《百分数》知识点归纳
百分数知识点整理

百分数知识点整理一、百分数的意义:表示一个数是另一个数的百分之几。
百分数也叫做百分率、百分比。
(千分数:表示一个数是一个数的千分之几)二、百分数和分数的区别:1.意义不同:百分数只表示两个数的倍比关系或部分与整体的数量关系,不能表示具体的数量,所以不能带单位 分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
2.百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3.百分数是特殊的分数,百分数的分母都是100,百分数的计数单位都是1/100.三、百分数与小数的互化:1.小数化成百分数:方法一:方法二:100做分母三位用例如:方法三:100/2.百分数化成方法一:方法二: 1.百分数化成2.分数化成方法:把分数化成小数(分子除以分母)(除不尽时,通常用四舍五入法保留三位小数),再化成百分数。
例如:53=3÷5=0.6=60%特殊情况:分母是1、2、4、5、10、20、25、50、100的可以用分数的基本性质直接化成百分数。
例如:43=25×425×3=10075=75% 五、百分数去掉%后,所得的数扩大到原来百分数的100倍;一个数数添上%后,所得的数缩小到原来数的1001六、常见的百分率:⑨含盐率=含药率=七、例2);或者八、例3百分之几方法:九、例4百分之几,求另一量。
方法:方法二:方法二:十、例5①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50?乙比甲少20%,少10,甲是多少?10÷20%=50?乙比甲少20%,少10,乙是多少?10÷20%-10=40?乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50 ?甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40 ?乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50?甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40。
百分数知识点

百分数知识点整理一、百分数的意义:表示一个数是另一个数的百分之几。
百分数也叫做百分率、百分比。
(千分数:表示一个数是另一个数的千分之几)二、百分数和分数的区别:1.意义不同:百分数只表示两个数的倍比关系或部分与整体的数量关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
2.百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3.百分数是特殊的分数,百分数的分母都是100,百分数的计数单位都是1/100.三、百分数与小数的互化:1.小数化成百分数:方法一:把小数点向右移动两位,同时在后面添上%。
方法二:把小数化成分母是10、100、1000……的分数(看小数有几位小数,一位用10作分母,两位用100做分母,三位用1000做分母),再把这个分数化成分母是100的分数,再转换成百分数。
例如:0.375=375/1000=37.5/100=37.5%; 3.6=36/10=360/100=360%.方法三:把小数的分母看做1,利用分数的基本性质,分子分母同时扩大100倍就可以化成百分数。
也可以用这个小数直接×100/100化成百分数。
例如:0.12=112.0=100110012.0x x =10012=12% 或者0.12×100100=10010012.0x =10012=12% 2.百分数化成小数:方法一:把小数点向左移动两位,同时去掉%方法二:变成除法直接除出小数。
例如:1.03/100=1.03÷100=0.0103; 50/100=50÷100=0.5四、百分数的和分数的互化:1.百分数化成分数:先把百分数化成分数形式,再约分,结果要约成最简分数。
2.分数化成百分数:方法:把分数化成小数(分子除以分母)(除不尽时,通常用四舍五入法保留三位小数),再化成百分数。
百分数知识点归纳

百分数知识点归纳百分数是我们日常生活和数学学习中经常会遇到的一个重要概念。
它在表示比例、比较大小、数据分析等方面都有着广泛的应用。
接下来,让我们一起系统地归纳一下百分数的相关知识点。
一、百分数的定义百分数表示一个数是另一个数的百分之几,也叫百分率或百分比。
百分数通常不写成分数的形式,而是采用符号“%”(叫做百分号)来表示。
例如,45%表示 45 是 100 的 45%。
二、百分数的写法写百分数时,通常先写分子,再在后面加上百分号“%”。
比如,要写百分之七十五,先写 75,再在后面加上“%”,即 75%。
三、百分数与分数的联系和区别联系:百分数可以看作是分母为100 的分数。
例如,30%可以写成30/100。
区别:1、百分数的分母固定是 100,通常不写成分数形式;分数的分母可以是任意不为 0 的整数。
2、百分数只表示两个数的比例关系,不能带单位;分数既可以表示比例关系,也可以表示具体的数量,可以带单位。
3、百分数的分子可以是整数、小数;分数的分子一般是整数。
四、百分数与小数的互化1、百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
例如,56% = 056 , 200% = 22、小数化成百分数把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
例如,035 = 35% , 18 = 180%五、百分数与分数的互化1、百分数化成分数把百分数写成分母是 100 的分数,再约分化简。
例如,25% = 25/100 = 1/42、分数化成百分数通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
例如,3/4 = 075 = 75% ,1/6 ≈ 0167 = 167%六、常见的百分率1、及格率及格人数占总人数的百分比。
例如,一次考试中,总人数为 50 人,及格人数为 40 人,及格率=40÷50×100% = 80%2、出勤率出勤人数占应出勤人数的百分比。
《百分数》知识点归纳

