人教版九年级上册数学 第22章 二次函数 单元综合测试(含解析)

合集下载

第二十二章 二次函数 单元试卷(含答案)人教版数学九年级上册

第二十二章 二次函数 单元试卷(含答案)人教版数学九年级上册

第二十二章二次函数单元试卷一、选择题1.已知抛物线y=―(x―1)2+4,下列说法错误的是( )A.开口方向向下B.形状与y=x2相同C.顶点(-1,4)D.对称轴是直线x=12.已知二次函数y=(x-1)2+h的图象上有三点A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y23.已知一个直角三角形两直角边长的和为10,设其中一条直角边长为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-12x2+5x B.y=-x2+10x C.y=12x2+5x D.y=x2+10x4.函数y=a x2-1与y=ax(a≠0)在同一直角坐标系中的图象可能是( )A.B.C.D.5.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=―112x2+23x+53,则该运动员此次掷铅球的成绩是( )A.6m B.12m C.8m D.10m6.下表列出了函数y=ax2+bx+c(a≠0)中自变量x与函数y的部分对应值.根据表中数据,判断一元二次方程ax2+bx+c=0(a≠0)的一个解在( )x-2-1012y121-2-7A.1与2之间B.-2与-1之间C.-1与0之间D.0与1之间7.二次函数y=a x2+bx的图象如图所示,若一元二次方程a x2+bx―m=0有实数根,则m的取值范围是( )A.m≤3B.m≥3C.m≤―3D.m≥―38.在平面直角坐标系中,二次函数y=a x2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a―3b+c=0;④4ac―b2>0;⑤a―b≥m(am+b)(m为任意实数).其中错误结论的个数有( )A.1个B.2个C.3个D.4个二、填空题时有最大值6,则a= .9.y关于x的二次函数y=a x2+a2,在―1≤x≤1210.在平面直角坐标系中,二次函数y=a x2+2ax+a―1的图象经过四个象限,则a的取值范围为 .11.如图,抛物线y=ax2+c与直线y=kx+m交于A(﹣3,y1)、B(1,y2)两点,则关于x的不等式ax2+c ≥﹣kx+m的解集是 .12.如图是公园的一座抛物线型拱桥,建立坐标系得到函数y=―14x2,当拱顶到水面的距离为4米时,水面宽AB= 米.13.如图所示是某校一名女生在抛实心球时,实心球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,实心球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=―112x2+23x+53,则实心球推出的水平距离OA的长是 m.三、解答题14.已知二次函数的图象经过点(-1,8),(0,1),(2,1).(1)求该二次函数的表达式.(2)求这个二次函数图象的顶点坐标.15.对于向上抛的物体,当空气阻力忽略不计时,有这样的关系式:h=v0t―12g t2(h是物体离起点的高度,v是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间),一学生以8m/s的初速度把小球向上抛出.(1)球抛出几秒时离起点的高度达到3m.(2)求小球离起点的最大高度.16.山西醋文化距今已有数千年的历史,山西醋以其独特的工艺和风味而著称,其中老陈醋名列山西四大名醋之首.某超市出售某品牌老陈醋,每瓶进价为4元,在销售过程中发现,月销售量y(瓶)与销售单价x (元)之间满足一次函数关系,规定销售单价不少于6元,且不高于12元,其部分对应数据如下表所示:销售单价x(元)…789…月销售量y(瓶)…180016001400…(1)求y与x之间的函数关系式.(2)当该老陈醋销售单价定为多少元时,超市每月出售这种老陈醋所获利润最大?最大月利润为多少元?17.如图,二次函数y=a x2+bx+c的图象交x轴于A(―1,0),B(2,0),交y轴于C(0,-2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值.(3)点P在该二次函数图象的对称轴上,且使|PB―PC|最大,求点P的坐标;18.如图,抛物线y=a x2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A(―1,0),点B(3,0),抛物线与y轴交于点C(0,-3),点D为抛物线顶点,对称轴与x轴交于点E.(1)求抛物线的解析式;(2)点P是BC下方异于点D的抛物线上一动点,若S△PBC=S△EBC,求此时点P的坐标;(3)点Q是抛物线上一动点,是否存在以点B、C、Q为顶点的直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.答案1.C 2.A 3.A 4.B 5.D 6.D 7.D 8.B 9.2或 -610.0<a <111.﹣1≤x ≤312.813.1014.(1)解:设该二次函数的表达式为y =a x 2+bx +c (a ≠0){a ―b +c =8c =14a +2b +c =1解得:{a =73b =―143c =1∴该二次函数的表达式为y =73x 2-143x +1(2)解:y =73x 2-143x +1=73(x 2―2x)+1=73(x ―1)2-43∴顶点坐标为(1,-43)15.(1)解:h =8t ―12×10t 2=-5t 2+8t当h =3时,-5t 2+8t =3解得t 1=1,t 2=0.6答:球抛出0.6秒或1秒时离起点的高度达到3m .(2)解:h =―5t 2+8t=-5(t 2-85t +1625-1625)=-5(t ―45)2+165则h 的最大值为165,答:小球离起点的最大高度为165m .16.(1)解:设y 与x 的函数关系式为y =kx +b{7k +b =18008k +b =1600解得:{k =―200b =3200所以y 与x 的函数关系式为y =―200x +3200(2)解:设每月出售这种老陈醋所获利润w 元.w =(x ―4)(―200x +3200)=-200x 2+4000x ―12800=-200(x ―10)2+7200∵-200<0, 6≤x ≤12∴当x =10时,w 最大为7200答:当该老陈醋销售单价为10元时,超市每月出售这种老陈醋所获利润最大,最大月利润为7200元17.(1)解:将A(―1,0),B(2,0),C(0,-2)代入y =a x 2+bx +c ,∴{a ―b +c =04a +2b +c =0c =―2,解得{a =1b =―1c =―2,∴y =x 2―x ―2(2)解:连接BC ,过点M 作MN ∥y 轴交BC 于点N ,∵B(2,0),C(0,-2),∴直线BC 的解析式为y =x ―2,设M(t ,t 2―t ―2),则N(t ,t ―2),∴MN =t ―2―(t 2―t ―2)=―t 2+2t , ∴S △BCM =12×2×(-t 2+2t)=―t 2+2t ,∵S △ABC =12×3×2=3,∴S 四边形ACMB =3-t 2+2t =―(t ―1)2+4, 当t =1时,四边形ACMB 的面积最大值为4,此时M(1,-2).(3)解:∵y =x 2―x ―2=(x ―12)2-94,∴抛物线的对称轴为直线x =12,作C 点关于对称轴的对称点C ',连接B C '并延长与对称轴交于点P ,∵CP =C 'P ,∴|PB ―PC|=|PB ―P C '|≤B C ',此时|PB ―PC |有最大值,∵C(0,-2),∴C '(1,-2),设直线B C '的解析式为y =kx +m ,∴{k +m =―22k +m =0,解得{k =2m =―4,∴y =2x ―4,∴P(12,-3)18.(1)由题意得:{a ―b +c =0c =―39a +3b +c =0,解得{a =1b =―2c =―3,故抛物线的表达式为y =x 2―2x ―3;(2)在x 轴上取点H ,使BH =BE =2,过点H (5,0)作BC 的平行线交抛物线于点P ,则点P 为所求点,理由:点H、E和直线BC的间隔相同,则到BC的距离相同,故SΔPBC=SΔEBC,设直线BC的表达式为y=mx+n,则{n=―33m+n=0,解得{m=1n=―3,故直线BC的表达式为y=x―3,∵PH//BC,故设PH的表达式为y=x+s,将点H的坐标代入上式并解得s=―5,故直线PH的表达式为y=x―5,联立{y=x2―2x―3y=x―5解得{x=2y=―3(不合题意的值舍去),故点P的坐标为(2,-3);(3)当∠CBQ=90°时,∵直线BC的表达式为y=x―3,设直线BQ的解析式为y=―x+t,∵把B(3,0)代入得―3+t=0,,解得t=3,∴直线BQ的解析式为y=―x+3.联立{y=―x+3y=x2―2x―3,x2―x―6=0解得:x=3(舍去)或x=―2,当x=―2时,y=5,∴Q1(-2,5);当∠BCQ=90°时,设直线CQ的解析式为y=―x+m,把C(0,-3)代入得0+s=―3解得s=―3,∴直线CQ的解析式为y=―x―3.联立{y=―x―3y=x2―2x―3,x2―x=0解得:x=1或x=0(舍去),当x=1时,y=―4,∴Q2(1,-4);当∠BQC=90°时,设Q(n,n2―2n―3)设BQ的解析式为y=k1x+b则{3k1+b=0k1n+b=n2―2n―3解得k=n2―2n―3n―3设CQ的解析式为y=k2x+b则{b=―3k2n+b=n2―2n―3解得k2=n―2∵∠BQC=90°∴k1k2=-1,即n2―2n―3n―3⋅(n―2)=-1化简得n2―n―1=0,解之得n1=1+52,n2=1-52∴Q3(1+52,-5-52),Q4(1-52,-5+52).综上所述,ΔBCQ为直角三角形时,点Q的坐标为:(1,-4)或(2,5)或(1+52,-5-52)或(1-52,-5+52)。

