小数分数百分数和比知识点归纳

合集下载

小学六年级比值的知识点

小学六年级比值的知识点

小学六年级比值的知识点比值是数学中常用的一个概念,它用来表示两个数或者量之间的关系。

在小学六年级的数学学习中,比值是一个重要的知识点。

通过掌握比值的概念和运算方法,学生可以更好地理解和解决实际问题。

本文将介绍小学六年级比值的基本概念和运算方法。

一、比值的概念比值是指两个数或者量之间的关系,它可以用分数、百分数或者小数来表示。

比值通常由两个数或者量的比较而得到,其中一个作为基准,另一个与之相比较。

比值可以表示相等关系、倍数关系或者部分关系。

比如,小明高度是1.5米,小红的高度是1.2米,则小明的身高与小红的身高之比为5:4。

二、比值的表示形式在数学中,比值可以用不同的形式来表示,常见的有分数形式、百分数形式和小数形式。

1. 分数形式分数形式表示比值的比例关系,例如3:5可以表示为3/5。

分数形式的比值可以化简为最简分数,即分子和分母没有公因数。

2. 百分数形式百分数形式表示比值的百分比关系,例如3:5可以表示为60%。

百分数形式的比值是以百分数为单位进行表示的,可以通过将比值乘以100来得到百分数形式。

3. 小数形式小数形式表示比值的小数关系,例如3:5可以表示为0.6。

小数形式的比值可以是有限小数或者无限循环小数。

三、比值的运算方法在小学六年级数学中,常见的比值运算包括比值的加减、比值的乘除和比值的比较。

1. 比值的加减比值的加减运算是指将两个比值进行相加或相减。

相加时,需要先确保两个比值的基准量相同,然后将两个比值的分子相加,分母保持不变。

相减的方法与相加类似。

例如,小明身高与小红身高的比值为5:4,小红身高与小刚身高的比值为3:2。

求小明身高与小刚身高的比值。

解: 首先将小明与小红的比值化为分数形式,得到5/4;将小红与小刚的比值化为分数形式,得到3/2。

然后将5/4和3/2进行相乘,得到15/8。

所以小明身高与小刚身高的比值为15:8。

2. 比值的乘除比值的乘除运算是指将一个比值乘以或除以一个数。

六年级比的知识点梳理

六年级比的知识点梳理

六年级比的知识点梳理在六年级数学中,"比"是一个重要的数学概念,涉及到比较大小、比例和百分比等内容。

本文将对六年级比的知识点进行梳理和总结,以帮助同学们更好地理解和掌握这一部分知识。

1. 比的概念和表示方法比是指两个数或物体之间的大小关系。

常用的表示方法有用冒号(:)表示、用分数表示和用百分数表示。

比的两个数分别称为比的前项和后项。

2. 比的大小比较比的前项和后项相同的情况下,比的大小相等。

当比的前项不相同时,比的大小由后项决定,即后项大则比大,后项小则比小。

3. 比的化简和扩大为了方便比的比较和计算,我们常常需要对比进行化简或扩大。

化简比是指将比的前项和后项同时除以一个相同的数,使得比的两个数都变为较小的整数。

扩大比是指将比的前项和后项同时乘以一个相同的数,使得比的两个数都变为较大的整数。

4. 比的应用比在日常生活和实际问题中有着广泛的应用,例如比较物体的大小、分析数据的变化趋势等。

通过比的概念和应用,我们可以更好地理解和解决各种实际问题。

5. 比例的概念和表示方法比例是指两个具有相同单位的比相等的关系。

常用的表示方法有用冒号(:)表示和用分数表示。

比例中的两个数称为比例的项,比例的前项和后项称为比例的被比数和比数。

6. 比例的性质比例有以下几个基本性质:- 等比例的两个比具有相同的比值。

- 对于等比例的三个比,如果已知其中两个比相等,则可推导出第三个比与前两个比相等。

- 对于等比例的三个比,如果已知其中一个比与其前项的比相等,则可推导出第三个比与其后项的比相等。

7. 比例的计算求解比例的计算方法主要包括以下几种:- 已知两个比例的项,求解另一个比例的项。

可以通过求解两个比例的比值,然后利用已知比例的一个项求解另一个项。

- 已知一个比例的项和比例的值,求解另一个比例的项。

可以通过已知比例的一个项和比例的值,求解另一个项的值。

- 已知一个比例的两个项和另一个比例的项,求解另一个比例的项。

小学六年级数学全册知识点归纳

小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。

六年级数学下册总复习:小数、分数、百分数和比.