《百分数》知识点归纳1、百分数的意义:表示一个数是另一个数的百分之几。
(百分率或百分比)2、百分数和分数的区别:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的倍比关系,表示具体数时可以带单位。
②百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数与小数的互化:①小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
②百分数化成小数:去掉百分号,把小数点向左移动两位。
4、百分数的和分数的互化:①百分数化成分数:先把百分数改写分母是10、100、1000……的分数,能约分要约成最简分。
②分数化成百分数:先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
5、折扣:几折就表示十分之几,也就是百分之几十。
如:九折=90﹪,六折五=65﹪现价=原价×折扣原价=现价÷折扣折扣=现价÷原价6、成数:成数表示一个数是另一个数的十分之几,通称几成。
一成是十分之一,也就是10%。
三成五就是十分之三点五,也就是35% ,十成就是十分之十,也就是100%7、应纳税额:就是缴纳的税款。
应纳税额与各种收入的比率叫做税率。
应纳税额= 总收入×税率纳税后收入=总收入-总收入×税率如果有免税部分:应纳税额= (总收入-免税部分的数量)×税率8、本金:存入银行的钱叫做本金。
利息:取款时银行多支付的钱叫做利息。
利率:利息与本金的比值叫做利率。
利息=本金×利率×存期本息=本金+利息=本金+本金×利率×存期如要缴纳利息税(国债和教育储藏的利息不纳税),则:先求出利息然后再求。
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)共取回多少钱:本金+税后利息=本金+(利息-利息×利息税率)=本金+利息×(1-利息税率)9、用百分数解决问题①求一个数是另一个数的百分之几?一个数÷另一个数(小数再化成百分数,如除不尽,约等于三位小数在等于百分数)②已知单位“1”的量和它的百分之几,求单位“1”的百分之几是多少?(分率前的字是“的”)单位“1”的量×分率=分率对应量10的10%是多少?③已知单位“1”的量和比它多(少)百分之几,求比单位“1”的量多(少)百分之几是多少?(分率前的字是多或少)单位“1”的量×(1±分率)=分率对应量求比10多(少)10%的数是多少?④已知单位“1”的百分之几是多少,求单位“1”的量是多少,用除法。
百分数知识点小结

百分数单元复习归纳一、几种基本算法1、求一个数是另一个数的百分之几。
一个数÷另一个数×100%2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100%可概括为:(大数-小数)÷小数×100%3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答。
二、百分数的应用:分数应用题:关键是找标准量,即单位“1”。
若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算。
求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙×(1+几分之几)乙×(1-几分之几)已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1+几分之几)甲÷(1-几分之几)百分数应用题:浓度问题类型归类糖与糖水重量的比值叫做糖水的浓度;盐与盐水的重量的比值叫做盐水的浓度。
我们习惯上把糖、盐、叫做溶质(被溶解的物质),把溶解这些物质的液体,如水、汽油等叫做溶剂。
把溶质和溶剂混合成的液体,如糖水、盐水等叫做溶液。
一些与浓度的有关的应用题,叫做浓度问题。
浓度问题有下面关系式:①浓度=溶质质量÷溶液质量②溶质质量=溶液质量×浓度③溶液质量=溶质质量÷浓度④溶液质量=溶质质量+溶剂质量⑤溶剂质量=溶液重量×(1–浓度)浓度问题类型题:1、“稀释”问题:特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。
百分数知识点总结

