ansys的断裂参数的计算

合集下载

ANSYSworkbench裂纹分析

ANSYSworkbench裂纹分析

基于ANSYS Workbench的表面裂纹计算By Yan Fei本教程使用ANSYS Workbench17.0 进行试件表面裂纹的分析,求应力强度因子。

需要提前说明的是,本案例没有工程背景,仅为说明裂纹相的计算方法,因此参数取值比较随意,大量设置都采用了默认值。

1.背景知识传统的强度设计思想把材料视为无缺陷的均匀连续体,而实际工程构件中存在多种缺陷,断裂力学是从20实际50年代末期发展起来的一门弥补了传统强度设计思想严重不足的新的学科,是专门研究含缺陷或裂纹的物体在外界条件作用下构件的强度、裂纹扩展趋势以及疲劳寿命的科学。

断裂力学是从构件内部具有初始缺陷这一实际情况出发,研究在外部荷载下的裂纹扩展规律,从而提出带裂纹构件的安全设计准则。

a 张开型裂纹b 滑开型裂纹c 撕开型裂纹图 1 裂纹的分类使用弹性力学方法可以求得,在裂纹尖端处的应力的解析解为无穷大,此时应力值已经失去意义,一般采用应力强度因子作为判断结构是否安全的指标。

目前的断裂力学研究主要集中在I型裂纹的开裂,数值计算工具也多集中在I型裂纹的计算上,因此以I型裂纹为例。

图2 裂纹尖端坐标系含有裂纹的无限大平板的I 型裂纹尖端附近的应力为:)(23cos 2sin 223sin 2sin 12cos223sin 2sin 12cos20ⅠⅠⅠr O r K r K r K xyy x +=+=-=其中,K Ⅰ叫Ⅰ型裂纹的应力强度因子。

2.ANSYS Workbench 裂纹分析2.1.分析模型的建立1 建立一个静力分析步,材料使用默认,需要说明的是,现有计算技术下,断裂力学计算一般都采用线弹性材料,考虑到断裂中塑性区一般都不大,线弹性的假设还是可以接受的。

图3 分析步设置2 建立几何模型,本案例使用spaceclaim 建立几何模型。

图4 试件平面图图5 试件立体图3 分网格,必须采用四面体网格。

本文划分单元特征尺寸1mm。

图 6 网格设置图7 分网效果4 划分网格完成以后,首先进行一次静力计算,确保所有设置正确,对ANSYS Workbench比较熟悉的同学可以省略这一步,静力计算时,试件的两个端面一个约束位移,另一个加1000N的力,方向沿试件轴向,使试件受拉。

裂纹尖端断裂力学参数计算-资料

裂纹尖端断裂力学参数计算-资料

H C
XA,XB,XC为A,B,C节点的坐标 , uA,uB,uC分别为三节点的水平位移。
裂纹线上任意一点的坐标x和 位移u都可以用形函数插值为:
x0.5(1)xA(1)1 ()xB0.5(1)xC u0.5(1)uA(1)1 ()uB0.5(1)uC (4) 11
20世纪50年代,美国北极星导弹固体燃料发动机 发射时发生低应力脆断。
1965年,英国某大型合成塔在水压试验时断裂成 两段。
事故调查发现 →断裂起源于构件中裂纹
1、裂纹尖端断裂力学参数研究意义
传统的强度理论
缺陷:传统强度理论并没有考虑材料中是否有缺陷, 对有缺陷的材料,对其安全可靠性不能做出正确的判 断。
2、裂纹尖端KI的计算方法
J积分法
J积分定义为与路径无关的曲线积分
tx xnx xyny ty yny xynx
tx, ty 分别为X,Y轴的引力分量 n为积分路劲上的单位法向量
间接求得
KI
JE 1- 2
缺点:只能应用于穿透性裂纹,对于表面椭 圆裂纹,剪切滑移等裂纹根本无法计算。
基于ANSYS的裂纹尖端应力强度 因子KI的计算
裂纹尖端应力强度KI研究的意义 裂纹尖端KI的计算方法 裂纹尖端应力奇异性处理 Ansys计算过程及结果
1、裂纹尖端断裂力学参数研究意义
随着现代高强材料和大型结构的广泛应用,一些 按传统强度理论和常规方法设计、制造的产品, 发生了不少重大断裂事故。
(6)
在极坐标中 xr,0 故(6)变为
x x u x u x1 r1 L [ 2u B (1 2 )u C ]
(7)
根据材料的本构关系,应力与应变成正比,故应力也与 1/ r 项成比例

