影响散热性能的各种因素
影响散热性能的各种因素

影响散热性能的各种因素晨怡热管2007—11-29 22:46:39三、影响散热性能的各种因素在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平.只要对CPU 散热技术有了全面了解,其它产品的散热原理也就无师自通了。
因此,本专题重点就讨论CPU 散热技术.在介绍各种散热技术之前,我们还要先确认几个散热的基本概念.热力学基本知识我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。
虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。
物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。
为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。
以下针对这些概念进行集中讲解。
热传导定义:通过物体的直接接触,热从温度高的部位传到温度低的部位.热能的传递速度和能力取决于:1。
物质的性质。
有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁.这样就有了采用不同材质的散热器,铝、铜、银。
它们的散热性能依次递增,价钱当然也就成正比啦。
2。
物体之间的温度差。
热是从温度高的部位传向温度低的部位,温差越大热的传导越快。
热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一.所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。
比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。
热对流热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。
根据流动介质的不同,可分为气体对流和液体对流。
影响热对流的因素主要有:1.通风孔洞面积和高度2。
影响散热性能的各种因素

影响散热性能的各种因素晨怡热管2007-11-29 22:46:39三、影响散热性能的各种因素在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平。
只要对CPU散热技术有了全面了解,其它产品的散热原理也就无师自通了。
因此,本专题重点就讨论CPU散热技术。
在介绍各种散热技术之前,我们还要先确认几个散热的基本概念。
热力学基本知识我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。
虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。
物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。
为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。
以下针对这些概念进行集中讲解。
热传导定义:通过物体的直接接触,热从温度高的部位传到温度低的部位。
热能的传递速度和能力取决于:1.物质的性质。
有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁。
这样就有了采用不同材质的散热器,铝、铜、银。
它们的散热性能依次递增,价钱当然也就成正比啦。
2.物体之间的温度差。
热是从温度高的部位传向温度低的部位,温差越大热的传导越快。
热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一。
所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。
比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。
热对流热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。
根据流动介质的不同,可分为气体对流和液体对流。
影响热对流的因素主要有:1.通风孔洞面积和高度2.温度差:原因还是因为热是由高到低方向传导。
散热器的性能研究及优化设计

散热器的性能研究及优化设计散热器是现代电子设备的重要组成部分,其主要功能是将设备内部产生的热量转移至周围环境中,保持设备工作的稳定性和可靠性。
随着计算机、手机等电子设备的发展,散热器的性能要求也越来越高。
本文将从散热器的原理、性能指标以及优化设计方面进行探讨。
一、散热器的原理散热器的原理是利用传热学中的对流散热方式进行散热。
散热器的设计是将热源附着在散热器的表面,通过散热器的表面积将热量传递给周围环境。
散热器的表面结构可以设置多个散热片,增加热量的散发面积,从而提高散热器的散热效率。