百分数知识点总结百分数是我们生活中经常使用的一种表示方式,它能够准确地描述一定范围内的比例关系。
在学习和工作中,了解百分数的含义和应用十分重要。
本文将对百分数的定义、计算、应用以及常见的数学技巧进行总结和归纳。
一、百分数的定义百分数是以百为基数的比例,用百分号“%”表示。
百分数可以表示一个比例关系,即一个数与100的乘积。
例如,80%表示的是数80与100的乘积,即80% = 80/100 = 0.8。
二、百分数的计算1. 百分数转小数:将百分数除以100,得到的结果就是对应的小数。
例如,60% = 60/100 = 0.6。
2. 百分数转分数:将百分数的数值除以100并化为最简分数形式。
例如,25% = 25/100 = 1/4。
3. 小数转百分数:将小数乘以100,并在结果末尾加上百分号。
例如,0.75 = 0.75 × 100% = 75%。
4. 分数转百分数:将分数化为小数,然后再转化为百分数。
例如,3/5 = 0.6 = 0.6 × 100% = 60%。
三、百分数的应用1. 百分数在商业中的应用:百分数在销售、营销和金融领域中有着广泛的应用。
例如,折扣率可以用百分数表示,帮助消费者了解商品打折程度。
2. 百分数在统计中的应用:百分数可以用来描述一个群体中某种特征的比例。
例如,对某个调查对象的回答进行统计时,可以使用百分数来表示各个选项的比例。
3. 百分数在日常生活中的应用:百分数可以用来描述各种比例关系,例如考试成绩、人口增长率、物品的折旧率等等。
四、百分数的数学技巧1. 计算百分数的增长或减少量:如果需要求某个数的增长或减少量,可以先计算出增长或减少的百分比,然后再将该百分比应用到原始数值上,得到最终结果。
2. 计算百分数的乘除法:计算百分数的乘法可以简单地将原始数值乘以百分数所对应的小数;计算百分数的除法可以将原始数值除以100,再乘以百分数所对应的小数。
3. 百分数之间的比较:当需要比较两个百分数的大小时,可以将它们分别转化为小数,然后进行比较。
关于百分数的知识点

关于百分数的知识点1:概念与定义百分数是分母为100的特殊分数,其分子可不为整数。
百分数表示一个数是另一个数的百分之几,表示一个比值。
百分比是一种表达比例、比率或分数数值的方法,如82%代表百分之八十二,或82/100、0.82。
百分数也叫做百分率或百分比,通常不写成分数的形式,而采用百分号(%)来表示,如41%,1%等。
由于百分数的分母都是100,也就是都以1%作单位,因此便于比较。
百分数只表示两个数的关系,所以百分号后不可以加单位。
在小学课本中,百分数的定义是:表示一个数是另一个数的百分之几的数,叫做百分数。
2:百分数的互化百分数与小数的互化(1)百分数化小数:去掉百分号,小数点左移两位。
如:75%可化为0.75(2)小数化百分数:加上百分号,小数点右移两位。
如:0.62可化为62%百分数与分数的互化(1)百分数化分数:把百分数写成分母是100的分数,再约分化简。
注意:当百分数的分子是小数时,要先把分子化成整数。
(2)分数化百分数:①用分子除以分母,化成小数后,再化成百分数。
②把分子分母同时乘一个数,使分母是100,再把分母变成百分号。
3:日常生活中的百分数(1)电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等。
如:今晚的降水概率是20%。
(2)发布调查研究结果时对实验对象宏观的描述。
如:某实验得出结论,经常看短信的人智商会下降10%。
(3)计算利息,税款,利润时使用。
如:央行发布公告显示,自10月24日起,将金融机构人民币贷款和存款利率进一步下调0.25个百分点,其中,一年期贷款基准利率下调0.25个百分点至4.35%,一年期存款利率下调0.25个百分点至1.5%。
(4)表示某物某性质的能力大小或具有某性质的概率如:出油率=油的质量/物体总质量×100%,发芽率=发芽数/播种总数×100%。
关于百分数的知识点总结