第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)

第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)

检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。

人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。

人教版初三数学上册 第 二十二 章《二次函数》经典题型单元测考试带答案和解析

人教版初三数学上册 第 二十二 章《二次函数》经典题型单元测考试带答案和解析

人教版初三数学上册第二十二章《二次函数》经典题型单元测考试带答案和解析选择题关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D【解析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.选择题已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. k≤4且k≠3B. k<4且k≠3C. k<4D. k≤4【答案】D【解析】(1)当k=3时,函数y=2x+1是一次函数,∵一次函数y=2x+1与x轴有一个交点,∴k=3;(2)当k≠3时,y=(k-3)x2+2x+1是二次函数,∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴b2-4ac≥0,∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0,∴k≤4且k≠3,综合(1)(2)可知,k的取值范围是k≤4,故选D.选择题若二次函数的x与y的部分对应值如下表:x12y83则抛物线的顶点坐标是A. B. C. D.【答案】C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:当或时,,当时,,,解得,二次函数解析式为,抛物线的顶点坐标为,故选:C.选择题在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )A. B. C. D.【答案】C【解析】试题解析:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.选择题如图,抛物线与x轴一个交点为(-2,0),对称轴为直线x=1,则y<0时x的范围是()A. x>4或x<-2B. -2<x<4C. -2<x<3D. 0<x<3【答案】B【解析】分析:本题考查的是二次函数与x轴的交点问题和对称性,二次函数与不等式的关系.解析:因为抛物线与x轴一个交点为(-2,0),对称轴为直线x=1,所以另一个交点(4,0),∴y<0时,-2<x<4.故选B.选择题二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b (k2+1)(k为常数).其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个【答案】D【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,当x=﹣3时,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选:D.选择题如图所示的抛物线是二次函数y=+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有().A.1个B.2个C.3个D.4个【答案】C.【解析】试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C.选择题设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y2>y3>y1D. y3>y1>y2【答案】A【解析】∵二次函数线y=﹣(x+1)2+k,∴该二次函数的抛物线开口向下,且对称轴为:x=﹣1.∵A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,而三点横坐标离对称轴x=3的距离按由近到远为:(﹣2,y1)、(1,y2)、(2,y3),∴y1>y2>y3故选:A.选择题下列说法中错误的是( )A .在函数y=-x2中,当x=0时y有最大值0B.在函数y=2x2中,当x>0时y随x的增大而增大C.抛物线y=2x2,y=-x2,中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点【答案】C【解析】由函数的解析式y=-x2,可知a=-1<0,得到函数的开口向下,有最大值y=0,故A正确;由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x <0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故B正确;根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=-x2的开口第二小,而开口最大,故不正确;不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点,正确.故选:C.选择题二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>﹣5B. ﹣5<t<3C. 3<t≤4D. ﹣5<t≤4【答案】D【解析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选D.选择题如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A. B. C. D.【答案】D【解析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应取0≤t≤3、开口向上的二次函数图象;故选D.选择题二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 .A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题分析:对称轴为直线x=2,则,则4a+b=0,则①正确;当x=3时函数值为正数,即,则②错误;对于开口向下的函数,离对称轴越远,则函数值越小,则,则③正确;根据函数图像可知:当y=-3时,,则④正确;故本题选C.填空题某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是_____.【答案】y=10(x+1)2【解析】根据题意,把十月份的看作单位1,进而可得十二月邮件数为:y=10(x+1)2,所以y关于x的函数解析式是y=10(x+1)2.故答案为:y=10(x+1)2填空题已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于____________.【答案】2【解析】试题分析:根据函数的图像可知其对称轴为x=-=1,解得b=-2a,然后可知两根之和为x1+x2=-=2.填空题二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是_____.【答案】(1,3).【解析】试题直接根据二次函数的顶点式的顶点为(h,k),得出二次函数y=2(x﹣1)2+3的图象的顶点坐标是(1,3).填空题如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为___.【答案】1【解析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.填空题公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行______m才能停下来.【答案】20【解析】求停止前滑行多远相当于求s的最大值.则变形s=-5(t-2)2+20,所以当t=2时,汽车停下来,滑行了20m.解答题已知抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0).(1)求b,c的值;(2)请用列表、描点、连线的方法画出该函数的图象;(3)当﹣2<x<2时,y的取值范围是.(4)若(m,y1),(m﹣1,y2)是抛物线上的两点,比较y1与y2大小.【答案】(1)b=2,c=3;(2)详见解析;(3) ﹣5<y≤4;(4)详见解析.【解析】(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c中即可求得b、c的值;(2)用列表、描点、连线的方法在所给的坐标系中画出抛物线的图像即可;(3)先求得抛物线的对称轴,结合图象即可解答;(4)由(m,y1),(m﹣1,y2)是抛物线上的两点,可得y1=﹣m2+2m+3,y2=﹣(m﹣1)2+2(m﹣1)+3,利用作差法比较即可.解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c中,得:,解得:.则抛物线解析式为y=﹣x2+2x+3;(2)列表x﹣1123y343描点、连线作图如下:(3)由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线对称轴为x=1,所以当x=1时,y最大=4;当x=﹣2时,y最小=﹣5;故当﹣2<x<2时,y的范围为﹣5<y≤4;(4)∵(m,y1),(m﹣1,y2)是抛物线上的两点,∴y1=﹣m2+2m+3,y2=﹣(m﹣1)2+2(m﹣1)+3,∵y1﹣y2=﹣m2+2m+3﹣[﹣(m﹣1)2+2(m﹣1)+3]=﹣2m+3,当﹣2m+3>0,即m<时,y1>y2;当﹣2m+3<0,即m>时,y1<y2;当﹣2m+3=0,即m=时,y1=y2.解答题如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【答案】(1)(2)当S=45时,有,解得,∵,∴x=5.(3),∵抛物线开口向下,对称轴为x=4,当x>4时,y随x增大而减小,∴在范围内,当x=时,S最大,。