断裂力学参量[整理版]

断裂力学参量[整理版]

ANSYS求解断裂力学参量的理论方法工程上,线弹性断裂力学中常用应力强度因子K、J积分、G能量释放率这三个参量来描述裂纹场。

ANSYS软件能较好地计算裂纹周围区域的应力分布,并能计算裂纹的应力强度因子K、J积分以及能量释放率G等,其特点是简单、经济、精度高。

下面主要介绍在ANSYS中如何求解应力强度因子K和J积分。

(1)求解应力强度因子ANSYS软件中提供了所谓的“位移外推”法(displacement extrapolation) 来计算应力强度因子[5]。

在线弹性范围内,对于三维裂纹,裂纹尖端的局部位移场与应力强度因子的关系为[6]:)2)22IIIIIIKu kGKv kGKwG⎧=+⎪⎪⎪⎪=+⎨⎪⎪⎪=⎪⎩式中: u、v、w—如图2.5所示裂纹尖端局部直角坐标系下裂纹前端位移;r—如图2.5所示裂纹尖端局部柱坐标系下坐标;G—材料剪切模量;K I、K II、K III—应力强度因子;v—为泊松比;34()3()1vk vv-⎧⎪=⎨-⎪+⎩平面应变或轴对称平面应力当利用裂纹尖端节点的位移进行计算时,应力强度因子和裂纹面节点的位移差存在下列关系:IIIIIIKKK⎧=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎩三维裂纹的局部坐标在使用有限元法进行应力强度因子计算时,由于常规单元在裂纹尖端存在奇异性,为使计算准确,必须在裂纹尖端使用细小的单元;如果使用奇异元,即使用二次三角(或五面体)单元,并将靠近裂纹尖端的中间节点置于1/4处,则位于沿裂纹尖端的单元边上的应力和应变与1/消除了奇异性,也就是说,可以用相对比较稀疏的单元得到精度较高的结果。

(2)求解J积分J积分定义为一个围绕裂尖的线积分(二维) 或一个围绕裂纹前沿的面积分。

它用计算裂纹尖端的奇异应力和应变,与积分路径无关。

为了避开裂纹尖点的奇异性,取得较好的精度,积分路径一般取得离裂纹尖点较远。

J积分形式如图2.6所示,其表达式如下:()yxx yuuJ Wdy t t dsx yΓΓ∂∂=-+∂∂⎰⎰式中:W—应变能密度(单位体积应变能);Г—围绕裂纹尖点任意路径;xt—X 方向的作用向量,x x xy yt nσσ=+;yt—Y方向的作用向量,y y xy xt nσσ=+;n—积分路径的外法向向量;s —积分路径距离;围绕裂纹尖端的任意一条J 积分路径在ANSYS 中,为了计算位移向量的偏导数x u x ∂∂与y u y ∂∂,将积分路径向x 正负方向分别移动Δx/2,并求出路径Γ+Δx/2上各点的位移u x1和u y 1以及路径Γ-Δx/2上各点的u x 1和u y 1,则:2121()()x x x y y y u x u u xu y u u y∂∂=-∆⎧⎪⎨∂∂=-∆⎪⎩ ANSYS 具有强大的后处理功能,利用此功能,在求解后可以通过ANSYS 通用后处理器中的单元列表功能,很方便地把各变量映射到自定义的路径中去。

Ansys 断裂力学理论

Ansys 断裂力学理论

第四章断裂力学文献来源:/document/200707/article796_2.htm4.1 断裂力学的定义在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。

断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。

断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。

它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。

一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。

如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。

此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。

典型的断裂参数有:与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1);J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度;能量释放率(G),它反映裂纹张开或闭合时功的大小;注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。

图4-1 裂缝的三种基本模型4.2 断裂力学的求解求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。

本章我们集中讨论下列两个主要的处理过程。

裂纹区域的模拟;计算断裂参数。

4.2.1 裂纹区域的模拟在断裂模型中最重要的区域,是围绕裂纹边缘的部位。

裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。

如图4-2所示。

图4-2 裂纹尖端和裂纹前缘在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。

为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。

图4-3表示2-D和3-D模型的奇异单元。

图4-3 2-D和3-D模型的奇异单元4.2.1.1 2-D断裂模型对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。