同时,通过风扇等装置将周围的空气进行强制对流,进一步增强热量的散发。
二、散热器的性能指标1. 热阻:热阻是评估散热器散热效率的重要指标,其定义为单位面积的热阻力,即在单位面积上传递单位时间的热量与侧边面之间的温度差之比。
热阻越小,散热器的散热效率越高,因此该指标通常越小越好。
2. 噪音:散热器的噪音也是需要考虑的因素。
为了提高散热器的散热效率,在高速风扇的辅助下,通风孔经常会比较大,从而产生一定的噪音。
因此,散热器的设计也应该注重减少噪音。
3. 重量:散热器的重量也是需要考虑的因素。
过重的散热器会增加设备的整体重量,不利于移动,同时也会增加安装的难度和成本。
三、散热器的优化设计散热器的设计需要考虑多个因素,包括散热器的表面积,散热片的数量、大小和形状,以及散热器的风扇和通风孔的尺寸和布局等方面。
1. 增加散热片的数量和面积散热器的表面积决定了其能够散发热量的大小,因此增加散热片的数量和面积可以有效提高散热器的散热效率。
同时,也可以通过设计不同形状的散热片,使其更好地适应各种不同的设备,并提高散热器的美观度。
2. 优化风扇和通风孔的尺寸和布局散热器的风扇和通风孔的布局和尺寸也是影响散热器散热效率的重要因素。
优化风扇的转速和尺寸,以及通风孔的大小和布局,可以提高空气流动的效率,进一步增加散热器的散热性能。
同时,优化风扇和通风孔的设计,也可以有效降低散热器的噪音,使其更加适合各种不同的场合使用。
CPU散热器的热管数量与散热性能

CPU散热器的热管数量与散热性能CPU散热器作为计算机硬件中至关重要的组成部分之一,其性能直接影响着计算机的稳定性和工作效率。
而在众多CPU散热器中,热管是其中一种常见且重要的散热元件之一。
本文将探讨CPU散热器的热管数量与散热性能之间的关系。
一、热管的原理和作用热管是一种热传导元件,其主要作用是将CPU产生的热量迅速传递到散热鳍片上,并通过风扇散热将热量尽快带走。
热管利用其内部的工质物质(一般为低温沸水)在蒸汽与冷凝反复循环的原理,实现对热量的高效传输。
二、热管数量对散热性能的影响1. 单热管散热器单热管散热器是指散热器中仅包含一根热管的设计。
这种散热器一般适用于低功耗的CPU,热量较低的情况下可以满足散热需求。
但是,当CPU功耗增加,热量产生增加时,单热管散热器往往无法满足散热要求,容易导致CPU温度升高,甚至超过安全运行温度。
2. 多热管散热器多热管散热器是指在散热器设计中采用多根热管的方案,以增加散热器的散热性能和散热效率。
多热管散热器能够更好地分散和传递CPU产生的热量,通过增加热管的数量,提升整体的散热能力。
相比于单热管散热器,多热管散热器在处理高功率CPU散热时有明显的优势,可以有效地降低CPU温度,保证计算机的正常运行。
三、热管数量应选择适合的方案在选择CPU散热器时,并非热管数量越多越好。
合理地选择热管数量需要根据实际情况综合考虑。
以下几个因素可以作为选择热管数量的参考:1. CPU功耗首先需要考虑CPU的功耗情况,功耗越高,产生的热量就越大,对散热器的要求也就越高。
如果CPU功耗较低,单热管散热器已经足够满足散热需求;而对于高功耗的CPU,多热管散热器能够更好地满足散热要求。
2. 散热需求根据散热需求,选择适当的热管数量也很重要。
如果在正常使用中,CPU工作负载较低,散热需求不高,那么单热管散热器足以满足要求。
而在进行大型程序渲染、游戏等高负载工作时,多热管散热器的散热能力更强,可以更好地保证CPU温度在安全范围内。
散热片设计计算公式

散热片设计计算公式
散热片是一种用于散热的重要元件,广泛应用于电子设备和机械设备中。
它的设计计算公式是根据散热片的尺寸、材料和工作条件来确定的。
在设计散热片时,需要考虑到散热片的导热性能、散热面积和散热效率等因素。
散热片的导热性能是影响散热效果的重要因素之一。
导热性能通常用散热片的导热系数来衡量,导热系数越大,散热片的散热效果就越好。
导热系数可以通过实验测试或者参考材料手册来获取。
在设计散热片时,需要选择导热性能较好的材料,以提高散热片的导热性能。
散热片的散热面积也是影响散热效果的重要因素。
散热面积越大,散热片能够散热的表面积就越大,散热效果也就越好。
在设计散热片时,需要根据散热要求和设备尺寸等因素来确定散热片的尺寸。
通常情况下,散热片的外形可以选择矩形、方形、圆形等形状,根据实际应用情况来确定。
散热片的散热效率也是需要考虑的因素之一。
散热效率可以通过散热片的设计参数来计算,常见的计算公式如下:
散热效率 = 散热量 / 输入功率
其中,散热量是指散热片从热源吸收的热量,输入功率是指散热片
所消耗的功率。
散热效率越高,散热片的散热效果就越好。
在设计散热片时,需要根据实际情况来选择合适的计算公式,并考虑到散热片的材料、尺寸和工作条件等因素。
散热片的设计计算公式是根据散热片的导热性能、散热面积和散热效率等因素来确定的。
在设计散热片时,需要综合考虑这些因素,并选择合适的材料和尺寸,以提高散热片的散热效果。