第22章 二次函数 人教版数学九年级上册单元测试卷(含答案)

第22章 二次函数 人教版数学九年级上册单元测试卷(含答案)

第二十二章 二次函数一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.函数y=-13x 2+3与y=-13x 2-2的图象的不同之处是( )A.对称轴B.开口方向C.顶点D.形状2.(2022·浙江湖州期中)已知抛物线y=(x-3)2+c 经过点A (2,0),则该抛物线与x 轴的另一个交点坐标为( )A.(3,0)B.(-4,0)C.(-8,0)D.(4,0)3.(2022·湖北鄂州梁子湖区期中)根据表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是( )x 00.511.52y=ax 2+bx+c-1-0.513.57A .0<x<0.5 B.0.5<x<1C.1<x<1.5D.1.5<x<24.(2022·北京西城区期中改编)若A (-1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y=-(x-2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A.y 1<y 2<y 3 B.y 1<y 3<y 2C.y 3<y 1<y 2 D.y 3<y 2<y 15.(2022·浙江温州期中)小杰把压岁钱500元按一年期存入银行,已知年利率为x ,一年到期后银行将自动把本金和利息再转存一年.设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( )A.y=500(x+1)2B.y=x 2+500C.y=x 2+500xD.y=x 2+5x6.(2021·广东广州番禺区期中)若二次函数y=x 2-6x+5,当2≤x ≤6时的最大值是n ,最小值是m ,则n-m=( )A.3B.5C.7D.97.[与一元二次方程综合]若二次函数y=ax 2-1的图象经过点(-2,0),则关于x 的方程a (x-2)2-1=0的根为( )A.x 1=0,x 2=4B.x 1=-2,x 2=6C.x 1=32,x 2=52D.x 1=-4,x 2=08.新风向新定义试题(2022·河南驻马店期中)定义:若两个函数图象与x 轴存在共同的交点,则这两个函数为“共根函数”.如y=x 2-4与y=(x+1)(x-2)的图象与x 轴的共同交点为(2,0),那么这两个函数就是“共根函数”.若y=2x 2-4x 与y=x 2-3x+m-1为“共根函数”,则m=( )A.1B.1或2C.1或3D.2或39.(2022·浙江绍兴期中)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论正确的是( )A .abc>0B .b-a>c C.3a>-cD.a+b<m (am+b )(m ≠1)10.(2021·河南模拟)如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将△ABC 沿着直线l 向右移动,当点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )二、填空题(共5小题,每小题3分,共15分)11.(2022·北京西城区期中)已知y=(m+2)x |m|+2是y 关于x 的二次函数,那么m 的值为 .12.(2022·浙江湖州段考)将二次函数y=x 2的图象平移,使它经过点(2,0),则平移后所得图象对应的函数解析式可以是 .(写出一个即可)13.(2022·吉林长春宽城区期末)在平面直角坐标系中,将二次函数y=-x 2+2x+3的图象在x 轴上方的部分沿x 轴翻折,所得新函数的图象如图所示(实线部分).若直线y=b 与新函数的图象恰有3个公共点,则b 的值是 .(第13题) (第15题)14.(2022·安徽皖东南四校联考)飞机着陆后滑行的距离y (单位:m)与滑行时间t (单位:s)之间的函数解析式为y=60t-32t 2.则在飞机着陆滑行过程中,最后2s 滑行的距离是 m .15.(2021·四川绵阳涪城区)如图,抛物线y=53x 2-203x+5与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则当△MAC 的周长最小时,点M 的坐标是 . 三、解答题(共6小题,共55分)16.(7分)(2022·江苏苏州姑苏区期中)把抛物线C 1:y=-x 2-2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2.(1)求抛物线C 2的解析式.(2)点P (a ,1)是否在抛物线C 2上?请说明理由.17.(8分)(2022·安徽安庆期中)某小区计划建一个矩形花圃,花圃的一边利用长为a 米的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S米2.(1)求S与x之间的函数关系式.(不要求写出自变量x的取值范围)(2)若a=30,求S的最大值.18.(9分)新风向探究性试题(2022·河南南阳市第十二中学校月考)某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…-3-52-2-1012523…y (35)4m-10-10543…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有 个交点,所以对应的方程x2-2|x|=0有 个实数根;②方程x2-2|x|=2有 个实数根.19.(10分)新风向探究性试题如图,在小明的一次投篮中,球出手时离地面高2米,与篮筐中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米.篮球运行的轨迹为抛物线,篮筐中心距离地面3米,通过计算说明此球能否投至篮筐中心.(不考虑篮球大小和篮球的反弹)探究一:若出手的角度、力度和高度都不变,则小明朝着篮球架再向前移动多少米后投篮能将篮球投至篮筐中心?探究二:若出手的角度、力度和高度都发生改变,但是抛物线的顶点位置及球出手时与篮筐中心的水平距离不变,则小明出手的高度需要增加多少米才能将篮球投至篮筐中心?20.(10分)(2022·浙江杭州外国语学校月考)某产品每件成本为25元,经过市场调研发现,这种产品在未来20天内的日销售量m(单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如表.时间t/天231020日销售量m/件96948060这20天中,该产品每天的售价y (单位:元/件)与时间t (单位:天)的函数解析式为y=14t+30(t 为正整数).(1)求m 关于t 的函数解析式.(2)这20天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(a<6)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.21.(11分)(2021·重庆大渡口区春招)如图,若抛物线y=x 2+bx+c 与x 轴相交于A ,B两点,与y 轴相交于点C ,直线y=x-3经过点B ,C.(1)求二次函数的表达式.(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC.①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由.②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请求出点P 的坐标;如果不存在,请说明理由.第二十二章 二次函数答案1.C 对比函数y=-13x 2+3与y=-13x 2-2可知,两者的二次项系数相同,一次项系数均为0,所以两抛物线的开口方向相同、形状相同,对称轴也相同.因为抛物线y=-13x 2+3的顶点坐标为(0,3),抛物线y=-13x 2-2的顶点坐标为(0,-2),所以两者的顶点不同.2.D ∵抛物线y=(x-3)2+c 经过点A (2,0),∴(2-3)2+c=0,解得c=-1.∴抛物线的解析式为y=(x-3)2-1.令y=0,即(x-3)2-1=0.解得x=2或x=4.∴该抛物线与x 轴的另一个交点坐标为(4,0).优解:∵抛物线的对称轴为直线x=3,其中一个交点坐标为(2,0),∴由抛物线的对称性可知,另一个交点坐标为(4,0).3.B 4.B 二次函数y=-(x-2)2+k 的图象开口向下,对称轴为直线x=2,当抛物线开口向下时,到对称轴的距离越远的点对应的函数值越小.因为|-1-2|>|4-2|>|1-2|,所以y 1<y 3<y 2.故选B .另解:(直接代入法)将x=-1,1,4分别代入y=-(x-2)2+k ,得y 1=-9+k ,y 2=-1+k ,y 3=-4+k ,所以y 1<y 3<y 2.5.A6.D 原式可化为y=(x-3)2-4,可知二次函数的顶点坐标为(3,-4).