试谈方差齐性检验PPT(32张)
合集下载
SPSS应用检验及方差齐性检验正态性检验ppt课件

Descriptives (描述性统计分析)
Explore(探索性分析)
Crosstabs (列联表资料分析)
…
ppt课件.
2
二.t检验:样本均数与总体均数的比较 analyze→compare means →one-sample t test
→test variable:分析变量 →test value:总体均数的值
→ok 例3-5:
ppt课件.
3
三.t检验:配对t检验 analyze→compare means →paried-samples t test
→paried variables:配对的两个变量
→ok 例3-6:
ppt课件.
4
四.t检验:两样本均数的比较 analyze→compare means →independent-samples t test
正态性检验
plots:normality test
untransformed →continue
→ok
正态性检验有两种结果: Shapiro-Wilk:W检验(小样本) Kolmogorov-Smirnov:D检验(大样本)
“Paste”按钮的使用
ppt课件.
6
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
SPSS应用:t检验和正态性、方差齐性检验
ppt课件.
1
一、 统计描述:
Analyze → descriptive statistics → descriptives → variables: 分析变量→ok 例2-1:
descriptive statistics:
frequencies(频数分布分析)
第7章---方差分析PPT课件

方差分析的基本思想和原理 (两类误差)
1. 随机误差
▪ 因素的同一水平(总体)下,样本各观察值之间
的差异
• 比如,同一行业下不同企业被投诉次数之间的差异
▪ 这பைடு நூலகம்差异可以看成是随机因素的影响,称为
随机误差
2. 系统误差
▪ 因素的不同水平(不同总体)之间观察值的差异
• 比如,不同行业之间的被投诉次数之间的差异
犯第一类错误的概率为,连续作6次检验犯第Ⅰ
类 错 误 的 概 率 增 加 到 1-(1-)6=0.265 , 大 于
0.05。相应的置信水平会降低到0.956=0.735
2. 一般来说,随着增加个体显著性检验的次数,偶然 因素导致差别的可能性也会增加,(并非均值真的 存在差别)
3. 方差分析方法则是同时考虑所有的样本,因此排除 了错误累积的概率,从而避免拒绝一个真实的原假 设
第5页/共90页
由于各种因素的影响,研究所得的数 据呈现波动状。造成波动原因可分成两类:
一类是不可控的随机因素, 另一类是研究中施加的对结果形成影 响的可控因素
第6页/共90页
学习内容
7.1 方差分析引论 7.2 单因素方差分析 7.3 双因素方差分析
第7页/共90页
学习目标
1. 解释方差分析的概念 2. 解释方差分析的基本思想和原理 3. 掌握单因素方差分析的方法及应用 4. 理解多重比较的意义 5. 掌握双因素方差分析的方法及应用 6. 掌握试验设计的基本原理和方法
构造检验的统计量
(计算组间平方和 SSA)
1. 各组平均值 xi (i 1,2,与, 总k ) 平均值 的离x 差
平方和
2. 反映各总体的样本均值之间的差异程度
方差分析ppt课件