六年级数学下册总复习:小数、分数、百分数和比.
约分:把一个分数化成和它相等, 但分子和分母都比较小的分数. 约分的方法: 1.用分子分母的公因数(1除外)逐次去除分子和分 母,直到得到最简分数为止. 2.用分子和分母的最大公因数去除分子和分母. 8 = 例如: 12 4 6 2 = 3
注意:一般约到最简分数为止。
5.分数的基本性质
分数的分子和分母同时乘以或者除以相同的数 (零除外),分数的大小不变. 2 5 2 5 X 6 X 6 12 (30)
=
=
百分数的意义
表示一个数是另一个数的百分之几的数, 叫做百分数。
(百分数是一种特殊的分数。) (百分号用“%”表示。) (百分数表示两个数的关系,不能带单位名称。) 成%= 九折 75%= 七五折
45%= 四成五
1、小数的意义
把整数“1”平均分成10份,100份……这样 的一份或几份分别是十分之几,百分之几……可 以用小数表示.
整数和小数相邻的计数单位之间 的进率都是多少?
2.小数的读法和写法
读小数时,小数的整数部分按整数的读 法来读,小数点读作“点”,小数部分按照顺 序读出每一个数位上的数字. 如 45.469 读作: 四十五点四六九
写小数时,整数部分按照整数的写法来 写,小数点写在个位右下角,小数部分顺次写 出每一个数位上的数字.
小 数小数部分 点

千 百 十 亿 千 百 十 万千 百 十 个 十 百 千 万 . 分 分 分 分… … 亿 亿亿 万万万 位 位 位 位 位 位 位 位 位位 位 位 位 位 位 位 位
计 万 十万千 百十 个 亿千百 数 … 千 百十 亿 万万万 亿 亿 ( 单 一 位 )
十百千万 分分分分 之之之之 … 一一一一
3.小数的性质
小数的末尾添上0或者去掉0,小数的大小不变. 运用小数的性质,可以在小数末尾添上0. 3.5=3.50 也可以把小数化简. 3.500=3.5

分数与小数知识点总结

分数与小数知识点总结

分数与小数知识点总结一、分数的概念和表示方法分数是指一个整体被分成若干等份,每份的大小相等,每一份称为一个单位。

分数由分子和分母组成,分子表示被分成的份数,分母表示整体被分成的等份数。

例如,分数1/2表示把一个整体分成两等份,取其中的一份。

二、分数的基本运算1. 分数的加法:当分母相同时,分数的加法就变为了分子的加法,分数的分子相加,分母保持不变。

2. 分数的减法:当分母相同时,分数的减法就变为了分子的减法,分数的分子相减,分母保持不变。

3. 分数的乘法:分数的乘法是将分子相乘,分母相乘。

4. 分数的除法:分数的除法是将一个分数乘以另一个分数的倒数(即分子与分母交换)。

三、分数与小数的转换1. 分数转小数:将分数的分子除以分母,得到的结果即为小数。

例如,将分数3/4转化为小数,计算3 ÷ 4 = 0.75,所以3/4等于0.75。

2. 小数转分数:小数的宾寺表示法中有多少位小数,就乘以10的多少次方。

例如,将小数0.25转化为分数,将0.25写作25/100,然后化简为1/4,所以0.25等于1/4。

四、常见的分数和小数知识点1. 百分数:百分数是指分母为100的分数,可以表示为小数的百分之一形式。

例如,将百分数30%转化为小数,将百分号去掉,除以100,得到0.3。

2. 不循环小数:不循环小数是指小数将不会在某一位或若干位上循环出现。

例如,小数0.25是一个不循环小数。

3. 循环小数:循环小数是指小数的某一位或若干位无限循环出现。

例如,小数0.333...是一个循环小数。

五、分数与小数的应用1. 日常生活中,我们常用小数表示某种比例、比率、概率等。

例如,商品打折8折,相当于价格的80%。

2. 分数和小数在几何图形中也有广泛的应用。

例如,在一个长方形的面积中,可以用到分数和小数的知识。

六、总结本文总结了分数与小数的基本概念、表示方法和基本运算,介绍了分数与小数之间的转换方法,并举例说明了分数和小数在日常生活和几何图形中的应用。

六年级数学总复习《百分数和分数及小数的互化》知识点

六年级数学总复习《百分数和分数及小数的互化》知识点

一、百分数的定义和表示方法百分数是指以百为基准来表示一个数的数,百分数用符号"%"表示。

其中,百分数的百分号(%)表示百分之一,是表示百分率的基本单位。

例如,100%表示一个数等于整数100;50%表示一个数等于整数50;1%表示一个数等于整数1二、百分数与分数的互化1.将百分数转化为分数的方法:百分数转化为分数的方法是将百分数的百分号去掉,并将百分数的值除以100,即可得到分数。

例如,75%转化为分数即为75/100=3/42.将分数转化为百分数的方法:分数转化为百分数的方法是用分子除以分母,然后将所得结果乘以100,并加上百分号即可得到百分数。