在ANSYS中计算裂缝应力强度因子的技巧

在ANSYS中计算裂缝应力强度因子的技巧

在ANSYS中计算裂缝应力强度因子的技巧在ANSYS中计算裂缝应力强度因子的技巧裂缝应力强度因子用ANSYS中怎么求呀。

另外,建模时,裂纹应该怎么处理呀,难道只有画出一条线吗?首先说一下裂纹怎么画,其实裂纹很简单啊。

只要画出裂纹的上下表面(线)就可以了,即使是两个面(线)重合也一定要是两个面(线);如果考虑道对称模型就更好办了,裂纹尖点左面用一个面(线),右边用另外一个面(线),加上对称边界约束。

再说一下裂尖点附近网格的划分。

ansys提供了一个kscon的命令,主要是使得crack tip的第一层单元变成奇异单元,用来模拟断裂奇异性(singularity)。

当然这个步骤不是必须的,有的人说起用ansys算强度因子的时候就一定要用奇异单元,其实是误区(原因下面解释)好了,回到强度因子的计算。

其实只要学过一些断裂力学都知道,K的求法很多。

就拿Mode I的KI来说吧,Ansys自己提供了一个办法(displacement extrapolation),中文可能翻译作“位移外推”法,其实就是根据解析解的位移公式来对计算数据进行fitting的。

分3步走,如果你已经算完了:第一步,先定义一个crack-tip的局部坐标系,这是ansys帮助文件中说的,其实如果你的裂纹尖端就是整体坐标原点的话,而且你的x-axis就顺着裂纹,就没有什么必要了。

第二步,定义一个始于crack-tip的path,什么什么?path怎么定义??看看帮助吧,在索引里面查找fracture mechanics,找到怎么计算断裂强度因子。

(my god,我这3步全是在copy 帮助中的东东啊)。

第三步,Nodal Calcs>Stress Int Factr ,别忘了,这是在后处理postproc中啊。

办法是好,可是对于裂纹尖端的单元网格依赖性很大,所以用kscon制造尖端奇异单元很重要。

curtain的经验是path路径取的越靠近cracktip得到的强度因子就越大,所以单元最好是越fine越好啊。

01_断裂参数的数值计算方法_02

01_断裂参数的数值计算方法_02

11
断裂参数的数值计算方法
1.6.1 全局虚拟裂纹扩展法
Fracture Mechanics
华中科技大学船海学院 袁锐
12
断裂参数的数值计算方法
1.6.1 全局虚拟裂纹扩展法
APPROXIMATE ENERGY TOTALS RECOVERABLE STRAIN ENERGY 46.4131 KINETIC ENERGY 0.00000 *NSET,NSET=node_crack,GEN EXTERNAL WORK 46.4131 21,101,1 PLASTIC DISSIPATION 0.00000 CREEP DISSIPATION 0.00000 VISCOUS DISSIPATION (IN DAMPERS ETC) 0.00000 STATIC DISSIPATION (STABILIZATION) 0.00000 ENERGY LOST AT IMPACTS 0.00000 ENERGY TO CONTROL SPURIOUS MODES 0.00000 ENERGY LOST THROUGH QUIET BOUNDARIES 0.00000 ELECTROSTATIC ENERGY 0.00000 裂纹扩展 ENERGY DUE TO ELECTRICAL CURRENT 0.00000 一个单元 ENERGY LOST TO FRICTIONAL DISSIPATION 0.00000 BUCKLING DISSIPATION (FOR FRAME ELEMT.) 0.00000 DAMAGE DISSIPATION 0.00000 TOTAL STRAIN ENERGY (STRESS POWER) 46.4131 ENERGY BALANCE -2.302158E-12 APPROXIMATE ENERGY TOTALS RECOVERABLE STRAIN ENERGY 46.5637 KINETIC ENERGY 0.00000 *NSET,NSET=node_crack,GEN EXTERNAL WORK 46.5637 22,101,1 PLASTIC DISSIPATION 0.00000 CREEP DISSIPATION 0.00000 VISCOUS DISSIPATION (IN DAMPERS ETC) 0.00000 STATIC DISSIPATION (STABILIZATION) 0.00000 ENERGY LOST AT IMPACTS 0.00000 ENERGY TO CONTROL SPURIOUS MODES 0.00000 ENERGY LOST THROUGH QUIET BOUNDARIES 0.00000 ELECTROSTATIC ENERGY 0.00000 ENERGY DUE TO ELECTRICAL CURRENT 0.00000 ENERGY LOST TO FRICTIONAL DISSIPATION 0.00000 BUCKLING DISSIPATION (FOR FRAME ELEMT.) 0.00000 DAMAGE DISSIPATION 0.00000 TOTAL STRAIN ENERGY (STRESS POWER) 46.5637 ENERGY BALANCE -2.053469E-12