因为2<3<6,所以最小值m=-4.当y=0时,x 2-6x+5=0,解得x 1=1,x 2=5.如图,当x=6时,y=36-36+5=5,即n=5.则n-m=5-(-4)=9.7.A 把(-2,0)代入二次函数y=ax 2-1,得4a-1=0,解得a=14,所以14(x-2)2-1=0,解得x 1=0,x 2=4.故选A .另解:因为二次函数y=ax 2-1的图象的对称轴为y 轴,所以根据二次函数图象的对称性,可得该图象也经过点(2,0),所以ax 2-1=0的根为-2或2.把二次函数y=ax 2-1的图象向右平移2个单位长度得到二次函数y=a (x-2)2-1的图象,所以关于x 的方程a (x-2)2-1=0的根为-2+2=0或2+2=4.8.C 令y=2x 2-4x=0,即2x (x-2)=0,解得x=0或x=2,∴函数y=2x 2-4x 与x 轴的交点为(0,0),(2,0).(分类讨论思想)当两个函数图象同时过点(0,0)时,则m-1=0,解得m=1;当两个函数图象同时过点(2,0)时,则4-6+m-1=0,解得m=3.9.B ∵抛物线开口向下,∴a<0.∵对称轴为直线x=1,∴-b2a =1,∴b=-2a ,b>0.由图象可知c>0,∴abc<0,故A 选项错误.当x=-1时,y=a-b+c<0,∴b-a>c ,故B 选项正确.∵b=-2a ,a-b+c<0,∴a+2a+c<0,即3a<-c ,故C 选项错误.当x=1时,y 的值最大,此时y 最大=a+b+c ;当x=m 时,y=am 2+bm+c ,∴a+b+c>am 2+bm+c (m ≠1),故a+b>am 2+bm ,即a+【注意】m ≠1的条件b>m (am+b ),故D 选项错误.10.A (分类讨论思想)当0<x<2时,如图(1),设AC 与DE 的交点为G ,易知△CEG 是等边三角形,∴y=S △CEG =12·x ·3x 2=34x 2,该段抛物线开口向上,对称轴为y 轴.当2<x<4时,如图(2),设AB 与DF 的交点为H ,BF=CE-2(CE-EF )=-CE+2EF=4-x ,易知△BFH 是等边三角形,∴y=S △BFH =12·(4-x )·3(4-x )2=34(x-4)2,该段抛物线开口向上,对称轴为直线x=4.特殊地,当x=2时,△ABC 与△DEF 完全重合,y 的值最大,为12×2×3=3.当x=0或4时,y=0.故选A . 图(1) 图(2)11.2 ∵y=(m+2)x |m|+2是y 关于x 的二次函数,∴|m|=2且m+2≠0,解得m=2.【易错】易忽略二次函数解析式的二次项系数不为0的情况12.y=x 2-4(或y=x 2-4x+4,答案不唯一) 设二次函数y=x 2的图象沿y 轴平移后得到y=x 2+b.∵经过点(2,0),∴0=4+b ,解得b=-4,∴沿y 轴平移后所得图象对应的函数解析式是y=x 2-4.设二次函数y=x 2的图象沿x 轴平移后得到y=(x-a )2,将点(2,0)代入,解得a=2,∴沿x 轴平移后所得图象对应的函数解析式是y=(x-2)2=x 2-4x+4.13.-4图解:(数形结合思想)如图,原二次函数y=-x 2+2x+3=-(x-1)2+4,∴顶点C (1,4),翻折后点C 的对应点为D (1,-4).当直线y=b 与新函数的图象恰有3个公共点时,直线y=b 过点D ,此时b=-4.14.6 因为y=60t-32t 2=-32(t-20)2+600,所以当t=20时,飞机着陆后滑行600m 才能停下来, t 的取值范围是0≤t ≤20.当t=18时,y=594,600-594=6(m),故在飞机着陆滑行过程中,最后2s 滑行的距离是6m .15.(2,53) (转化思想)如图,易知点A 与点B 关于抛物线的对称轴对称,连接CB 交抛物线的对称轴于点M ,则点M 即为所求点令53x 2-203x+5=0,解得x=1或3.令x=0,则y=5,故A (1,0),B (3,0),C (0,5),所以抛物线的对称轴为直线x=12(1+3)=2.设直线BC的解析式为y BC =kx+b ,则0=3k +b ,b =5,解得k =―53,b =5,故直线BC 的解析式为y BC =-53x+5.当x=2时,y BC =53,所以点M (2,53).16.【参考答案】(1)∵y=-x 2-2x+3=-(x+1)2+4,∴把抛物线C 1:y=-x 2-2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y=-(x+1-4)2+4-5,即y=-(x-3)2-1,(3分)∴抛物线C 2的解析式为y=-(x-3)2-1.(4分)(2)不在.(5分)理由:∵抛物线C 2的解析式为y=-(x-3)2-1,∴函数的最大值为-1.(6分)∵点P 的纵坐标为1>-1,∴点P (a ,1)不在抛物线C 2上.(7分)17.【参考答案】(1)AB 边长为79+1―x 2=(40-12x )米,根据题意得S=(40-12x )x=-12x 2+40x ,(3分)∴S 与x 之间的函数关系式为S=-12x 2+40x.(4分)(2)由(1)知,S=-12x 2+40x=-12(x-40)2+800,(5分)∵-12<0,∴当x ≤40时,S 随x 的增大而增大.∵x ≤a ,a=30,∴当x=30时,S 有最大值,最大值为750.(8分)18.【参考答案】(1)0(2分)解法提示:把x=-2代入y=x 2-2|x|,得y=0,所以m=0.(2)如图所示.(4分)(3)①函数y=x 2-2|x|的图象关于y 轴对称;②当x>1时,y 随x 的增大而增大.(答案不唯一)(6分)(4)①3 3(8分)②2(9分)19.【参考答案】∵抛物线的顶点坐标为(4,4),∴设抛物线的表达式为y=a (x-4)2+4.(2分)∵抛物线过点(0,2),∴2=16a+4,∴a=-18,∴y=-18(x-4)2+4,当x=7时,y=-98+4=238≠3,∴此球不能投至篮筐中心.(4分)探究一:设向前移动h 米,由题意可得y=-18(x-4-h )2+4,代入点(7,3),得3=-18(7-4-h )2+4,解得h 1=3-22,h 2=3+22(不合题意,舍去).即向前平移(3-22)米,可投至篮筐中心.(7分)探究二:设y=m (x-4)2+4.投至篮筐中心,即代入点(7,3),得3=m (7-4)2+4,解得m=-19,∴y=-19(x-4)2+4,当x=0时,y=209,209-2=29,即小明出手的高度要增加29米,可将篮球投至篮筐中心.(10分)20.【参考答案】(1)设m=kt+b (k ≠0),将(2,96)和(3,94)代入,得2k +b =96,3k +b =94,解得k =―2,b =100,(2分)∴m 关于t 的函数解析式为m=-2t+100.(3分)(2)设日销售利润为w 元,根据题意得w=(14t+30-25)(-2t+100).(4分)化简,得w=-12t 2+15t+500.(5分)∵-12<0,对称轴为直线t=-152×(―12)=15,∴当t=15时,w 最大,此时w=-12×152+15×15+500=612.5.答:第15天的日销售利润最大,为612.5元.(6分)(3)设每天扣除捐赠后的日销售利润为n 元.根据题意,得n=(14t+30-25-a )(-2t+100)=-12t 2+(15+2a )t+100(5-a ),(7分)∵-12<0,∴抛物线开口向下,对称轴为直线t=-15+2a2×(―12)=15+2a.∵要使每天扣除捐赠后的日销售利润随时间t 的增大而增大,∴15+2a ≥20,解得a ≥2.5.又a<6,∴2.5≤a<6.(9分)答:a 的取值范围是2.5≤a<6.(10分)21.【思路导图】【参考答案】(1)∵直线y=x-3经过点B ,C ,当x=0时,y=-3,当y=0时,x=3,∴B (3,0),C (0,-3).将B ,C 两点的坐标代入y=x 2+bx+c ,得9+3b +c =0,c =―3,解得c =―3,b =―2,故二次函数的表达式为y=x 2-2x-3.(3分)(2)设M (x ,x-3),则P (x ,x 2-2x-3).①线段PM 有最大值.(4分)PM=(x-3)-(x 2-2x-3)=-(x-32)2+94.∵-1<0,∴PM 有最大值.当x=32时,PM 最大为94.(6分)②存在.(7分)PM 2=(x-3-x 2+2x+3)2=(-x 2+3x )2,PC 2=x 2+(-3-x 2+2x+3)2=x 2+(2x-x 2)2,MC 2=(x-3+3)2+x 2=2x 2.当PM=PC 时,(-x 2+3x )2=x 2+(2x-x 2)2,解得x 1=2,x 2=0(舍去),∴P(2,-3).(8分)当PM=MC时,(-x2+3x)2=2x2,解得x1=3-2,x2=0(舍去),x3=3+2(舍去),∴P(3-2,2-42)综上,点P的坐标为(2,-3)或(3-2,2-42).(11分)。

