actions,and maintenance cost.Althoughfires caused damage to the bridge structures ,some bridges continue to function after proper repair and retrofit.Still in some situations they have to be repaired for the cause of traffic pressure even though supposed to be dismantled and reconstructed.However ,in other cases,structures are severely damaged in the fire disaster and fail to function even after repair,or the costs of repair and retrofit overweigh their reconstruction costs overwhelmingly even if they are repairable,under which situation reconstruction serves as a preferable option.Therefore in—situ investigation and necessary tests and analyses should be conducted to make comprehensive assessment of the residual mechanical properties and working statuses after fire and to evaluate the degrees of damage of members and structures , in reference to which decisions are made to determine whether Fire damaged structures should be repaired or dismantled and reconstructed.Urgent need from engineering practice highlighted the necessity to understand the susceptibility and severity of these incidents as wel1 as to review available information on mitigation strategies,damage assessments,and repair techniques.2 Progress in Research and Engineering Practice2.1 Processes of Assessment and Repair of Fire damaged BridgeStructureIn China and most countries in the world,most highway bridges are built in RC structure.And the practice of the assessment and repair techniques of bridge structure after fire directly refer to that of RC structure,which,to date,domestic and foreign scholars have made great amount of research on,with their theories and practices being increasingly mature .As for the assessment and repair of fire-damaged reinforced concrete structures,there are two mainstream assessment processes in world.Countries including United States,United Kingdom and Japan adopt the assessment process stipulated by The British Concrete Society .This process grates the severity of fire damage of concrete structure into four degrees according to thedeflection,damage depth,cracking width, color,and loading capacity variation of fire-damaged structures and adopt four corresponding strategies (including demolish,strengthen after safety measures,strengthen. and strengthen in damaged segments) to deal with them accordingly.In general,this process is a qualitative method and considered,however,not quantity enough.In Chinese Mainland and Taiwan ,the prevailing as assessment and repair process of fire damaged incorporates following steps:In comparison this process is more detailed.(1)Conduct In-situ inspections,measurements,and tests including color observation,concrete observation,degree of rebar exposure observation,cracking measurement,deflection measurement,various destructive and nondestructive test methods as grounds for assessment of fire—damaged structures.In assessment of the post -fire mechanical properties of fire—damaged structures,historical highest temperature and temperature distribution of structure during the fire serve as decisive factors.The common methods to determine them incorporate petrographic analysis,ultrasonic method,Rebound method,Ignition Loss method,core test,and color observation method(2)calculate to determine whether the fire-damaged structure can meet the demand of strength and deflection under working loads after fire using mechanical properties of rebar and concrete before and after fire based on the historical highest and temperature distribution of structures obtained from step one.There are two main methods to evaluate the post -fire performance of fire-damaged structures:FEM method and Revised Classic Method.(3)On the basis of test and calculation results obtained from step two,take corresponding repair strategies and particular methods to strengthen the fire-damaged structures.2.2 Repair TechniquesFor the repair of fire—damaged bridge,proper repair methods should be taken according to the degree and range of the structure’s damage.Meanwhile the safetyand economy of the repair methods should be concerned with by avoiding destructing the original structure,preserving the valuable structural members,and minimizing unnecessary demolishment and reconstruction。
道路路桥工程中英文对照外文翻译文献

道路路桥工程中英文对照外文翻译文献中英文资料中英文资料外文翻译(文档含英文原文和中文翻译)原文:Asphalt Mixtures-Applications。
Theory and Principles1.ApplicationsXXX is the most common of its applications。
however。
and the onethat will be XXX.XXX “flexible” is used to distinguish these pavements from those made with Portland cement,which are classified as rigid pavements。
that is。
XXX it provides they key to the design approach which must be used XXX.XXX XXX down into high and low types,the type usually XXX product is used。
The low typesof pavement are made with the cutback。
or emulsion。
XXX type may have several names。
However。
XXX is similar for most low-type pavements and XXX mix。