通过合理设计和计算,可以使散热片达到更好的散热效果,保证设备的正常运行。
散热器热性能研究与优化

散热器热性能研究与优化在现代电子设备的制造和使用过程中,热问题是一个必须关注的重要问题。
当电子设备处于不断运行状态时,会产生大量的热量,如果不能及时散热可能会导致设备损坏甚至爆炸。
因此,散热器作为电子设备中最重要的散热部件之一,其热性能的研究和优化显得尤为重要。
一、散热器的分类散热器根据其工作原理和结构可分为空气散热器和水冷散热器两大类。
空气散热器又可以分为风扇式散热器和散热片散热器两种类型。
风扇式散热器通过内置的风扇将热量吹出设备或散热器外部,其结构简单、制造成本低,但散热效果相对较差。
散热片散热器则是通过散热片的表面积较大,将热量散发到空气中。
水冷散热器则是通过水的冷却性能来达到散热的目的,散热效果相对较好,但制造成本和安装复杂度较高。
二、散热器热性能的影响因素散热器的热性能是由多个因素共同作用决定的,主要包括以下几个方面。
1. 散热器的材质散热器的材质可以影响其的导热性能、传热效率和散热面积等因素,进而影响整个散热器的热性能。
常用的散热器材质主要包括铝合金、铜和钨铜等。
2. 散热器的结构散热器的结构特点也会对其热性能产生影响。
通常来说,散热器表面积越大,散热效率就越高。
同时,散热器内部的通风结构和散热片的间距、角度等因素也会影响散热效率。
3. 散热环境散热环境也会对散热器的热性能产生影响,例如环境温度、空气流动速度等因素都会影响散热器的散热效率。
三、散热器的热性能优化方法针对散热器的热性能问题,可以采取一些有效的优化方法来提高散热器的热性能。
以下是几个常用的优化方法。
1. 材质的优化选择散热器的材质是影响热性能的重要因素之一,因此可以通过材质的优化选择来提高散热效率。
例如,采用散热效率更高的材料、增加散热片的表面积等手段均可提高散热器的热性能。
2. 结构的优化设计散热器的结构也是影响热性能的重要因素之一,因此可以通过结构的优化设计来提高散热效率。
例如,采用更加合理的散热片间距、角度等设计,以及增加通风口的数量等,均可有效提高散热器的热性能。
电脑的散热与风扇管理技巧

电脑的散热与风扇管理技巧现代电脑在高性能运行时产生的热量很大,如果不及时散热,会导致电脑温度过高,可能引发硬件故障或者降低电脑的寿命。
因此,学会正确管理电脑的散热与风扇是十分重要的。
本文将介绍一些电脑散热与风扇管理的技巧,帮助你有效地保护电脑并提高其性能。
一、保持电脑清洁电脑进风口和散热孔的堵塞是影响散热效果的主要因素之一。
因此,保持电脑的清洁十分重要。
定期打开电脑机箱,清理内部灰尘和脏物,并定期清理电脑的键盘、显示器等外部设备。
同时,还可以使用吹气球等专业清洁工具,将灰尘从电脑的散热孔中吹出,确保通风畅通。
二、合理摆放电脑电脑摆放的位置也会影响散热效果。
应尽量避免将电脑放置在密闭的空间或者堆满物品的地方,以免影响空气流通和散热。
最好选择通风良好的地方,并保持电脑周围的空间畅通,避免堆积物品阻挡电脑的散热孔。
三、使用优质散热器和风扇电脑散热器和风扇也是保持电脑散热的重要组成部分。
市面上有各种各样的散热器和风扇可供选择,我们应该选择质量好、散热效果好的产品。
同时,需定期检查散热器和风扇是否正常工作,如果发现异常,应及时更换或维修。
四、调整电脑电源模式电脑的电源模式设置也会影响电脑的散热效果。
在Windows系统中,可以通过控制面板中的“电源选项”来进行调整。
一般来说,设置为“平衡”或者“节能”模式能够降低电脑硬件的工作强度,减少发热量。
而“高性能”模式则会提高硬件的运行速度,但同时也会增加发热量。
五、合理安装硬件和软件电脑内部的硬件和软件也会影响散热效果。
在安装硬件时,应选择合适的尺寸和散热性能良好的产品,并遵循正确的安装步骤。
在安装软件时,应避免同时运行过多的程序,尽量减少CPU的负载,以降低电脑的工作温度。
同时,鼓励及时更新操作系统和软件,以确保其性能优化和散热效果的改进。
六、注意风扇转速的调整电脑的风扇是散热的关键。
我们可以通过专业软件来调整风扇的转速,提高电脑的散热效果。
但需要注意的是,过高的风扇转速会增加噪音和耗电量,过低的转速则可能无法足够散热。
影响散热性能的各种因素

影响散热性能的各种因素晨怡热管2007-11-29 22:46:39三、影响散热性能的各种因素在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平。
只要对CPU散热技术有了全面了解,其它产品的散热原理也就无师自通了。
因此,本专题重点就讨论CPU散热技术。
在介绍各种散热技术之前,我们还要先确认几个散热的基本概念。
热力学基本知识我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。
虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。
物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。