推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
第五章方差分析144页PPT

较同需时估没计有一充个分利S用xi 资xj 料,所故提使供得的各信次息比而较使误误差差的估估计计的不精统确一,
性降低,从而降低检验的灵敏性。
上一张 下一张 主 页 退 出
例如,试验有5个处理 ,每个处理 重复 6次,共有30个 观测值。进行t检验时,每次只能利用两个处理共12个观 测值估计试验误差 ,误差自由度为 2(6-1)=10 ;若利 用整个试验的30个观测值估计试验误差 ,显然估计的精 确性高,且误差自由度为5(6-1)=25。可见,在用t检 法进行检验时 ,由 于估计误差的精确性低,误差自由度
方差分析实质上是关于观测值变异原因的数量分析。
上一张 下一张 主 页 退 出
1 方差分析的基本原理与步骤
1.1 线性模型与基本假定
假设某单因素试验有k个处理,每个处理有n 次重复,共有nk个观测值。试验资料的数据模式 如表5-1所示。
上一张 下一张 主 页 退 出
表5-1 k个处理每个处理有n个观测值的数据模式
用 t 检验,须采用方差分析法。
上一张 下一张 主 f variance) 是由英国统计学家
R.A.Fisher于1923年提出的。
方差分析是将k个处理的观测值作为一个整体 看待,把观测值总变异的偏差平方和及自由度分解 为相应于不同变异来源的偏差平方和及自由度,进 而获得不同变异来源的总体方差估计值;由总体方 差估计值构造F统计量,计算F值,检验各样本所属 总体平均数是否相等。
束,即
n
(xi
j
xi.
)
0(i=1,2,…,k。故处理内自
j1
由度为资料中观测值的总个数减k,即kn-k 。
处理内自由度记为dfe,
dfe=kn-k=k(n-1)
性降低,从而降低检验的灵敏性。
上一张 下一张 主 页 退 出
例如,试验有5个处理 ,每个处理 重复 6次,共有30个 观测值。进行t检验时,每次只能利用两个处理共12个观 测值估计试验误差 ,误差自由度为 2(6-1)=10 ;若利 用整个试验的30个观测值估计试验误差 ,显然估计的精 确性高,且误差自由度为5(6-1)=25。可见,在用t检 法进行检验时 ,由 于估计误差的精确性低,误差自由度
方差分析实质上是关于观测值变异原因的数量分析。
上一张 下一张 主 页 退 出
1 方差分析的基本原理与步骤
1.1 线性模型与基本假定
假设某单因素试验有k个处理,每个处理有n 次重复,共有nk个观测值。试验资料的数据模式 如表5-1所示。
上一张 下一张 主 页 退 出
表5-1 k个处理每个处理有n个观测值的数据模式
用 t 检验,须采用方差分析法。
上一张 下一张 主 f variance) 是由英国统计学家
R.A.Fisher于1923年提出的。
方差分析是将k个处理的观测值作为一个整体 看待,把观测值总变异的偏差平方和及自由度分解 为相应于不同变异来源的偏差平方和及自由度,进 而获得不同变异来源的总体方差估计值;由总体方 差估计值构造F统计量,计算F值,检验各样本所属 总体平均数是否相等。
束,即
n
(xi
j
xi.
)
0(i=1,2,…,k。故处理内自
j1
由度为资料中观测值的总个数减k,即kn-k 。
处理内自由度记为dfe,
dfe=kn-k=k(n-1)
方差齐性检验

28
在原假设
H0
:
2 1
2 2
2 n
成立下,Box 还证明了统计量 B 的近似分布是 F 分布
F f1, f2 ,对给定的显著性水平 ,该检验的拒绝域为
W1 B F1 f1, f2 ,
(8.3.10)
其中 f2 的值可能不是整数,这时可以通过对 F 分布的分 位数表施行内插法得到分位数.
29
1.0856 0.970 .
23
对给定的显著性水平 0.05,查表得
2 1
r
1
2 0.95
4
1
7.815
.
由于 B 0.970 7.815 ,所以不拒绝原假设 H0 , 可以认为诸水平下的方差间无显著性差异.
24
平方和计算如下:
SA
57.92 7
37.52 5
34.92 6
38.12 6
4.92 ,
s42
Q4 9
53.42 9
5.94 ,
H max s12, s22, s32, s42 9.00 1.9149 . min s12, s22, s32, s42 4.70
由于
H
9.00 4.70
1.9149
6.31,因此不拒绝原假设
H0
,可以认为
四个总体方差间无显著性差异.
26
三、修正的Bartlett检验
27
针对样本量低于 5 时不能使用 Bartlett 检验的缺点, Box 提出修正的 Bartlett 检验统计量
B
f2BC ,
f1A BC
(8.3.9)
其中 B 与 C 如(8.3.7)与(8.3.6)所示,且