关于百分数的知识点总结一、百分数的定义百分数表示一个数是另一个数的百分之几,也叫百分率或百分比。
百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。
二、百分数的写法百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。
例如:百分之八十写作 80%。
三、百分数与分数的联系与区别1、联系都可以表示两个量的倍比关系。
百分数可以看作分母是 100 的分数。
2、区别意义不同:分数既可以表示一个具体的数量,也可以表示两个数量的倍比关系;百分数只表示两个数量的倍比关系,不能表示具体的数量。
写法不同:分数的写法有多种,如真分数、假分数、带分数等;百分数通常写成%的形式。
应用范围不同:分数在计算、测量中经常用到;百分数在统计、分析比较中经常用到。
四、百分数与小数的互化1、百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
例如:25% = 025 120% = 122、小数化成百分数把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
例如:023 = 23% 15 = 150%五、百分数与分数的互化1、百分数化成分数把百分数写成分母是 100 的分数,再约分化简。
例如:60% = 60/100 = 3/52、分数化成百分数通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
也可以先把分数化成分母是 100 的分数,再写成百分数形式。
六、常见的百分数应用1、求一个数是另一个数的百分之几用一个数除以另一个数,再乘以 100%。
例如:甲数是 20,乙数是 25,甲数是乙数的百分之几?20÷25×100% = 80%2、求一个数的百分之几是多少用这个数乘以百分数。
例如:50 的 20%是多少? 50×20% = 103、已知一个数的百分之几是多少,求这个数用已知量除以对应的百分数。
例如:一个数的 30%是 15,这个数是多少? 15÷30% = 50七、百分数在生活中的应用1、折扣几折就是十分之几,也就是百分之几十。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《百分数》知识点归纳
1、百分数的意义:表示一个数是另一个数的百分之几。
(百分率或百分比)
2、百分数和分数的区别:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的倍比关系,表示具体数时可以带单位。
②百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数与小数的互化:①小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
②百分数化成小数:去掉百分号,把小数点向左移动两位。
4、百分数的和分数的互化:①百分数化成分数:先把百分数改写分母是10、100、1000……的分数,能约分要约成最简分。
②分数化成百分数:先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
5、折扣:几折就表示十分之几,也就是百分之几十。
如:九折=90﹪,
六折五=65﹪现价=原价×折扣原价=现价÷折扣折扣=现价÷原价
6、成数:成数表示一个数是另一个数的十分之几,通称几成。
一成是十分之一,也就是10%。
三成五就是十分之三点五,也就是35% ,十成就是十分之十,也就是100%
7、应纳税额:就是缴纳的税款。
应纳税额与各种收入的比率叫做税率。
应纳税额= 总收入×税率
纳税后收入=总收入-总收入×税率
如果有免税部分:应纳税额= (总收入-免税部分的数量)×税率
8、本金:存入银行的钱叫做本金。
利息:取款时银行多支付的钱叫做利息。
利率:利息与本金的比值叫做利率。
利息=本金×利率×存期
本息=本金+利息=本金+本金×利率×存期
如要缴纳利息税(国债和教育储藏的利息不纳税),则:先求出利息然后再求。
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
共取回多少钱:本金+税后利息=本金+(利息-利息×利息税率)=本金+利息×(1-利息税率)
9、用百分数解决问题
①求一个数是另一个数的百分之几?
一个数÷另一个数(小数再化成百分数,如除不尽,约等于三位小数在等于百分数)②已知单位“1”的量和它的百分之几,求单位“1”的百分之几是多少?(分率前的字是“的”)
单位“1”的量×分率=分率对应量10的10%是多少?
③已知单位“1”的量和比它多(少)百分之几,求比单位“1”的量多(少)百分之几是多少?(分率前的字是多或少)
单位“1”的量×(1±分率)=分率对应量求比10多(少)10%的数是多少?
④已知单位“1”的百分之几是多少,求单位“1”的量是多少,用除法。
算数方法:分率对应量÷对应分率= 单位“1”的量
方程:根据数量关系式设未知量为X,用方程解答。
分率×X=分率对应量(1±分率)×X=分率对应量
⑤求一个数比另一个数多(少)百分之几?
两个数的相差量÷单位“1”的量(大数—小数)÷单位“1”的量
(小数再化成百分数,如除不尽,约等于三位小数在等于百分数)
⑥求百分率:。