为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。
以下针对这些概念进行集中讲解。
热传导定义:通过物体的直接接触,热从温度高的部位传到温度低的部位。
热能的传递速度和能力取决于:1.物质的性质。
有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁。
这样就有了采用不同材质的散热器,铝、铜、银。
它们的散热性能依次递增,价钱当然也就成正比啦。
2.物体之间的温度差。
热是从温度高的部位传向温度低的部位,温差越大热的传导越快。
热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一。
所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。
比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。
热对流热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。
根据流动介质的不同,可分为气体对流和液体对流。
影响热对流的因素主要有:1.通风孔洞面积和高度2.温度差:原因还是因为热是由高到低方向传导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响散热性能的各种因素晨怡热管2007-11-29 22:46:39三、影响散热性能的各种因素在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平。
只要对CPU散热技术有了全面了解,其它产品的散热原理也就无师自通了。
因此,本专题重点就讨论CPU散热技术。
在介绍各种散热技术之前,我们还要先确认几个散热的基本概念。
热力学基本知识我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。
虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。
物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。
为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。
以下针对这些概念进行集中讲解。
热传导定义:通过物体的直接接触,热从温度高的部位传到温度低的部位。
热能的传递速度和能力取决于:1.物质的性质。
有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁。
这样就有了采用不同材质的散热器,铝、铜、银。
它们的散热性能依次递增,价钱当然也就成正比啦。
2.物体之间的温度差。
热是从温度高的部位传向温度低的部位,温差越大热的传导越快。
热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一。
所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。
比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。
热对流热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。
根据流动介质的不同,可分为气体对流和液体对流。
影响热对流的因素主要有:1.通风孔洞面积和高度2.温度差:原因还是因为热是由高到低方向传导。
3.通风孔洞所处位置的高度:越高对流越快。
4.液体对流:导热效果比较好,因为液体比热要大些,所以温差大,导热快。
之所以在CPU散热器安装的风扇,也就是为了产生强制热对流而加强散热性能。
理论上说,只要散热器表面积足够大,是无需强制热对流的,但实际应用中,散热器不可能做的无限大,所以采用风扇的主动散热器是最常见的,并且可以根据散热的需求而采用不同转速和大小规格的风扇。
少数散热器也能采用被动散热的方式,比如下图中的产品,但请注意散热器已经覆盖了大半个主板。
热辐射是一种可以在没有任何介质(空气)的情况下,不依靠分子之间的碰撞,又不依靠气体或者液体的流动就能够达成热交换的传递方式。
影响热辐射的因素主要有:1、热源的材料。
材料的比热越小相外辐射能量越快,反之就越慢。
2、表面的颜色。
一般来说,顏色光亮的(如白色或銀色)物体表面吸收和释放辐射能量的速率较慢。
深颜色(黑色)的物体表面吸收和释放辐射能量的速率较快,有趣的是物体释放电磁波的能量越高,其吸收能力也高,反之亦然。
当然,在普通应用环境中,比起热传导与热对流,热辐射起到的散热作用微乎其微,因此用户在此方面不必太在意。
理论是空洞无味的,下面用一个简单的图示来为大家做下讲解:上图显示了三种热传递方式在散热器中的应用形式。
属于热传导的是:由热源CPU传至散热片以及在散热片内部传递。
