百分数知识点整理和单位一巧用
(完整版)百分数的应用知识点

百分数的应用知识点(一)百分数的基本概念1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
4.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的通常保留三位小数,注意保留三位小学必须除到第四位),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
(二)百分数应用题求分率求分率分为两种:一、求甲是(占、相当于)乙的百分之几?二、求甲比乙多(少)百分之几?公式:1、求甲是(占、相当于)乙的百分之几?把是(占、相当于)变成“÷”,用甲÷乙如男生25 人,女生20 人,男生占女生的百分之几?男生÷女生25÷20=125%2、求甲比乙多(少)百分之几?用相差数÷比字后面的数如男生25 人,女生20 人,男生比女生多百分之几?男女生相差人数÷女生人数(25-20)÷20=25%比前除以比后再与 1 相减当问题是多百分之几时,用商减1,当问题是少百分之几时,用 1 减商如男生25 人,女生20 人,男生比女生多百分之几?男生÷女生-1 25÷20-1=25%求数量先判断谁是单位 1 的量,如果单位 1 已知,用乘法计算。
单位1 未知,用除法或用方程计算(方程是乘法)。
找单位1 的方法“的”前“比、是、占、相当于”后,“的”字前面的量是单位1,“比”字后面的量是单位1。
完整版)百分数知识点归纳

完整版)百分数知识点归纳第六单元:百分数一、百分数的意义和写法百分数表示一个数是另一个数的百分之几,也称为百分率或百分比。
它是两个数的比值,因此不能带单位。
百分数的分子可以是整数或小数。
通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化1.百分数与小数的互化:将小数化成百分数,只需要把小数点向右移动两位,同时在后面添上百分号;将百分数化成小数,只需要把小数点向左移动两位,同时去掉百分号。
2.百分数与分数的互化:将百分数化成分数,先将百分数改写成分母是100的分数,能约分要约成最简分数;将分数化成百分数,可以先将分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
三、用百分数解决问题1.一般应用题:常见的百分率的计算方法是:出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
求一个数是另一个数的百分之几,只需要用一个数除以另一个数,结果写为百分数形式。
2.已知单位“1”的量,求单位“1”的百分之几是多少的问题,可以用乘法解决。
如果百分率前是“的”,单位“1”的量×百分率=百分率对应量;如果百分率前是“多或少”,单位“1”的量×(1±百分率)=百分率对应量。
3.未知单位“1”的量,已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解题方法解题方法有两种:方程和算术。
方程是根据数量关系式设未知量为X,用方程解答。
算术是用除法计算百分率对应量除以对应百分率得到单位“1”的量。
比多比少的方法与分数的方法相同,只是结果要写为百分数形式。
看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:比少:具体量除以(1-百分率)得到单位“1”的量。
例如:大米有50千克,比面粉少50%,面粉有多少千克?列式是:50÷(1-50%)=100.比多:具体量除以(1+百分率)得到单位“1”的量。
(完整版)百分数知识点整理和单位一巧用

数学中单位1 ”的巧用笔者在几年小学毕业班数学教学实践中,深刻认识到:分数、百分数、工程问题,是小学生最难理解和难于掌握的内容,而这三种内容的应用题又是小学生更难的,而又必须掌握的知识之一。
而单位“1 好比是解答这难题的一把金钥匙,利用得当可帮助学生理解题意、掌握解题思路、发展思维,提高学生解题能力和技巧,可起到事半功倍的作用。
因此,教师在教学中引导学生掌握单位“1的”运用方法很有必要。
首先要让学生认清单位“1,”它不同于自然数中的“1,”它可表示数字“1,”更重要的是它在分数、百分数、比类,工程问题应用题中表示“一个单位、一个整体”,这在教学中就叫单位“1或”“整体1”。
故单位“1可”表示“一个总量、一个部分、一项工程的总量、一批物件”等。
所有单位“1的”量叫标准量,与它相比的叫比较量,在解答应用题时,如单位“1的”量已知,就用单位“1的”量乘以所求量对应的分率;如求单位“1的”量,就用已知量除以已知量的对应分率。
由于用单位“1计” 算方法固定,故只要选好单位“1,”就可知计算方法,这就解决了学生不知用什么方法计算这一难题。