人教版九年级上数学册《第22章二次函数》综合检测试卷含答案

人教版九年级上数学册《第22章二次函数》综合检测试卷含答案

人教版九年级上册数学综合检测含答案第22章 二次函数(时间:120分钟 总分120分)一、选择题(本大题共6个小题,每小题3分,共18分。

在每小题给出的四个选项中,只有一个正确选项。

)1.下列各式中,y 是x 的二次函数的个数为( A )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .62.若函数y =226a a ax --是二次函数且图象开口向上,则a =( B ) A .-2 B .4 C .4或-2 D .4或33.将抛物线y =3x 2平移得到抛物线y =3(x -4)2-1 的步骤是( D ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位4.抛物线y =12x 2-4x +3的顶点坐标和对称轴分别是( D )A .(1,2),x =1B .(1-,2),x =-1C .(-4,-5),x =-4D .(4,-5),x =45.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图 ,则下列结论:第5题图①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能为0,其中正确的个数是( B )A .1个B .2个C .3个D .4个6.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图 所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1 m ,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m 处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为( B )第6题图A .1.5 mB .1.625 mC .1.66 mD .1.67 m二、填空题(本大题共6小题,每小题3分,共18分)7.已知函数y =(m -2)x 2+mx -3(m 为常数). (1)当m ____≠2______时,该函数为二次函数; (2)当m _____=2_____时,该函数为一次函数.8.已知抛物线y =ax 2+bx +c 经过点(-1,10)和(2,7),且3a +2b =0,则该抛物线的解析式为___y =2x 2-3x +5_____.9.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为k <-74且k ≠0 .10.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___4___元,一天出售该种手工艺品的总利润y 最大.11.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 1或0 . 12.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.根据现有信息,得出有关这个二次函数的下列结论:①过点(3,0);②顶点是(2,-2);③在x 轴上截得的线段的长是2; ④与y 轴的交点是(0,3).其中正确的有__①③④_____(填序号).三、解答题 (本大题共5小题,每小题6分,共30分)13.已知抛物线y =ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上; (3)求出抛物线上纵坐标为-6的点的坐标. 解:(1)把(-2,-8)代入y =ax 2,得-8=a (-2)2.解得a =-2,故函数解析式为y =-2x 2.(2)∵-4≠-2(-1)2,∴点B (-1,-4)不在抛物线上. (3)由-6=-2x 2,得x 2=3,x =±3.∴纵坐标为-6的点有两个,它们分别是(3,-6)与(-3,-6).14.如图 ,A (-1,0),B (2,-3)两点都在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的解析式;(2)请直接写出当y 1>y 2时,自变量x 的取值范围.第14题图解:(1)由于点A (-1,0)在一次函数y 1=-x +m 的图象上,得-(-1)+m =0,即m =-1;已知点A (-1,0),点B (2,-3)在二次函数y 2=ax 2+bx -3的图象上,则有⎩⎪⎨⎪⎧ a -b -3=0,4a +2b -3=-3.解得⎩⎪⎨⎪⎧a =1,b =-2.∴二次函数的解析式为y 2=x 2-2x -3.(2)由两个函数的图象知:当y 1>y 2时,-1<x <2.15.已知抛物线y =x 2-2x -8.(1)试说明抛物线与x 轴一定有两个交点,并求出交点坐标;(2)若该抛物线与x 轴两个交点分别为A ,B (A 在B 的左边),且它的顶点为P ,求S △ABP的值.解:(1)∵Δ=(-2)2-4×1×(-8)=4+32=36>0, ∴抛物线与x 轴一定有两个交点.当y =0,即x 2-2x -8=0时,解得x 1=-2,x 2=4. 故交点坐标为(-2,0),(4,0). (2)由(1),可知:|AB |=6.y =x 2-2x -8=x 2-2x +1-1-8=(x -1)2-9.∴点P 坐标为(1,-9).过点P 作PC ⊥x 轴于点C ,则|PC |=9.∴S △ABP =12|AB |·|PC |=12×6×9=27.16.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.17.如图,抛物线y =ax 2-5x +4a 与x 轴相交于点A ,B ,且过点C (5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.第17题图解:(1)a =1,P ⎝⎛⎭⎫52,-94. (2)答案不唯一,满足题意即可.如向上平移104个单位长度后,再向左平移3个单位长度等.四、(本大题共3小题,每小题8分,共24分)18.如图,二次函数y=ax 2-4x+c 的图象过原点,与x 轴交于点A(-4,0).(1)求此二次函数的解析式.(2)在抛物线上存在点P,满足S △AOP =8,请直接写出点P 的坐标.解:(1)依题意,得⎩⎨⎧=+=016160a c解得⎩⎨⎧=-=01c a∴二次函数的解析式为y=-x 2-4x. (2)令P(m,n), 则S △AOP =12 AO ·|n|=12×4|n|=8,解得n=±4, 又∵点P(m,n)在抛物线 y=-x 2-4x 上,∴-m 2-4m=±4,分别解得m 1=-2,m 2=-2+2 2 和m 3=-2-2 2 ,∴P 1(-2,4),P 2(-2+2 2 ,-4),P 3(-2-2 2 ,-4).19.已知二次函数y =ax 2+bx +c 的图象C 经过(-5,0),⎝⎛⎭⎫0,52,(1,6)三点,直线l 的解析式为y =2x -3.(1)求抛物线C 的解析式;(2)判断抛物线C 与直线l 有无交点;(3)若与直线l 平行的直线y =2x +m 与抛物线C 只有一个公共点P ,求点P 的坐标.