用ANSYS作裂纹走向预测的计算技巧

用ANSYS作裂纹走向预测的计算技巧

用ANSYS作裂纹走向预测的计算技巧ANSYS是一个广泛应用于工程领域的有限元分析软件,用于模拟和解决各种工程问题。

在裂纹走向预测方面,ANSYS提供了多种功能和技巧。

本篇文章将介绍ANSYS在裂纹走向预测方面的计算技巧,并提供一些实用的方法和建议。

以下是一些值得关注的关键步骤和技巧:1.建立准确的模型:在进行裂纹走向预测之前,需要建立一个符合实际情况的准确模型。

模型的准确性对于预测结果的准确性至关重要。

在建模过程中,需要考虑材料的性质、裂纹的大小和方向以及与裂纹配合的部件的几何形状。

2.材料参数的输入:ANSYS提供了材料数据库,可以选择标准材料参数。

然而,在一些情况下,需要自定义材料参数。

这涉及到材料的宏观和微观力学性质。

这些材料参数包括弹性模量、屈服强度、破坏韧性等。

正确输入材料参数对于准确预测裂纹走向至关重要。

3.边界条件的设置:边界条件对于裂纹行为的模拟非常关键。

在模型中正确设置边界条件将能够准确预测裂纹的行为。

对于裂纹走向预测,需要考虑材料的加载状态和应力分布。

要模拟真实情况下材料的力学行为,可以设置边界条件来模拟真实的受力情况。

4.裂纹尺寸的输入:在模拟裂纹行为时,需要定义裂纹的尺寸。

ANSYS提供了多种定义裂纹尺寸的方法,包括手动输入和自动生成。

在裂纹走向预测中,可以通过输入不同的裂纹尺寸来模拟不同的裂纹形态,然后预测不同的裂纹走向。

5.工程应力的加载:工程应力加载是模拟实际工程问题的关键步骤之一、通过在模型中应用工程应力,可以模拟裂纹行为的响应。

可以在ANSYS中使用加载边界条件来模拟不同的加载条件,例如拉伸、压缩或弯曲。

6. 材料损伤准则的选择:裂纹走向预测中,需要选择适当的材料损伤准则。

材料损伤准则用于预测裂纹扩展方向和速率。

ANSYS提供了多种材料损伤准则,如J-Integral、CTOD等。

选择适当的材料损伤准则可以提高预测结果的准确性。

7.结果分析和后处理:在模拟完成后,需要对结果进行分析和后处理。

ANSYS积分法和节点位移法求解应力强度因子附命令流

ANSYS积分法和节点位移法求解应力强度因子附命令流

K I = √2π K II = √2π 其中: G为剪切模量;
G ∆v 1 + κ √r G ∆u 1 + κ √r
κ为材料常数,对于平面应力问题,取
3−������ 1+������

∆u为裂纹面在某点处的水平相对位移; ∆v为裂纹面在某点处的垂直相对位移。
图 1-6
位移法图解
根据断裂力学对于三种裂纹的定义,当∆v>0 时,K I 为正,裂纹上下面相对 位移为顺时针为正,即顺时针时,∆u>0,K II 为正;反之为负。理论上,当取上 下裂纹面同一位置的点,当该点趋向于裂尖时,结果更精确,本算例取奇异单元 上 1/4 处的节点的位移进行计算,计算模型同上。 首先,先对有限元模型进行求解,然后进入到后处理层,求出在局部坐标系 系下,所处裂纹上下面的奇异单元上 1/4 处节点的水平及竖直位移 ux,uy,然后 求出裂纹面的相对位移∆u、∆v,最后代入上式即可。 计算结果如图 1-7 所示:KI=223.84Mpa*(mm)1/2,KII=217.63Mpa*(mm)1/2。 计算误差分别为:3.1%、0.25%。
FINISH /CLEAR /TITIE,INTERACTIVE INTEGRATION METHOD BY IDUTER-ANSYS /PREP7 /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /REPLOT !------------------!UNIFIED UNIT(N,MM) PI=ACOS(-1) *SET,H,80 *SET,W,50 *SET,A,0.12*W *SET,BETA,90-45 *SET,ALPH,(90-BETA)*PI/180 *SET,SIGMA,100 R1=1 R2=2 R3=3 !THE HEIGHT OF MODEL !THE WEIGHT OF MODEL !HALF LENGTH OF THE ANGLED CRACK !THE INCLINED ANGLE OF CRACK ! RADIAN SYSTEM !SIGMA !FIRST ROW OF ELEMENT RADIUS !THIRD ROW OF ELEMENT RADIUS !SIXTH ROW OF ELEMENT RADIUS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS的断裂参数的计算1 引言断裂事故在重型机械中是比较常见的。