而选择单位“1一”般以“总量、不变量、两者相比的后项、几分之几的对象”为单位“1。
”下面谈谈单位“1 的运用。
一、单位“1”在分数应用题中的运用这类应用题一般把总量看作单位“1。
”例(1):一堆煤有50 吨,用去3/5后,还剩多少吨?分析:本题应把总量一堆煤看作单位“1,”用去的单位“1的” 3/ 5,剩下的占单位“1的”( 1-3/5)(剩下量对应分率),由于单位“1 量已知而用乘法,求剩下量列式为:50X( 1-3/5 )。
例( 2):一堆煤,第一次运走总吨数的1/3,第二次运走总吨数的1/4,还剩65 吨没运,求这堆煤有多少吨?分析:本题与例(1)一样把总量看作单位“ 1 ,”剩下的占单位“1 的(1-1/3-1/4),但这题求单位“ 1的量而用除法,列式为:65+( 1- 1/3-1/4)= 156 吨。
六年级百分数的应用重点内容

六年级百分数应用的重点内容一、百分数概念及基本定义百分数是以100为分母的分数。
它通常表示一部分占整体的百分之几,符号为%。
例如,50%表示一半或50/100。
百分数不仅可以帮助我们更好地理解和比较比例,而且在现实生活中有广泛的应用。
二、百分数与分数、小数之间的转换百分数转分数:要将百分数转换为分数,只需将百分数除以100。
例如,25%转换为分数为25/100或1/4。
百分数转小数:将百分数转换为小数的步骤与上述相反,只需将百分数乘以100。
例如,25%转换为小数为0.25。
分数、小数转百分数:要将分数或小数转换为百分数,只需将分数或小数乘以100,然后添加百分号%。
例如,1/4转换为百分数为25%。
三、百分数在实际生活中的应用举例在统计学中,百分数常被用来表示不同类别数据所占的比例。
例如,在一项调查中,支持某个政策的受访者占50%,那么这50%可以表示为50%。
在市场营销中,商家经常使用百分数来表示商品打折的幅度,如商品打8折可以表示为80%。
在个人理财中,百分数也常被用来表示投资回报率或风险率。
例如,某基金的年化收益率是5%,可以表示为5%。
四、解答有关百分数应用题的基本方法和技巧审题:理解题意,明确问题的要求和条件。
画图:通过画图的方式帮助理解题意,有助于分析和解答问题。
列方程:根据题意列出方程,然后求解方程得到答案。
检验:对答案进行检验,确保答案的正确性。
五、提升解决实际问题能力的练习题及思路题目:一个班有50名学生,其中30名学生喜欢篮球,20名学生喜欢足球。
请问喜欢篮球和足球的学生各占全班学生的百分之多少?思路:首先计算喜欢篮球和足球的学生分别占全班学生的比例,然后将这两个比例相加得到同时喜欢两种运动的学生所占的比例。
答案:喜欢篮球的学生占全班的百分比为60%,喜欢足球的学生占全班的百分比为40%,同时喜欢两种运动的学生占全班的百分比为10%。
题目:一项新研究显示,45%的人在25岁之前开始使用社交媒体。
百分数重点笔记

百分数重点笔记
1. 百分数表示一个数是另一个数的百分之几。
例如,50%表示一半,25%表示四分之一。
2. 百分数可以转换为小数或分数。
例如,50% = 0.5,25% = 1/4。
3. 百分数通常用于表示比例、增长率、折扣等。
4. 在计算中,百分数需要与具体的数值相乘。
例如,如果一件商品打8折,那么实际支付的价格是原价的80%。
5. 百分数也可以用于表示概率。
例如,掷一枚公正的骰子得到6的概率是1/6,约等于1
6.67%。
6. 百分数的比较:可以直接比较两个百分数的大小,或者将它们转换为小数或分数后再进行比较。
7. 百分数的运算:加法和减法需要先将百分数转换为小数或分数,然后进行运算;乘法和除法则直接将百分数与具体的数值相乘或相除。
8. 百分数的化简:如果一个百分数的分子和分母都可以被同一个数整除,那么这个百分数就可以化简为最简形式。
9. 百分数的单位:通常不写单位,因为百分数本身就是一个相对的比例。
10. 百分数的应用:在商业、统计、财务等领域有广泛的应用。
百分数的应用 知识点

百分数的应用知识点(一)百分数的基本概念1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
4.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的通常保留三位小数,注意保留三位小学必须除到第四位),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
(二)百分数应用题求分率求分率分为两种:一、求甲是(占、相当于)乙的百分之几?二、求甲比乙多(少)百分之几?公式:1、求甲是(占、相当于)乙的百分之几?把是(占、相当于)变成“÷”,用甲÷乙如男生25人,女生20人,男生占女生的百分之几?男生÷女生25÷20=125%2、求甲比乙多(少)百分之几?用相差数÷比字后面的数如男生25人,女生20人,男生比女生多百分之几?男女生相差人数÷女生人数(25-20)÷20=25%比前除以比后再与1相减当问题是多百分之几时,用商减1,当问题是少百分之几时,用1减商如男生25人,女生20人,男生比女生多百分之几?男生÷女生-1 25÷20-1=25%求数量先判断谁是单位1的量,如果单位1已知,用乘法计算。