解:(1)把(-5,0),⎝⎛⎭⎫0,52,(1,6)分别代入抛物线,解得a =12,b =3,c =52,∴y =12x 2+3x +52.(2)令12x 2+3x +52=2x -3,整理后,得12x 2+x +112=0,∵Δ<0,∴抛物线与直线无交点.(3)令12x 2+3x +52=2x +m ,整理后,得12x 2+x +52-m =0.由Δ=12-4×12×⎝⎛⎭⎫52-m =0,解得m =2,求得点P 的坐标为(-1,0).20.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x (单位:元/个)之间的对应关系如图 所示:(1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的价为6元/个,按照上述市场调查的销售规律,求销售利润w (单位:元)与销售单价x (单位:元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.图解:(1)y 是x 的一次函数,设y =kx +b , ∵图象过点(10,300),(12,240), ∴⎩⎪⎨⎪⎧ 10k +b =300,12k +b =240.解得⎩⎪⎨⎪⎧k =-30,b =600. ∴y =-30x +600.当x =14时,y =180;当x =16时,y =120.即点(14,180),(16,120)均在函数y =-30x +600图象上. ∴y 与x 之间的函数关系为y =-30x +60.(2)w =(x -6)(-30x +600)=-30x 2+780x -3600.即w 与x 之间的函数关系式为w =-30x 2+780x -3600. (3)由题意,得6(-30x +600)≤900,解得x ≥15.x =-30x 2+780x -3600图象对称轴为x =-7802×(-30)=13.∵a =-30<0.∴抛物线开口向下.当x ≥15时,w 随x 增大而减小. ∴当x =15时,w 最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.五、(本大题共2小题,每小题9分,共18分)21. 如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?解:(1)A ,B ,C 的坐标分别为(1,0),(3,0),(2,3) (2)y =-3(x -2)2+3(3)设抛物线的解析式为y =-3(x -2)2+k ,代入D (0,3),可得k =53,平移后的抛物线的解析式为y =-3(x -2)2+53,∴平移了53-3=43个单位22.某公司700万元购买甲、乙两种产品的生产技术和设备后,进行这两种产品的生产加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价定在35元到70元之间较为合理,设甲种产品的销售单价为x(元),年销售量为y(万件).当35≤x ≤50时,y 与x 之间的函数关系式为y=20-0.2x;当50≤x ≤70时,y 与x 之间的函数关系如图所示.乙种产品的销售单价在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元. (1)当50≤x ≤70时,求出甲种产品的年销售量y(万件)与x(元)之间的函数解析式.(2)若该公司第一年的年销售利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x ≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.解:(1)设当50≤x ≤70时,y 与x 的函数关系式为y=kx+b.把(50,10),(70,8)代入得⎩⎨⎧=+=+8701050b k b k 解得⎩⎨⎧=-=151.0b k ∴当50≤x ≤70时,y 与x 的函数解析式为y=-0.1x+15.[来源:Z*xx*] (2)①依题意知:25≤90- x ≤45,即45≤x ≤65.当45≤x ≤50时,W=(x-30)(20-0.2x)+10(90-x-20)=-0.2x 2+16x+100=-0.2(x-40)2+420.由函数的性质知,当x=45时,W 最大值为415. 当50≤x ≤65时,W=(x-30)(-0.1x+15)+10(90-x-20)=-0.1x 2+8x+250=-0.1(x-40)2+410.由函数的性质知,当x=50时,W 最大值为400.综上所述,当x=45时,即甲、乙两种产品的销售单价均定在45元时,可使第一年的年销售利润最大,最大年销售利润是415万元. (3)30≤m ≤40.(由题意,令W=-0.1x 2+8x+250+415-700≥85,整理,得x 2-80x+120≤0, 解得20≤x ≤60.∵50≤x ≤65,根据函数的性质分析,50≤x ≤60. 即50≤90-m ≤60.故30≤m ≤40.)六、(本大题共1小题,共12分)23.如图,抛物线y =ax 2+3ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC =3OB .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.第23题图解:(1)∵OC =3OB ,B (1,0),∴C (0,-3).把点B ,C 的坐标代入y =ax 2+3ax +c ,得⎩⎪⎨⎪⎧a +3a +c =0,c =-3.解得⎩⎪⎨⎪⎧a =34,c =-3.∴y =34x 2+94x -3.(2)如图D86.过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M ,N . S 四边形ABCD =S △ABC +S △ACD =152+12×DM ×(AN +ON ) =152+2DM , ∵A (-4,0),C (0,-3),设直线AC 的解析式为y =kx +b ,代入,求得y =-34x -3.令D ⎝⎛⎭⎫x ,34x 2+94x -3,M ⎝⎛⎭⎫x ,-34x -3, DM =-34x -3-⎝⎛⎭⎫34x 2+94x -3 =-34(x +2)2+3,当x =-2时,DM 有最大值3.此时四边形ABCD 面积有最大值为272.图D86 图D87(3)如图D87,讨论:①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形.∵C (0,-3),令34x 2+94x -3=-3,∴x =0或x =-3.∴P 1(-3,-3). ②平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC =PE 时,四边形ACEP 为平行四边形,∵C (0,-3),∴可令P (x,3),由34x 2+94x -3=3,得x 2+3x -8=0.解得x =-3+412或x =-3-412.此时存在点P 2⎝ ⎛⎭⎪⎫-3+412,3和P 3⎝ ⎛⎭⎪⎫-3-412,3.综上所述,存在3个点符合题意,坐标分别是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3+412,3,P 3⎝ ⎛⎭⎪⎫-3-412,3.。