一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。

另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。

因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。

确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。

对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。

本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。

2 断裂参量数值模拟的理论基础对于线弹性材料裂纹尖端的应力场和应变场可以表述为:(1)其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。

图1 裂纹尖端的极坐标系(2)应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。

平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。

应力分析是标准的ANSYS线弹性或非线性弹性问题分析。

因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。

如图2所示,图中给出了二维和三维裂纹的术语和表示方法。

图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。

场值得精确度取决于材料,几何和其他因素。

为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。

对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。

在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。

为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征:·裂纹面一定要是一致的。

·围绕裂纹尖端或裂纹前缘的单元一定是二次单元,并且他的中间节点在四分之一边处。

这样的单元也称作为奇异单元。

图3 计算裂纹的常用单元如图所示,即为满足要求的奇异单元。

3.2 如何建立二维线弹性断裂模型对于二维断裂问题,推荐使用PLANE183,他是一个8结点二次实体单元。

围绕裂纹尖端第一行单元一定要是奇异的。

具体解释参见图3,利用前处理命令KSCON(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create),这个命令会给围绕关键点划分单元,这个命令特别适用分析断裂力学问题。

它可以在裂纹尖端自动产生奇异单元。

并且可以利用命令可以控制围绕裂纹尖端第一排单元的半径,和圆周方向上单元的数量。

图4 二维断裂问题的模型示例图4给出了利用KSCON.产生的裂纹尖端奇异单元范例。

要尽量的利用模型的对称性。

为了得到较好的结果,围绕裂纹尖端的第一行单元的半径至少是裂纹半长的1/8。

在圆周方向,推荐每隔30或44度放置一个等腰三角形。

3.3 计算应力强度因子利用后处理中KCALC命令计算混合型应力强度因子KⅠ,KⅡ和K Ⅲ。

(Main Menu>General Postproc> Nodal Calcs> Stress Int Factr)。

这个命令只能用于计算线弹性均匀各向同性材料的裂纹区域。

为了使用KCALC必须按照以下步骤:1、定义裂纹尖端或裂纹前缘局部坐标系X轴一定要平行于裂纹面。

(3D中垂直于裂纹前缘)并且y轴垂直于裂纹面。

图2给出了示意。

注意--当使用 KCALC 命令时,坐标系必须是激活的模型坐标系[CSYS]和结果坐标系[RSYS]。

Utility Menu> WorkPlane> Local Coordinate Systems> Create Local CS> At Specified Loc2、定义沿着裂纹面的路径定义沿裂纹面的路径,应以裂纹尖端作为路径的第一点。

对于半个裂纹模型而言,沿裂纹面需有两个附加点,这两个点都沿裂缝面;对于整体裂纹模型,则应包括两个裂纹面,共需四个附加点,两个点沿一个裂纹面,其他两个点沿另一个裂纹面。

命令:PATH,PPATHGUI:Main Menu>General Postproc>Path Operations>Define Path3、计算应力强度因子KCALC命令中的KPLAN域用于指定模型是平面应变或平面应力。