单位1未知,用除法或用方程计算(方程是乘法)。
找单位1的方法“的”前“比、是、占、相当于”后,“的”字前面的量是单位1,“比”字后面的量是单位1。
注意:单位1未知时,用除法,数量和分率必须要对应。
百分数知识点总结

百分数知识点总结百分数是我们生活中经常使用的一种表示方式,它能够准确地描述一定范围内的比例关系。
在学习和工作中,了解百分数的含义和应用十分重要。
本文将对百分数的定义、计算、应用以及常见的数学技巧进行总结和归纳。
一、百分数的定义百分数是以百为基数的比例,用百分号“%”表示。
百分数可以表示一个比例关系,即一个数与100的乘积。
例如,80%表示的是数80与100的乘积,即80% = 80/100 = 0.8。
二、百分数的计算1. 百分数转小数:将百分数除以100,得到的结果就是对应的小数。
例如,60% = 60/100 = 0.6。
2. 百分数转分数:将百分数的数值除以100并化为最简分数形式。
例如,25% = 25/100 = 1/4。
3. 小数转百分数:将小数乘以100,并在结果末尾加上百分号。
例如,0.75 = 0.75 × 100% = 75%。
4. 分数转百分数:将分数化为小数,然后再转化为百分数。
例如,3/5 = 0.6 = 0.6 × 100% = 60%。
三、百分数的应用1. 百分数在商业中的应用:百分数在销售、营销和金融领域中有着广泛的应用。
例如,折扣率可以用百分数表示,帮助消费者了解商品打折程度。
2. 百分数在统计中的应用:百分数可以用来描述一个群体中某种特征的比例。
例如,对某个调查对象的回答进行统计时,可以使用百分数来表示各个选项的比例。
3. 百分数在日常生活中的应用:百分数可以用来描述各种比例关系,例如考试成绩、人口增长率、物品的折旧率等等。
四、百分数的数学技巧1. 计算百分数的增长或减少量:如果需要求某个数的增长或减少量,可以先计算出增长或减少的百分比,然后再将该百分比应用到原始数值上,得到最终结果。
2. 计算百分数的乘除法:计算百分数的乘法可以简单地将原始数值乘以百分数所对应的小数;计算百分数的除法可以将原始数值除以100,再乘以百分数所对应的小数。
3. 百分数之间的比较:当需要比较两个百分数的大小时,可以将它们分别转化为小数,然后进行比较。
百分数的应用和解题技巧知识点总结

百分数的应用和解题技巧知识点总结一、百分数的概念百分数是数学中常见的表示比例关系的形式,是以百分之一为单位的比例表示。
其中,“百”表示100,“分”表示一份。
二、百分数的表示方法百分数可以用数值表示,也可以用小数表示。
例如,70%可以写成0.7或者70/100。
三、百分数的应用1. 百分数的转换将一个百分数转换为一个小数,可以通过将百分数除以100得到。
例如,40%可以转换为0.4。
将一个小数转换为一个百分数,可以通过将小数乘以100得到。
例如,0.6可以转换为60%。
2. 百分数的比较当需要对两个或多个百分数进行比较时,可以将它们转换为小数,然后进行比较。
例如,比较60%和75%的大小,可以将它们转换为小数0.6和0.75,然后比较大小。
3. 百分数的增减当需要对一个百分数进行增加或减少时,可以将百分数转换为小数,然后进行加减运算,最后将结果转换回百分数。
例如,将70%增加20%,可以先将70%转换为小数0.7,然后进行加法运算得到0.9,最后将0.9转换为90%。
4. 百分数的应用问题百分数在实际问题中有广泛的应用,例如计算商品的折扣、计算人口增长率等。
解决这些问题时,需要根据具体的情况将问题转换为百分数的运算。
四、百分数的解题技巧1. 思维转换在解决百分数问题时,可以将百分数转换为小数,或者将百分数转换为比例,以便进行运算。
2. 运算规律在进行百分数的运算过程中,可以利用百分数的运算规律,例如百分数与整数相乘,可以先将整数转换为百分数,然后进行乘法运算。
3. 注意单位在解答问题时,要注意百分数的单位,并根据需要进行单位的转换,以确保计算的准确性。
五、百分数的典型例题例题1:某商品原价为800元,现在打7折出售,求打折后的价格。
解析:打7折相当于原价的70%,将800元乘以70%,得到打折后的价格为560元。
例题2:某地区的人口在五年内增长了18%,求五年前的人口数量。
解析:人口增长18%相当于原来的118%,将现在的人口数量除以118%,得到五年前的人口数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中“单位1” 的巧用笔者在几年小学毕业班数学教学实践中,深刻认识到:分数、百分数、工程问题,是小学生最难理解和难于掌握的内容,而这三种内容的应用题又是小学生更难的,而又必须掌握的知识之一。