forming the pavement.The high type of asphalt XXX中英文资料XXX grade.中英文资料Fig.·1 A modern XXX.Fig.·2 Asphalt con crete at the San Francisco XXX.They are used when high wheel loads and high volumes of traffic occur and are。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文翻译Quick fix: replacement of an old wooden bridge inSt Petersburg was completed earlier this year.Rising traffic levels and development demands led to an old tramway bridge being rebuilt as a cable-stayed crossing in the Russian city of St Petersburg. The new Lazarevsky Bridge across the Malaya Nevka was opened to traffic earlier this year, replacing an old wooden structure which was built for trams but recently had only been used by pedestrians.The bridge is located in Petrograd district and connects Krestovsky and Petrogradsky Islands along Pionerskaya and Sportivnaya Streets, both of which are importanat links for local traffic. When it was built in 1949, the crossing was called the Koltovsky Bridge, after the adjacent Malaya Nevka river embankment. But in 1952, it was renamed to commemorate the legendary Russian admiral Mikhail Lazarev. The embankment and the bridge were redesignated the Admiral Lazarev Embankment and Lazarevsky Bridge respectively.Built to the design of engineer VV Blazhevich, the original bridge had 11 spans, the central one being a single-leaf drawspan. It was originally designed for trams and was the only tramway bridge in the city at that time. Its total length was 141m and its width was 11m, the deck consisting of metal baulks and wooden plank flooring. The timber post piers rested on piled foundations of steel pipes. But in 2002 the tramway was closed and since then, the bridge has only been used by pedestrians.Its location meant that Lazarevsky Bridge served the western part of the city--the Petrograd districts including Krestovsky island. All the road traffic to Krestovsky island used the main Krestovsky Bridge which as a consequence was considerably overloaded. Since the Lazarevsky Bridge carried no vehicular traffic it was not considered part of the road network of the district. But plans to build a new stadium at the Seaside Victory Park on Krestovsky Island just 3km from the bridge site meant that a reliable transport connection to the rest of the city was required. The local authority decided that reconstruction of the Lazarevsky Bridge was the best way to provide this.The size of new bridge was determined based on the predicted traffic levels, taking into account the prospective development of the district. According to the forecast, the annualaverage daily traffic intensity on Lazarevsky Bridge will rise to 16,000 vehicles per day by 2025. Peak loads occur during major sporting events at the stadium when the bridge will be required to help relieve the area of traffic within one hour. This traffic flow includes 4,500 to 5,000 cars, so even if the Petrovsky Bridge were to be rebuilt, the Lazarevsky Bridge needed two lanes of traffic in both directions in order to do this.Taking into consideration the fact that the timber structures of the bridge had been in use for more than 55 years, if the bridge reconstruction had been restricted to the widening and strengthening of the existing superstructure and piers, it would not have ensured the longevity of the fixed bridge and might have led to high operation costs. Another consideration was that the appearance of a multi-span structure with bulky piers would not have fitted into the architectural style that is emerging with construction of modern buildings on Krestovsky Island and the adjacent embankments.As a result, the decision was taken to completely demolish the existing bridge and replace it with a new structure on the same alignment. As part of the project, some of Sportivnaya Street on the right bank had to be widened, and improvement of the adjacent area was also included.The history of the project dates back more than a decade to 1998, when JSC Institute Strojproect won the tender to carry out a feasibility study into the reconstruction of Lazarevsky Bridge and its approaches.Even at this time, the architect Igor Serebrennikov had developed an original architectural concept of the bridge which involved use of a cable-stayed system. This concept was approved by the city's committee for development but financial problems meant that the design was suspended for seven years before it resumed.In 2003, the project was included in the target programme of design and survey works, and the tender for design development was officially announced. Again these works were awarded to JSC Institute Strojproect. The reconstruction design was completed in 2007 and was received positively by the State Expert Review Board; construction began at the end of that year.The structural concept of the bridge was approved based on the comparison of technical and economical options. One of the main restrictions was the strict limitation on the superstructure construction depth. On the one hand, it was limited by the need to maintainunderbridge clearance for navigation, while on the other hand the deck level was governed by the height of Admiral Lazarev Embankment, which could not be raised, according to the requirements of the committee for protection of monuments.To meet these almost incompatible conditions it was necessary to make the longitudinal profile of the deck with a vertical curve of radius 1,000m, a radius which is allowable only for very constrained conditions. But even with this minimum vertical curve radius, the limitation for the deck construction depth remained fairly strict--it had to be 1.4m at the maximum. This condition could be met either by a classic five-span continuous beam scheme or by a cable-stayed system. The costs of both options are practically the same but the cable-stayed option was preferred as it was considered more attractive from the architectural point of view. Another benefit was that it would take less time for construction as there was no need for