百分数知识点整理精选.
(完整版)百分数的应用知识点

百分数的应用知识点(一)百分数的基本概念1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
4.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的通常保留三位小数,注意保留三位小学必须除到第四位),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
(二)百分数应用题求分率求分率分为两种:一、求甲是(占、相当于)乙的百分之几?二、求甲比乙多(少)百分之几?公式:1、求甲是(占、相当于)乙的百分之几?把是(占、相当于)变成“÷”,用甲÷乙如男生25 人,女生20 人,男生占女生的百分之几?男生÷女生25÷20=125%2、求甲比乙多(少)百分之几?用相差数÷比字后面的数如男生25 人,女生20 人,男生比女生多百分之几?男女生相差人数÷女生人数(25-20)÷20=25%比前除以比后再与 1 相减当问题是多百分之几时,用商减1,当问题是少百分之几时,用 1 减商如男生25 人,女生20 人,男生比女生多百分之几?男生÷女生-1 25÷20-1=25%求数量先判断谁是单位 1 的量,如果单位 1 已知,用乘法计算。
单位1 未知,用除法或用方程计算(方程是乘法)。
找单位1 的方法“的”前“比、是、占、相当于”后,“的”字前面的量是单位1,“比”字后面的量是单位1。
完整版)百分数知识点归纳

完整版)百分数知识点归纳第六单元:百分数一、百分数的意义和写法百分数表示一个数是另一个数的百分之几,也称为百分率或百分比。
它是两个数的比值,因此不能带单位。
百分数的分子可以是整数或小数。
通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化1.百分数与小数的互化:将小数化成百分数,只需要把小数点向右移动两位,同时在后面添上百分号;将百分数化成小数,只需要把小数点向左移动两位,同时去掉百分号。
2.百分数与分数的互化:将百分数化成分数,先将百分数改写成分母是100的分数,能约分要约成最简分数;将分数化成百分数,可以先将分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
三、用百分数解决问题1.一般应用题:常见的百分率的计算方法是:出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
求一个数是另一个数的百分之几,只需要用一个数除以另一个数,结果写为百分数形式。
2.已知单位“1”的量,求单位“1”的百分之几是多少的问题,可以用乘法解决。
如果百分率前是“的”,单位“1”的量×百分率=百分率对应量;如果百分率前是“多或少”,单位“1”的量×(1±百分率)=百分率对应量。
3.未知单位“1”的量,已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解题方法解题方法有两种:方程和算术。
方程是根据数量关系式设未知量为X,用方程解答。
算术是用除法计算百分率对应量除以对应百分率得到单位“1”的量。
比多比少的方法与分数的方法相同,只是结果要写为百分数形式。
看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:比少:具体量除以(1-百分率)得到单位“1”的量。
例如:大米有50千克,比面粉少50%,面粉有多少千克?列式是:50÷(1-50%)=100.比多:具体量除以(1+百分率)得到单位“1”的量。
《百分数》知识点归纳

《百分数》知识点归纳1、百分数的意义:表示一个数是另一个数的百分之几。
(百分率或百分比)2、百分数和分数的区别:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的倍比关系,表示具体数时可以带单位。
②百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数与小数的互化:①小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
②百分数化成小数:去掉百分号,把小数点向左移动两位。
4、百分数的和分数的互化:①百分数化成分数:先把百分数改写分母是10、100、1000……的分数,能约分要约成最简分。
②分数化成百分数:先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
5、折扣:几折就表示十分之几,也就是百分之几十。
如:九折=90﹪,六折五=65﹪现价=原价×折扣原价=现价÷折扣折扣=现价÷原价6、成数:成数表示一个数是另一个数的十分之几,通称几成。
一成是十分之一,也就是10%。
三成五就是十分之三点五,也就是35% ,十成就是十分之十,也就是100%7、应纳税额:就是缴纳的税款。
应纳税额与各种收入的比率叫做税率。
应纳税额= 总收入×税率纳税后收入=总收入-总收入×税率如果有免税部分:应纳税额= (总收入-免税部分的数量)×税率8、本金:存入银行的钱叫做本金。
利息:取款时银行多支付的钱叫做利息。
利率:利息与本金的比值叫做利率。
利息=本金×利率×存期本息=本金+利息=本金+本金×利率×存期如要缴纳利息税(国债和教育储藏的利息不纳税),则:先求出利息然后再求。
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)共取回多少钱:本金+税后利息=本金+(利息-利息×利息税率)=本金+利息×(1-利息税率)9、用百分数解决问题①求一个数是另一个数的百分之几?一个数÷另一个数(小数再化成百分数,如除不尽,约等于三位小数在等于百分数)②已知单位“1”的量和它的百分之几,求单位“1”的百分之几是多少?(分率前的字是“的”)单位“1”的量×分率=分率对应量10的10%是多少?③已知单位“1”的量和比它多(少)百分之几,求比单位“1”的量多(少)百分之几是多少?(分率前的字是多或少)单位“1”的量×(1±分率)=分率对应量求比10多(少)10%的数是多少?④已知单位“1”的百分之几是多少,求单位“1”的量是多少,用除法。
百分数知识点小结