人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)

人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)

2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22章二次函数单元综合测试一.选择题1.若y=(m+1)是二次函数,则m的值为()A.2 B.﹣1 C.﹣1或2 D.以上都不对2.抛物线y=5(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣2,﹣3)3.下列各函数中,x逐渐增大y反而减小的函数是()A.y=x B.y=﹣x C.y=x2D.y=4x﹣14.已知二次函数y=x2+(a+2)x+a(a为常数)的图象顶点为P(m,n),下列说法正确的是()A.点P可以在任意一个象限内B.点P只能在第四象限C.n可以等于﹣D.n≤﹣15.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小6.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2 B.3 C.4 D.58.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m9.已知函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,则m的取值范围是()A.m≥﹣2 B.0≤m≤C.﹣2≤m≤﹣D.m≤﹣10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②4a+2b+c >0;③(a+c)2>b2;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个二.填空题11.要得到函数y=2(x﹣1)2+3的图象,可以将函数y=2x2的图象向平移1个单位长度,再向上平移3个单位长度.12.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=.13.二次函数y=x2+2x﹣4的图象的对称轴是,顶点坐标是.14.一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,则c的取值范围为.15.已知函数y=x2+bx+2b(b为常数)图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,则b的值为.16.如图,平面直角坐标系中,点A(﹣3,﹣3),B(1,﹣1),若抛物线y=ax2+2x﹣1 (a≠0)与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是.17.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k 的值为.18.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x 值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)三.解答题19.已知二次函数的图象的顶点坐本标为(3,﹣2)且与y轴交与(0,)(1)求函数的解析式,并画出它的图象;(2)当x为何值时,y随x增大而增大.20.在平面直角坐标系中,抛物线L1:y=ax2+bx+3经过点A(3,0)、B(﹣1,0),顶点为D.(1)求抛物线L1的函数表达式及顶点D的坐标;(2)将抛物线L1平移后的得到抛物线L2,点A的对应点为A′,点D的对应点为D′,且点A′、D′都在L2上,若四边形AA′D′D为正方形,则抛物线L1应该如何平移?请写出解答过程.21.已知抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为直线x=﹣1.(1)若抛物线顶点在x轴上,且过(0,﹣1),求抛物线的函数解析式;(2)若抛物线不过第三象限,求的取值范围;(3)若抛物线过点(﹣1,﹣1),当0≤x≤1时,抛物线上的点到x轴距离的最大值为4,求a的值.22.已知,点P为二次函数y=﹣(x﹣m)2﹣2m+1图象的顶点,直线y=kx+2分别交x轴的负半轴和y轴于点A,点B.(1)若二次函数图象经过点B,求二次函数的解析式;(2)如图,若点A坐标为(﹣4,0),且点P在△AOB内部(不包含边界).①求m的取值范围;②若点,都在二次函数图象上,试比较y1与y2的大小.23.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x (元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.5 35 35.5 38 …售价x(元/千克)…27.5 25 24.5 22 …(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?24.如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3),抛物线的顶点为P,连接AC.(1)求此抛物线的表达式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求D的坐标;(3)抛物线对称轴上是否存在一点M,使得S△MAP=3S△ACP,若存在,求出M点坐标;若不存在,请说明理由.参考答案1.解:∵y=(m+1)是二次函数,∴m+1≠0且m2﹣m=2,解得:m=2,故选:A.2.解:∵抛物线y=5(x﹣2)2﹣3,∴顶点坐标为:(2,﹣3).故选:A.3.解:函数y=x中,y随x的增大而增大,故选项A不符合题意;函数y=﹣x中,y随x的增大而减小,故选项B符合题意;函数y=x2,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项C不符合题意;函数y=4x﹣1中,y随x的增大而增大,故选项D不符合题意;故选:B.4.解:二次函数y=x2+(a+2)x+a(a为常数)的图象顶点P(m,n),∴,,∵a2≥0,∴a2+4≥4,∴,故选:D.5.解:二次函数y=﹣2(x+3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x =﹣3,当x<﹣3时,y随x的增大而增大,故A、B、C正确,D不正确,故选:D.6.解:∵抛物线y=﹣x2+mx+2m=﹣(x﹣)2++2m,当x<1时,y随x的增大而增大,∴该抛物线的对称轴是直线x=,开口向下,∴≥1,即m≥2,∴+2m>0,∴该抛物线的顶点(,+2m)在第一象限,故选:A.7.解:由题意可知,二次函数y=ax2+bx﹣1的图象开口向上,经过定点(0,﹣1),最小值为﹣2,则二次函数y=ax2+bx﹣1 的大致图象如图1所示,函数y=|ax2+bx﹣1|的图象则是由二次函数y=ax2+bx﹣1位于x轴上方的图象不变,位于x轴下方的图象向上翻转得到的,如图2所示,由图2可知,方程|ax2+bx﹣1|=2 的不相同实数根的个数是3个,故选:B.8.解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,故选:C.9.解:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.故选:C.10.解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故此选项错误;②由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;③当x=﹣1时,y=a﹣b+c<0;当x=1时,y=a+b+c>0,∴(a﹣b+c)(a+b+c)<0,即(a+c)2﹣b2<0,∴(a+c)2<b2,故此选项错误;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项正确.故②④⑤正确.故选:B.11.解:抛物线y=2x2的顶点坐标是(0,0),抛物线线y=2(x﹣1)2+3的顶点坐标是(1,3),所以将顶点(0,0)向右平移1个单位,再向是平移3个单位得到顶点(1,3),即将将函数y=2x2的图象向右平移1个单位,再向上平移3个单位得到函数y=2(x﹣1)2+3的图象.故答案为右.12.解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10,故答案为:10.13.