intermediate piers to be built in the river bed.The unconventional appearance of the structure, particularly the shape of the tower and its asymmetric arrangement with its single span, put demands on the design abilities of the engineers from JSC Institute Strojproect, requiring them to cope with non-standard problems. One such problem was the need to provide the required rigidity to the deck while at the same time minimising its weight in order to decrease the moments in the tower elements and balance the system. Hence a single-span cable-stayed bridge with steel deck, orthotropic carriageway slab and a steel tower was selected for construction. The deck is supported by two rows of stays, with five stays in each row. The cable stays pass through the tower and are anchored in the reinforced concrete slab of the counterweight which is located beyond the bridge abutment on Krestovsky Island. The front arch of the tower, which is inclined towards the riverbed, carries the dead anchorages by which means the cable stays and backstays are secured. Tensioning of both sets of cables was carried out by means of active anchors located at the deck and in the counterweight slab. To minimise the total width of the deck, the anchorages are removed to the front surfaces of the main beams. The optimum force distribution in the tower elements was obtained by means of the arch shape that became sharper and elongated in the transverse section of the bridge.The deck consists of a system of longitudinal and transverse H-beams connected via the orthotropic slab with its U-shape stiffeners. The anchorages are located along the transverse beams. At the tower, the deck is rigidly fixed and at pier one it rests on Maurer sphericalbearings. The steel part of the deck is made of low-alloy steel grade 10 and 15 and the tower of steel grade 10 (400MPa).The cable stays are VSL standard monostrands and each one is made up of from 50 to 73 strands. The total length of strand used in the bridge is about 31km. Meanwhile the bridge deck pavement consists of two layers of asphalt/concrete 40mm and 50mm placed over the Technoelastomost-S membrane waterproofing layer.The pier foundations are formed of high pile caps resting on bored piles driven deep into the bearing stratum of firm clay. Above the foundation top, the piers are made of cast in situ concrete and faced with granite.Construction was carried out by Mostootryad No 75, a branch of OAO Mostotrest No 6, while the steel deck structure was manufactured by JSC Zavod Metallokonstruktsiy and the steel tower structure was manufactured by NPO Mostovik.For development of the detail design the specialists of automation division of the Institute prepared complex 3-D models of the tower and cable stay anchorages in PRO-E software which were used for analysis and as a basis for the fabrication of the structures by NPO Mostovik. The use of this successful PRO-E modelling enabled the complicated tower structures to be manufactured within a relatively short time.Taking into consideration the constraints imposed on the bridge construction, JSC Institute Strojproect suggested some modifications to the detailed design. One such proposal was to replace the cable backstays of the tower with rigid ties made of low-alloy steel grade 10 which would be fixed rigidly at the tower arches and counterweight. Temporary supports would be installed under the deck anchoragesThese modifications allowed the erection of the back-stays to be considerably simplified, and would also eliminate the need to tension the backstays, cutting in half the time for the cable-stay installation.In addition it meant that the cable-stays supporting the deck could be tensioned in a single operation, once the asphalt and concrete pavement had been installed on the bridge. Analysis included successive tensioning of cable-stay pairs from the longest pair down to the shortest pair with the subsequent final tensioning of the two longest pairs. Apart from the forces, the vertical displacements of the deck at the 'breakaway' points on the temporary supports had to be controlled. The actual tensioning works were carried out in compliance with the designsolutions. The data on the forces and displacements at each stage were handed over by the general contractor to the designers, and if necessary, the required corrections were introduced to the design. On the whole, the calculated data showed a high correlation with the actual parameters.In fact it took the general contractor only 17 months to complete construction of all the works involved in the bridge construction. The new cable-stayed bridge has fitted harmoniously into the surrounding landscape. By avoiding placement of intermediate piers in the riverbed it was possible to open up views along the Malaya Nevka. The arch tower acts as a symbolic gateway to the island and stands out distinctly against its background of sky and trees. The architectural expressiveness of the bridge is determined by the general asymmetrical composition and the dynamic shape of the tower formed by two inclined arches, a light and gently-curved deck, and the elegant outline of the cable stay arrangement. At night time, the appearance of the bridge is highlighted by architectural lighting.Tatiana Gurevich is project manager and Yuri Krylov is head of the structural steel department at JSC Institute Strojproect桥梁的快速修复——圣彼得堡一座旧木桥今年的更换工作在俄罗斯的圣彼得堡,崛起的交通水平和发展要求促使一个旧的电车轨道桥被改造为一个斜拉桥。