百分数单元复习归纳一、几种基本算法1、求一个数是另一个数的百分之几。
一个数÷另一个数×100%2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100%可概括为:(大数-小数)÷小数×100%3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答。
二、百分数的应用:分数应用题:关键是找标准量,即单位“1”。
若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算。
求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙×(1+几分之几)乙×(1-几分之几)已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1+几分之几)甲÷(1-几分之几)百分数应用题:浓度问题类型归类糖与糖水重量的比值叫做糖水的浓度;盐与盐水的重量的比值叫做盐水的浓度。
我们习惯上把糖、盐、叫做溶质(被溶解的物质),把溶解这些物质的液体,如水、汽油等叫做溶剂。
把溶质和溶剂混合成的液体,如糖水、盐水等叫做溶液。
一些与浓度的有关的应用题,叫做浓度问题。
浓度问题有下面关系式:①浓度=溶质质量÷溶液质量②溶质质量=溶液质量×浓度③溶液质量=溶质质量÷浓度④溶液质量=溶质质量+溶剂质量⑤溶剂质量=溶液重量×(1–浓度)浓度问题类型题:1、“稀释”问题:特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。
百分数的知识点的总结

百分数的知识点的总结一、百分数的定义百分数是指以百分号"%" 表示的分数,它是一种常见的数学概念,可以通俗的解释为:“百分数就是将一个数分成100份,表示为百分数时就用百分号将这个数表示出来”,例如,数值98 可以写成98%,表示这个数是另外一个数的98%;同理,百分数也可以用分数或小数的形式来表示,当然,它们之间可以相互转化。
二、百分数的互化1.百分数转小数将百分数转换为小数:将百分号“%”去掉,将百分数除以100即可。
例如:48% = 0.48 (48% ÷ 100 = 0.48)。
2.小数转百分数将小数转换为百分数:将小数乘以100,并在后面加上百分号“%”。
例如:0.75 = 75% (0.75 × 100 = 75% )。
3.分数转百分数将分数转换为百分数:将分子乘以100, 并在后面加上百分号“%”。
例如:4/5 = 80% (4/5 × 100 = 80%)。
4.百分数转分数将百分数转换为分数:将百分数去掉百分号“%”,直接化为分数即可。
分子为百分数,分母为100。
例如:50% = 1/2 (50% ÷ 100 = 1/2)。
百分数的互化可以在日常生活中经常使用到,比如,商家打折时,我们要计算打折后的价格,用到计算百分数的知识就能轻而易举地得出答案。
三、百分数的应用1.百分数在统计中的应用在统计中频繁运用到百分数的概念,比如,分数分析、人口统计等,可以利用百分数表示多少比例的人、事、物等,可以用来统计人口、生产、销售、质量、经济等方面的数据。
例如:某自习室共有140张座位,而今天上午8:00 ~ 10:00期间,共计使用了座位数80张,那么,使用率是多少呢?答:使用率= 已使用的座位数÷ 总的座位数×100% =80 ÷ 140 ×100% ≈57.14%。
因此,今天上午8:00 ~ 10:00期间使用率为57.14%。
百分数重点笔记