例如,3/4转化为百分数即为3÷4×100%,即75%。

三、百分数与小数的互化1.将百分数转化为小数的方法:百分数转化为小数的方法是将百分数的百分号去掉,并除以100,即可得到小数。

例如,75%转化为小数即为75÷100=0.752.将小数转化为百分数的方法:小数转化为百分数的方法是将小数乘以100,并加上百分号,即可得到百分数。

例如,0.75转化为百分数即为0.75×100%=75%。

四、百分数、分数和小数之间的关系百分数、分数和小数是可以相互转化的,它们代表的都是同一个数。

例如,3/4、0.75和75%都代表相同的数。

在实际生活中,我们经常会用到百分数来表示一些比例关系或比较大小的情况,而分数和小数则更常用于数值计算和运算当中。

五、相关概念和技巧1.百分数可以简化为最简分数形式,即将分子和分母都除以相同的数,使得分数不能再约简为其他的形式。

例如,75%可以简化为3/42.分数和小数都可以通过除法运算来相互转化,除数是100的倍数。

例如,将75%转化为小数,可以进行除法运算:75÷100=0.75;将0.75转化为百分数,同样进行除法运算:0.75×100%=75%。

六、例题解析例题1:将125%转化为分数。

小数、分数、百分数和比

小数、分数、百分数和比
5
(√ )
× ( )
• 2、用尽可能多的方式解释“43 ”的含义。
用平均分表示 用画图表示
用除法表示
还可以用比
表示 3 :4
7/13/2019
• 3、结合具体的例子说一说。
(1)小数、分数、百分数之间的关系。
小数:实际上是十进制分数。
分数:既可以带单位表示一个具体的量也 可以表示两个量的倍数关系。
先将百分数改成分母是100的分数形式, 再化简。
四、分数和百分数的区别
(1)分数既可以表示一个数,又可以表 示两个数的比;
(2)百分数只表示一个数占另一个数的 百分之几,不能用来表示具体数。
所以,分数可以有单位,而百分数没有单 位。
五、比
1、比的意义
两个数相除又叫做这两个数的比。
a÷b=a : b(b≠0)
米表示:
把5米平均分成9份,每份占( 每份是( 5 )米.
1 9
),
9
7/13/2019
百分数:表示一个量是另一量的百分之几, 不能带单位表示具体的量。
三者可互化,如:0.25=
1 4
=25%
7/13/2019
(2)分数、比、除法之间的关系
分数的分子相当于比的前项,相当于除法中的被除数。 分母相当于比的后项,相当于除法中的除数。
如: 3 = 3:5 = 3÷5 5
(3)商不变的规律与分数基本性质的关系
是(
),它的小数单位是(
)。
6、一商品打“八五”折销售,“八五”折表示现价是原价的( )%。
7、分数单位是17 的最大真分数是( ),它至少再添上(
)个
这样的分数单位就成了假分数。
8、分母是 9 的所有最简真分数的和是(

六年级比和百分数知识点

六年级比和百分数知识点

六年级比和百分数知识点比的概念和运算规则:比是用来比较两个或多个数值大小关系的数学概念。

在六年级数学中,比的概念和运算规则是一个重要的知识点。

比数由冒号“:”连接,比的两个数称为比的项。

比的项的顺序不同,比的结果也会不同。

比的大小关系的判断方法:1. 如果比的项相等,那么比也相等。

例如:2:3 = 2:32. 如果比的项都相等,那么它们的比相等。

例如:2:3 = 4:63. 如果比的项比例相等,那么它们的比相等。

例如:2:3 = 4:6 = 6:9比的应用:比的应用广泛,例如在实际生活中计算和表示比例关系、图形的放大和缩小比例等等。

比的应用需要我们用到数学知识和技巧,同时要能够理解和分析具体问题。

百分数的概念和表示法:百分数是表示数值相对于100的百分比形式。

在六年级数学中,百分数的概念和表示法是重要的知识点。

百分数可以用小数或分数形式表示。

百分数和小数的相互转化:1. 百分数转化为小数:将百分数除以100,并去掉百分号,得到的结果就是相应的小数。

例如:60% = 60/100 = 0.62. 小数转化为百分数:将小数转化为百分数,需要将小数乘以100,并加上百分号。

例如:0.6 = 0.6 × 100% = 60%百分数和分数的相互转化:1. 百分数转化为分数:将百分数除以100,再将百分号去掉,得到的结果即为相应的分数。

例如:40% = 40/100 = 2/52. 分数转化为百分数:将分数转化为百分数,需要将分数化为小数形式,然后再按照小数转化为百分数的方法进行换算。

例如:2/5 = 2÷5 = 0.4 = 0.4 × 100% = 40%百分数的运算:在百分数的运算中,我们会涉及到百分数的加减乘除。

具体的运算规则如下:1. 百分数的加减:将相同的单位转化为百分数,然后按照整数的加减法进行计算。

例如:40% + 30% = 70%2. 百分数的乘法:将百分数转化为小数,然后按照小数的乘法运算规则进行计算,最后再换算成百分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小数分数百分数和比知识
点归纳
Newly compiled on November 23, 2020
知识要点归总——总复习
数的认识(二)小数、分数、百分数和比
知识点一小数
1.读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。