除了薄板的分析,在裂纹尖端附近或其渐近位置,其应力一般是考虑为平面应变。

KCSYM 域用来指定半裂纹模型是否具有对称边界条件、反对称边界条件或是整体裂纹模型。

4 计算实例本文采用平板作为计算实例,材料为线弹性,板的厚度为0.003m,板长0.05m,板宽0.01m,弹性模量:2E11Pa,泊松比为0.3。

裂纹尖端采用plane183奇异单元,来划分裂纹尖端网格,如图5所示。

图6给出了模型的边界条件:平板的两端承受1e7pa的拉应力。

图7给出了裂纹尖端的等效应力云图,通过计算结果可知裂纹面的应力为低应力区,裂纹尖端存在应力集中。

图8给出了裂纹强度因子的计算结果,这个结果与理论值相比满足误差要求。

5 结论通过以上分析和计算可以得到以下结论:(1)ANSYS提供了断裂计算的能力,并且可以提供较准确的计算结果(2)ANSYS的裂纹奇异单元可以很好的反映出裂纹尖端的奇异性。

说明:本信息1 引言断裂事故在重型机械中是比较常见的。

一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。

另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。

因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。

确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。

对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。

本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。

2 断裂参量数值模拟的理论基础对于线弹性材料裂纹尖端的应力场和应变场可以表述为:(1)其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。

图1 裂纹尖端的极坐标系(2)应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。

平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。

应力分析是标准的ANSYS线弹性或非线性弹性问题分析。

因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。

如图2所示,图中给出了二维和三维裂纹的术语和表示方法。

图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。

场值得精确度取决于材料,几何和其他因素。

为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。

对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。

在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。

为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征:·裂纹面一定要是一致的。

·围绕裂纹尖端或裂纹前缘的单元一定是二次单元,并且他的中间节点在四分之一边处。

这样的单元也称作为奇异单元。

图3 计算裂纹的常用单元如图所示,即为满足要求的奇异单元。

3.2 如何建立二维线弹性断裂模型对于二维断裂问题,推荐使用PLANE183,他是一个8结点二次实体单元。

围绕裂纹尖端第一行单元一定要是奇异的。

具体解释参见图3,利用前处理命令KSCON(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create),这个命令会给围绕关键点划分单元,这个命令特别适用分析断裂力学问题。

它可以在裂纹尖端自动产生奇异单元。

并且可以利用命令可以控制围绕裂纹尖端第一排单元的半径,和圆周方向上单元的数量。

图4 二维断裂问题的模型示例图4给出了利用KSCON.产生的裂纹尖端奇异单元范例。

要尽量的利用模型的对称性。

为了得到较好的结果,围绕裂纹尖端的第一行单元的半径至少是裂纹半长的1/8。

在圆周方向,推荐每隔30或44度放置一个等腰三角形。

3.3 计算应力强度因子利用后处理中KCALC命令计算混合型应力强度因子KⅠ,KⅡ和K Ⅲ。

(Main Menu>General Postproc> Nodal Calcs> Stress Int Factr)。

这个命令只能用于计算线弹性均匀各向同性材料的裂纹区域。

为了使用KCALC必须按照以下步骤:1、定义裂纹尖端或裂纹前缘局部坐标系X轴一定要平行于裂纹面。

(3D中垂直于裂纹前缘)并且y轴垂直于裂纹面。

图2给出了示意。

注意--当使用 KCALC 命令时,坐标系必须是激活的模型坐标系[CSYS]和结果坐标系[RSYS]。

Utility Menu> WorkPlane> Local Coordinate Systems> Create Local CS> At Specified Loc2、定义沿着裂纹面的路径定义沿裂纹面的路径,应以裂纹尖端作为路径的第一点。

对于半个裂纹模型而言,沿裂纹面需有两个附加点,这两个点都沿裂缝面;对于整体裂纹模型,则应包括两个裂纹面,共需四个附加点,两个点沿一个裂纹面,其他两个点沿另一个裂纹面。

命令:PATH,PPATHGUI:Main Menu>General Postproc>Path Operations>Define Path3、计算应力强度因子KCALC命令中的KPLAN域用于指定模型是平面应变或平面应力。

除了薄板的分析,在裂纹尖端附近或其渐近位置,其应力一般是考虑为平面应变。

KCSYM 域用来指定半裂纹模型是否具有对称边界条件、反对称边界条件或是整体裂纹模型。

4 计算实例本文采用平板作为计算实例,材料为线弹性,板的厚度为0.003m,板长0.05m,板宽0.01m,弹性模量:2E11Pa,泊松比为0.3。

裂纹尖端采用plane183奇异单元,来划分裂纹尖端网格,如图5所示。

图6给出了模型的边界条件:平板的两端承受1e7pa的拉应力。

相关文档
最新文档