百分数重点笔记
1. 百分数表示一个数是另一个数的百分之几。
例如,50%表示一半,25%表示四分之一。
2. 百分数可以转换为小数或分数。
例如,50% = 0.5,25% = 1/4。
3. 百分数通常用于表示比例、增长率、折扣等。
4. 在计算中,百分数需要与具体的数值相乘。
例如,如果一件商品打8折,那么实际支付的价格是原价的80%。
5. 百分数也可以用于表示概率。
例如,掷一枚公正的骰子得到6的概率是1/6,约等于1
6.67%。
6. 百分数的比较:可以直接比较两个百分数的大小,或者将它们转换为小数或分数后再进行比较。
7. 百分数的运算:加法和减法需要先将百分数转换为小数或分数,然后进行运算;乘法和除法则直接将百分数与具体的数值相乘或相除。
8. 百分数的化简:如果一个百分数的分子和分母都可以被同一个数整除,那么这个百分数就可以化简为最简形式。
9. 百分数的单位:通常不写单位,因为百分数本身就是一个相对的比例。
10. 百分数的应用:在商业、统计、财务等领域有广泛的应用。
百分数知识点10条

百分数知识点10条百分数在我们日常生活中经常出现,用于表示一个数值相对于总数的百分比。
在这篇文章中,我们将介绍10个关于百分数的知识点。
1.什么是百分数:百分数是将一个数值表示为百分比的形式,以百分号(%)表示。
例如,50%表示50/100,即50除以100的结果。
2.百分数的意义:百分数用于表示相对比例。
例如,如果一位学生在一次考试中得了80分,而满分是100分,那么他的百分数是80%。
3.百分符号的含义:百分符号(%)表示百分数的意思。
百分符号是由拉丁文中的“per centum”演变而来,意为“每一百”。
4.百分数与小数的转换:百分数可以转换为小数,也可以将小数转换为百分数。
要将百分数转换为小数,只需将百分数除以100。
例如,50%可以转换为0.5。
要将小数转换为百分数,只需将小数乘以100。
例如,0.5可以转换为50%。
5.百分数与分数的关系:百分数可以表示为分数的形式。
例如,50%可以表示为50/100,进一步简化为1/2。
6.百分数的运算:在百分数的运算中,我们可以使用百分数之间的加法、减法、乘法和除法。
例如,如果我们想计算75%的20%,我们可以将75%转换为0.75,20%转换为0.2,然后将两个数相乘得到结果。
7.百分数的应用:百分数在日常生活中有许多应用。
例如,我们可以使用百分数来表示销售额的增长或减少的百分比,也可以用来表示股票的涨跌幅度。
8.百分数的比较:当比较两个百分数时,我们可以将它们转换为小数或分数来进行比较。
例如,如果我们想比较50%和75%,我们可以将它们都转换为小数,然后进行比较。
9.百分数的应用领域:百分数在许多学科和行业中都有广泛的应用。
例如,在经济学中,我们可以使用百分数来表示通货膨胀率;在化学中,我们可以使用百分数来表示溶液的浓度。
10.注意事项:在使用百分数时,我们需要注意单位的一致性。
例如,如果我们说某个物品的价格涨了20%,我们需要明确是相对于原价格还是相对于其他基准价格的涨幅。
《百分数的认识》知识点