而单位“1”好比是解答这难题的一把金钥匙,利用得当可帮助学生理解题意、掌握解题思路、发展思维,提高学生解题能力和技巧,可起到事半功倍的作用。
因此,教师在教学中引导学生掌握单位“1”的运用方法很有必要。
首先要让学生认清单位“1”,它不同于自然数中的“1”,它可表示数字“1”,更重要的是它在分数、百分数、比类,工程问题应用题中表示“一个单位、一个整体”,这在教学中就叫单位“1”或“整体1”。
故单位“1”可表示“一个总量、一个部分、一项工程的总量、一批物件”等。
所有单位“1”的量叫标准量,与它相比的叫比较量,在解答应用题时,如单位“1”的量已知,就用单位“1”的量乘以所求量对应的分率;如求单位“1”的量,就用已知量除以已知量的对应分率。
由于用单位“1”计算方法固定,故只要选好单位“1”,就可知计算方法,这就解决了学生不知用什么方法计算这一难题。
而选择单位“1”一般以“总量、不变量、两者相比的后项、几分之几的对象”为单位“1”。
下面谈谈单位“1”的运用。
一、单位“1”在分数应用题中的运用这类应用题一般把总量看作单位“1”。
例(1):一堆煤有50吨,用去3/5后,还剩多少吨?分析:本题应把总量一堆煤看作单位“1”,用去的单位“1”的3/ 5,剩下的占单位“1”的(1-3/5)(剩下量对应分率),由于单位“1”量已知而用乘法,求剩下量列式为:50×(1-3/5)。
例(2):一堆煤,第一次运走总吨数的1/3,第二次运走总吨数的1/4,还剩65吨没运,求这堆煤有多少吨?分析:本题与例(1)一样把总量看作单位“1”,剩下的占单位“1”的(1-1/3-1/4),但这题求单位“1”的量而用除法,列式为:65÷(1-1/3-1/4)=156吨。
由上两例可知:当总量变化时,单位“1”在解题过程中起了关键作用。
但当总量不变,总量里的几种部分量都变化时又怎样解呢?例(3):甲乙两粮仓,甲仓存量吨数是乙仓的5倍,如从甲仓运出628吨粮存入乙仓,则乙仓存粮是甲的5倍,甲仓原有存粮多少吨?分析:这题应把两仓总存粮数看作单位“1”,由于甲乙两仓存粮数前后发生变化,原来甲占两仓总量的5/(15),后来甲占两仓总量的1/(15),则原甲比后甲多的628吨的对应分率是(5/6-1/6)。
故总量是628÷(5/6-1/6),而原甲仓存粮为628÷(5/6-1/6)×5/6。
因此,当总量不变,而分量都变化,还是用单位“1”,解题可起简便思路的作用。
如总量变,分量里有种变、有种不变的题呢?同样可用单位“1”法求解。
例(4):甲乙两人共储蓄人民币315元,甲储蓄的钱数占两人总数的7/8,甲取出一部分存款支援“希望工程”后,这时甲占两人总储量的5/11,这时甲乙两人储蓄总量是多少元?分析:本题与上题比,仍把总量看作单位“1”,但原来和现在“1”表示的量是不同的,而乙在总量变化时自身不变,故应以乙占前后单位“1”的差,求出后来两人总量。
原来甲占7/8,乙占(1-7/8),乙有钱315×(1-7/8);后来甲占5/11,乙占(1-5/11),即后来两人储蓄总量的(1-5/11),是315×(1-7/8)÷(1-5/11)。
于是可见,总量变化,同样可用单位“1”来求解,同样单位“1”起了解题中的桥梁作用。
二、单位“1”在“比类”应用题中的运用这类应用题,一般先弄清是“谁比谁”,把“后者”看作单位“1”的量。
1、“份数比”类应用题例(1):某工厂四月份烧煤120吨,比原计划节约了1/9,四月份原计划烧煤多少吨?分析:本题是实际烧煤量与计划量相比,故应把计划烧煤量看作单位“1”,则实际烧煤量相当于计划量的(1-1/9),求计划量可列式为120÷(1-1/9)=135(吨),因此,单位“1”在份数比类应用题中起关键作用。
2、“差比”类应用题也可用单位“1”求解例(1):甲数是40,乙数是80。
①求甲比乙多几分之几?②求乙比甲比少几分之几?这类应用题可用公式“相差量÷标准量”,但上题①、②问的标准量发生变化,而计算结果不同。
①(80-40)÷80=1/2;②(80-40)÷40=1。
由上可知,单位“1”在“差比”类分数应用题解答中起了关键性的作用。
3、“倍比”类分数应用题同样可用单位“1”求解例(1):某校54人参加奥林匹克学校数学班学习,非录取学生人数比录取学生数的5/2倍还多12人,问这所学校有几个被录取?分析:本题应把被录取人数看作单位“1”,如非录取学生人数减少12人,则非录取人数刚好是录取人数的5/2倍,则总人数少12人后的人数对应的分率是15/2,求录取学生人数列式为:(54-12)÷(1 5/2)。
这类应用题关键是把“比类”转换成“一量是另一量的倍数”,再利用单位“1”求解。
因此,单位“1”在“倍比”类应用题解答中起了简便思路和计算过程的关键作用。
三、单位“1”在百分数应用题中的运用单位“1”在百分数就用题与分数应用题中方法一样。