解:∵y=x2+2x﹣4=(x+1)2﹣5,∴该函数图象的对称轴是直线x=﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x=﹣1,(﹣1,﹣5).14.解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,∴①如图1,抛物线与直线相切,联立解析式,得x2﹣2x+2﹣c=0,△=(﹣2)2﹣4(2﹣c)=0,解得:c=1,②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点,此时两个临界值分别为(0,2)和(3,5),∴2<c≤5,综上,c的取值范围是2<c≤5或c=1,故答案为2<c≤5或c=1.15.解:y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,函数不经过第三象限,则2b≥0,∴b=0,此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,函数不经过第三象限,则△≤0,∴b2﹣8b≤0,∴0<b≤8,∴﹣4≤﹣<0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤0时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4<b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵0<b≤4,∴b=2;综上所述b=2或b=6,故答案为b=2或b=6.16.解:①a<0时,x=1时,y≤﹣1,x=﹣3时,y≤﹣3,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,x=1时,y≥﹣1,即a≥,点A、B的坐标得,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;故答案为≤a<或a≤﹣2.17.解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,∵抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB =2,∴设点C的坐标为(c,2),则点D的坐标为(c+2,2),h==c+1,∴抛物线2=﹣[c﹣(c+1)]2+k,解得,k=.18.解:抛物线过点(﹣1,0),对称轴为直线x=2,因此可得,抛物线与x轴的另一个交点为(5,0),a﹣b+c=0,x=﹣=2,即4a+b =0,因此①正确;当x=﹣3时,y=9a﹣3b+c<0,即9a+c<3b,因此②不正确;当x=5时,y=25a+5b+c=0,又b=﹣4a,所以5a+c=0,而a<0,因此有3a+c>0,故③正确;在对称轴的左侧,即当x<2时,y随x的增大而增大,因此④不正确;当x=2时,y最大=4a+2b+c,当x=m时,y=am2+bm+c,因此有4a+2b≥am2+bm,故⑤正确;综上所述,正确的结论有:①③⑤,故答案为:①③⑤.19.解:(1)设抛物线的解析式为y=a(x﹣3)2﹣2,将(0,)代入y=a(x﹣3)2﹣2得,a=,函数解析式为y=(x﹣3)2﹣2,即函数的解析式为y=x2﹣3x+;画出函数图象如图:.(2)由图象可知,当x>3时,y随x增大而增大.20.解:(1)∵抛物线L1:y=ax2+bx+3经过点A(3,0)、B(﹣1,0),∴,解得,∴抛物线L1的函数解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标是(1,4);(2)作DM⊥x轴于M,D′N⊥DM于N,如图,∵A(﹣1,0),D(1,4),∴AM=2,DM=4,在正方形AA′D′D中,AD=DD′,∠ADD′=90°,∴∠ADM+∠D′DN=90°,在Rt△ADM中,∠ADM+∠DAM=90°,∴∠DAM=∠D′DN,∵∠AMD=∠D′ND=90°,∴△ADM≌△DD′N(AAS),∴DN=AM=2,D′N=DM=4,∴MN=DM﹣DN=4﹣2=2,∴点D′的坐标是(5,2),∴点D到D′是先向右移动4个单位,再向下移动2个单位得到的,∴抛物线L1先向右移动4个单位,再向下移动2个单位得到抛物线L2;同理,当抛物线L1向左平移4个单位,再向上平移2个单位时得到抛物线L2也符合题意,综上,当抛物线L1先向右移动4个单位,再向下移动2个单位得到抛物线L2或当抛物线L1向左平移4个单位,再向上平移2个单位时得到抛物线L2其对应点构成的四边形AA′D′D为正方形.21.解:(1)∵抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为直线x=﹣1.∴﹣=﹣1,∴b=2a,∵抛物线顶点在x轴上,且过(0,﹣1),∴=0,c=﹣1∴=0,∴﹣1﹣a=0,解得a=﹣1,∴b=﹣2,∴抛物线的函数解析式为y=﹣x2﹣2x﹣1;(2)∵抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为直线x=﹣1,且抛物线不过第三象限,∴抛物线开口向上,不交于y轴的负半轴,﹣=﹣1,∴a>0,c>0,≥0,b=2a,∴c≥a,∴≥1;(3)∵对称轴为直线x=﹣1,抛物线过点(﹣1,﹣1),∴该点是抛物线的顶点,则函数的表达式为:y=a(x+1)2﹣1,∵当0≤x≤1时,抛物线上的点到x轴距离的最大值为4,而顶点到x轴的距离为1,∴x=1时,该点的y坐标为4或﹣4,即该点坐标为(1,4)或(1,﹣4),将点(1,4)或(1,﹣4),代入函数表达式得:4=a(1+1)2﹣1或﹣4=a(1+1)2﹣1,解得:a=或﹣.22.解(1)∵直线y=kx+2分别交x轴的负半轴和y轴于点A,点B,∴当x=0时,y=2,即B(0,2),将B(0,2)代入二次函数得:﹣m2﹣2m+1=2,解得:m1=m2=﹣1,∴二次函数的解析式为y=﹣(x+1)2+3;(2)①将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,∴.∴一次函数的解析式为,∵顶点P(m,﹣2m+1),点P在△AOB内部,∴,解得:;②∵二次函数开口朝下,对称轴为x=m,,又∵点C(,y1),D(,y2)都在二次函数图象上,点C和点D的横坐标中点为,∴点C离对称轴比点D离对称轴远,开口朝下的抛物线上的点离对称轴越远的点对应的函数值越小,∴y1<y2.23.解:(1)设一次函数关系式为y=kx+b(k≠0),将表中数据代入得:,解得:.∴y=﹣x+60(15≤x≤40).(2)由题知m=y(x﹣10)=(﹣x+60)(x﹣10)=﹣x2+70x﹣600,∴当m=400时,﹣x2+70x﹣600=400,整理得:x2﹣70x+1000=0,解得:x1=20,x2=50.∵15≤x≤40,∴x=20.∴这天芒果的售价为20元.24.解:(1)设此抛物线的解析式为:y=a(x﹣x1)(x﹣x2),∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,∴y=a(x+1)(x﹣3),又∵抛物线与y轴交于点C(0,﹣3),∴a(0+1)(0﹣3)=﹣3,∴a=1,∴y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)∵点A(﹣1,0),点C(0,﹣3),∴OA=1,OC=3,∵DC⊥AC,∴∠DCO+∠OCA=90°,∵OC⊥x轴,∴∠COA=∠COQ=90°,∠OAC+∠OCA=90°,∴∠DCO=∠OAC,∴△QOC∽△COA,∴,即=,∴OQ=9,又∵点Q在x轴的正半轴上,∴Q(9,0),设直线QC的解析式为:y=mx+n,则,解得,∴直线QC的解析式为:y=x﹣3,∵点D是抛物线与直线QC的交点,∴,解得,∴点D(,﹣);(3)存在,理由:如图,点M为直线x=1上一点,连接AM,PC,P A,设点M(1,y),直线x=1与x轴交于点E,∴E(1,0),∵A(﹣1,0),∴AE=2,∵抛物线y=x2﹣2x﹣3的顶点为P,对称轴为x=1,∴P(1,﹣4),∴PE=4,则PM=|y+4|,∵S四边形AEPC=S四边形OEPC+S△AOC=×1×(3+4)+×1×3=5,又∵S四边形AEPC=S△AEP+S△ACP,S△AEP=AE×PE=×2×4=4,∴S△ACP=5﹣4=1,∵S△MAP=3S△ACP,∴12×2×|y+4|=2×1,∴|y+4|=2,∴y1=﹣1,y2=﹣7,故抛物线的对称轴上存在点M使S△MAP=3S△ACP,点M的坐标为(1,﹣1)或(1,﹣7).。

相关文档
最新文档