百分数的认识一、百分数的意义和写法1、百分数的意义:百分数表示一个数是另一个数的百分之几。
是指两个数的比,因此也叫百分率或百分比。
2、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上“%”来表示。
3、百分数和分数的联系和区别:(1)联系:都可以表示两个数的倍比关系。
(2)区别:○1、百分数只表示两个数的倍比关系,不能表示具体的量,所以不能带单位,而分数既可以表示两个数的关系,又可以表示具体的量,所以表示具体的量时可以带单位。
○2、百分数的分子可以是整数,也可以是小数,而分数的分子只能是除0以外的自然数。
二、百分数和分数、小数的互化1、百分数与小数的互化(1)百分数化小数:把分子的小数点向左移动两位,同时去掉百分号。
(2)小数化百分数:把小数的小数点向右移动两位,同时添上百分号。
2、百分数与分数的互化(1)百分数化分数:先把百分数改写成分母是100的分数,能约分的要约成最简分数。
如果百分数的分子是小数时,在改写成分母是100的分数后,可根据分数的基本性质,化成分子是整数的分数,然后能约分的要约成最简分数。
(2)分数化百分数:○1、如果是常见的分数,可直接化成小数,再化成百分数。
○2、如果分母是100的因数,可根据分数的基本性质,化成分母是100的分数,再改写成百分数。
○3、根据分数和除法的关系,用分子除以分母,除不尽时保留三位小数,再化成百分数。
3、常见的分数、小数和百分数的互化21=0.5=50% 41=0.25=25% 43=0.75=75% 51=0.2=20% 52=0.4=40% 53=0.6=60% 54=0.8=80% 81=0.125=12 83=0.375=37.5% 85=0.625=62.5% 87=0.875=87.5% 201=0.05=5% 4、在含有百分数、小数、分数的混合大小比较或解方程时,要根据题目的情况,把数据类型统一,以便于计算。
一般情况下,都要把百分数化成小数或分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百分数知识点整理
一、百分数的意义:表示一个数是另一个数的百分之几。
百分数也叫做百分率、百分比。
(千分数:表示一个数是另一个数的千分之几)
二、百分数和分数的区别:
1.意义不同:百分数只表示两个数的倍比关系或部分与整体的数量关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
2.百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3.百分数是特殊的分数,百分数的分母都是100,百分数的计数单位都是1/100.
三、百分数与小数的互化:
1.小数化成百分数:
方法一:把小数点向右移动两位,同时在后面添上%。
方法二:把小数化成分母是10、100、1000……的分数(看小数有几位小数,一位用10作分母,两位用100做分母,三位用1000做分母),再把这个分数化成分母是100的分数,再转换成百分数。
例如:0.375=375/1000=37.5/100=37.5%; 3.6=36/10=360/100=360%.
方法三:把小数的分母看做1,利用分数的基本性质,分子分母同时扩大100倍就可以化成百分数。
也可以用这个小数直接×100/100化成百分数。
例如:0.12=112.0=100110012.0x x =100
12=12% 或者0.12×
100100=10010012.0x =10012=12% 2.百分数化成小数:
方法一:把小数点向左移动两位,同时去掉%
方法二:变成除法直接除出小数。
例如:1.03/100=1.03÷100=0.0103; 50/100=50÷100=0.5
四、百分数的和分数的互化:
1.百分数化成分数:先把百分数化成分数形式,再约分,结果要约成最简分数。
2.分数化成百分数:
方法:把分数化成小数(分子除以分母)(除不尽时,通常用四舍五入法保留三位小数),再化成百分数。
例如:5
3=3÷5=0.6=60%。
特殊情况:分母是1、2、4、5、10、20、25、50、100的可以用分数的基本性质直接化成百分数。
例如:43=25×425×3=100
75=75% 五、百分数去掉%后,所得的数扩大到原来百分数的100倍;一个数数添上%后,所得的数缩小到原来数的
1001 六、常见的百分率:
⑨含盐率= 含糖率=
含药率= 命中率=
七、例2:求一个数的百分之几是多少?用乘法计算。
750x20%=750x 100
20=750x 0.2=150(化成小数再乘);或者750x20%=750x 10020=750x 5
1=150(先约分再乘)。
八、例3:知道两个量,求一个量比另一个量多(增加、增产、上涨、上调)百分之几或少(减少、减产、减低、下降)百分之几?
方法:(用大量的数 - 小量的数)÷单位一的量的数×100% (注意找准单位“1”)
九、例4:知道一个量和比这个量多(增加、增产、上涨、上调)百分之几或少(减少、减产、减低、下降)百分之几,求另一个量。
方法:多的情况:方法一:知道量的数+知道量的数×这个百分数
方法二:知道量的数×(1+这个百分数)
少的情况:方法一:知道量的数 - 知道量的数×这个百分数
方法二:知道量的数×(1 - 这个百分数)
十、例5:假设法:假设第一个单位一为一个数(可以是100、80、1等,一半假设为“1”),再列式计算。
求一个数比另一个数多(少)百分之几的问题:
两个数的相差量÷单位“1”的量× 100% 或:求多百分之几:(大数÷小数– 1)× 100%
②求少百分之几:(1 - 小数÷大数)× 100%
①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨甲比乙多25%,多10,乙是多少?10÷25%=40
⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪乙比甲少20%,少10,甲是多少?10÷20%=50
⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40 最新文件仅供参考已改成word文本。
方便更改。