因为把百分数转换成分数,就成了分数应用题。
四、单位“1”在“工程问题”中的运用分数工程应用题同整数工程问题一样,都可以工作总量作单位“1”。
工作总量可以是“一段路,一件工程,一块地,一批物件”等。
例(1):一段公路,甲队单独修要12天,乙队单独修要15天。
甲队先单独修3天后,再两队合修要几天?分析:本题应把这段路工作总看作单位“1”,甲队每天完成单位“1”的1/12,乙每天完成单位“1”的1/15。
甲先修3天,则已修1/12×3,这时剩下这段路的1-1/ 12×3。
两队合修一天可完成这段路的(1/121/15),合修天数为:(1-1/12×3)÷(1/121/15)=5(天),解这题时,把这段路看作单位“1”起了关键作用。
如用整数工程问题求解,由于不知工作总量而不能求解。
例(2):有大小两只木船,大船可以载重6.3吨,小船的载重量是大船的2/7,大船8次运完的货物,小船几次才能运完?本题用整数、小数应用题方法解可列式为:6.3×8÷(6.3×2/7)=28(次)。
如用单位“1”法求解,则把大船8次运的货物看作单位“1”,大船每次运单位“1”的1/8,小船每次运单位“1”的1/8×2/7,故小船运完这批货的次数为:1÷(1/8×2/7)=28(次)。
当以大船每次载重量看作单位“1”时,则这批货物总量有8个单位“1”。
小船每次载重量是单位“1”的2/7,求小船运的次数就是8里面有多少个2/7,列式为:8÷2/7=28(次)。
由上可知,用单位“1”的方法求解比整数、小数法简便些。
由上面的论证可知,单位“1”在小学分数、百分数、工程问题的应用题解答过程中,起了既简便运算方法、过程,又便于学生掌握解题思路的关键作用。
因此,教学时,教会学生熟练利用单位“1”,对加强学生解题能力和技巧,提高教学质量,可起事半功倍的作用。
分数、百分数应用题解题公式分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。
分数应用题涉及的知识面广,题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。
小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。
一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22 则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克) 【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为:144÷(1-207-207)=480(人)【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
则第一天卖出后余下的大白菜千克数为:240÷(1-52)=400(千克)同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克) 三、转化思想转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。
它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。
复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。
1、从分数的意义出发,把分数变成份数进行“率”的转化【例5】男生人数是女生人数的54,男生人数是学生总人数的几分之几? [分析与解]男生人数是女生的54,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几?就是求4份是(4+5)份的几分之几?4÷(4+5)= 94 【例6】兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元? [分析与解] 兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的544+,后来弟的钱数占两人总钱数的322+,则两人的总钱数为: 4÷(544+-322+)=90(元) 弟原来的钱数为:90×544+=40(元) 兄原来的钱数为:90-40=50(元)2、直接运用分率计算进行“率”的转化【例7】甲是乙的32,乙是丙的54,甲是丙的的几分之几?[分析与解]甲是乙的32,乙是丙的54,求甲是丙的的几分之几?就是求54的32是多少? 54×32=158 【例8】某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?[分析与解]51是以上半月的产量为“1”,下半月比上半月多生产51,即下半月生产了计划的53×(1+51)=2518。