2.写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”,小数点点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。

3.小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……
4.求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。

5.小数化成分数的方法:先把小数改写成分母是10,100,1000…的分数,再约分,就化成了分数。

6.小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。

7.小数的分类:
(1)按整数部分分类:分为“纯小数”和“带小数”两种。

“纯小数”是指整数部分为“0”的小数。

例如:,,等。

“带小数”是指整数部分不为“0”的小数。

例如:,,等。

一般说来,纯小数都小于1,而带小数都
大于1或等于1。

(2)按小数部分分类:分为“有限小数”和“无限小数”两种。

小数部分的位数有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。

(3)无限小数的分类:在无限小数中又分为无限循环不数和无限不循环小数。

无限循环小数是指一个无限小数,如果从小数部分的某一位起,都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫做无限循环小数,简称“循环小数”。

无限不循环小数是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫做无限不循环小数。

在小学数学中,圆周率(π)…便是一个无限不循环小数(无理数)。

(4)循环节:依次不断重复出现的一个或几个数字,叫做这个循环小数的循环节。

(5)循环点:记循环小数时,在第一个循环节的第一个数字和最末一个数字上分别记上一个圆点(循环节只有一个数字的只记一个圆点)“˙”,表示这个循环小数的这几个(或一个)数字重复出现。

这样的圆点叫做循环点。

(6)无限循环小数的分类:循环节从小数部分第一位开始的,叫做纯循环小数。

循环节不是从小数部分第一位开始的,叫做混循环小数。

8.小数的基本性质:
小数的末尾添上0或者去掉0,小数的大小不变。

知识点二分数
1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数是这个分数的分数单位。

2.分数的分类:真分数(分子比分母小的分数)、假分数(分子比分母大或者分子等于分母的分数)、带分数(一个整数和一个真分数构成一个带分数)。

3.真分数和假分数的读法:先读分母,再读“分之”,最后读分子。

例如:2
1读作:二分之一。

4.带分数的读法:先读整数部分,然后读“又”,之后读分母,再读“分之”,最后读分子。

例如:314读作:四又三分之一。

5.真分数和假分数的写法:例如:六分之五写作:
65。

6.带分数的写法:例如:三又四分之一写作:413。

7.分数大小的比较:真分数、假分数或整数部分相同的带分数,分母相同的分数,分子大的分数比较大;分子相同的分数,分母小的分数比较大;分子和分母都不相同的分数,先化成相同分母的分数,再比较大小或者是化成分子相同的分数,再比较大小;整数部分不同的带分数,整数部分大的分数大。

8.假分数与带分数或整数之间的改写:
(1)把假分数化成整数,要用分子除以分母,能整除的,所得的商就是整数。

(2)把假分数化成带分数,要用分子除以分母,不能整除的,商就是带分数的整数部分,余数就是分数部分的分子,分母不变。

9.分数化成小数的方法:用分子除以分母,就能化成小数。

10.分数化成百分数的方法:先将分数写成小数或整数的形式,然后再写成百分数。

11.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

知识点三百分数
1.百分数的定义:像5%,18%,120%,…这样的数叫百分数,也叫百分比或百分率。

表示一个数是另一个数的百分之几。

2.百分数的读法:“%”叫百分号;18%读作:百分之十八。

3.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

例如:百分之九十六写作:96%。

4.百分数化成小数的方法:先将百分数后面的%去掉,再将小数点向左移动两位,就化成了小数。

5.百分数化成分数的方法:先将百分数改写成分母是100的分数形式,能约分的要约分。

知识点四分数和百分数的区别
分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体数。

所以分数可以有单位,百分数不能有单位。

知识点五比
1.比的意义:两个数相除又叫做两个数的比。

2.比的意义的应用:根据比的意义可以求比值,用前项除以后项,得到的结果是一个数(分数或小数,有时是整数)。

3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

4.比的基本性质的应用:应用比的基本性质,可以化简比,把比的前项和后项,同时乘(或除以)相同的数(0除外),使结果是两个互质的整数比(最简整数比),这个简化后的比可以用比号写成整数比的形式,也可以用分数写成比的分数形式(但不是分数)。

相关文档
最新文档