属于对流的是:热由散热片传递到周围的空间,再由风扇和散热片组合形成的对流对其散热。
热传导与热对流是主要散热方式,CPU产生的大部分热量在传递到散热片上后,都被风扇形成的对流所带走,热辐射产生的作用可以忽略不计。
以上三个概念是热力学的基础知识。
具体到材料上的特点,就需要引入热传到系数与比热值两个概念。
材料的导热性能热传导系数由于热传导是散热器有效运作的两大方式之一,因此,散热片材料的热传递速度就是其中最关键的技术指标,理论上称作热传导系数。
定义:每单位长度、每度K,可以传送多少瓦数的能量,单位为W/mK。
即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率。
数值越大,表明该材料的热传递速度越快。
由上表中可以得知,银、铜的热传导系数最好。
但是很显然,这两种材料的成本较高,不利于大规模量产。
因此在目前的市场中,我们见到的最常用散热器材料就是铝合金,而今后也肯定以该种金属为主。
比热容热传递的速度很重要,但是吸收热量能力低也不利于散热,这里又引入了比热容的概念。
定义:单位质量下需要输入多少能量才能使温度上升一摄氏度,单位为卡/(千克×°C),数值越大代表物体容纳热量的能力越大。
根据上表得知,水比热容最高,比金属有更强的热容能力,这也是水冷散热器赖以生存的根本。
值得注意的是,铜的比热容低于铝,这就是为什么纯铜散热器的散热效能并没有大幅超出铝质散热器的原因。
热传导系数与比热值体现的是材料本身的特性。
但是一款散热器散热性能的好坏,也要受到自身设计结构的影响。
而体现这方面整体性能的参数,就要依靠热阻与风阻两个概念了。
同时,散热器的体积与重量也不可忽视。
热阻热阻,英文名称为thermal resistance,即物体对热量传导的阻碍效果。
热阻的概念与电阻非常类似,单位也与之相仿——℃/W,即物体持续传热功率为1W时,导热路径两端的温差。
以散热器而言,导热路径的两端分别是发热物体(如CPU等)与环境空气。
散热器热阻=(发热物体温度-环境温度)÷导热功率。
散热器的热阻显然是越低越好——相同的环境温度与导热功率下,热阻越低,发热物体的温度就越低。
但是,决定热阻高低的参数非常多,与散热器所用材料、结构设计都有关系。
必须注意:上述公式中为“导热功率”,而非“发热功率”。
因为无法保证发热物体所产生的热量全部通过散热器一条路径传导、散失,任何与发热物体接触的低温物体(包括空气)都可能成为其散热路径,甚至还可以通过热辐射的方式散失热量。
所以,当环境或发热物体温度改变时,即使发热功率不变,由于通过其它途径散失的热量改变,散热器的导热功率也可能发生较大变化。
如果以发热功率计算,就会出现散热器在不同环境温度下热阻值不同的现象。
散热器(不仅限于风冷散热器,还可包括被动空冷散热片、液冷、压缩机等)所标注的热阻值根据测试环境与方法的不同可能存在较大差异,而与用户实际使用中的效果也必然存在一定差异,不可一概而论,应根据具体情况分析。
风阻风冷散热器的散热片需要仰仗风扇的强制导流才可发挥完全的性能,实际通过的有效风量与散热效果关系密切,而散热片会对风量造成影响的指标就是“风阻”了。
风阻,正如其名,是物体对流过气流的阻碍作用,但却不能如电阻、热阻般用具体数值来衡量。
通常,以风量与进/出口压强差绘制出压强-流量曲线(P-Q曲线),这条曲线便是散热器对通过气流的阻碍效果——相同压强差下,风阻越小,风量越大;相同风量下,风阻越大,压强差越大。
那么风阻是否越小越好呢?如果能保证有效散热面积,当然!可惜,散热片的有效散热面积与风阻往往不能两全,在提高有效散热面积的同时,难免增大风阻,在散热片结构设计过程中就需要进行权衡了。
散热片设计一旦确定,风阻(P-Q曲线)也就基本确定下来,我们能够做的,只有为它选配合适的风扇,令其发挥出设计应有性能了。
为散热片搭配合适的风扇,需结合散热片阻抗(风阻)曲线与风扇特性曲线进行分析。
规格要希望散热器正常的使用,合乎标准的物理规格是必须满足的先决条件。
物理规格的要求主要包括尺寸规格与重量两方面。
散热器的尺寸规格主要决定于散热片尺寸,风扇规格则取决于散热片设计,相对处于附属地位。
Intel等“发热设备制造者”都会提出对自己产品搭配散热器的尺寸规格要求。
例如Intel建议的Socket-478散热器尺寸规格,如下图:一般而言,散热器设计、制造者都会尽量满足此要求,用户在使用过程中无需为尺寸规格的“兼容”问题而担心。
但随着计算机设备功率的迅速增长,以及用户对静音需求的提高,散热片面积越来越大,体积随之增大,各种别出心裁的特殊设计也层出不穷,高端散热器的尺寸规格早已不在Intel等“发热设备制造者”的掌控之内了。
如果用户选择的散热器属于此类,那么就应该注意它与机箱空间、主板周围元件间的“兼容性”。
所幸,这类存在“兼容隐患”的散热器之制造厂家一般都会发布某种形式的兼容列表,只要用户适当关注,就不致陷入高价买回散热器而无法使用的窘境。
Zalman CNPS7000A即为此类散热器的典型代表。
散热器的重量与尺寸规格类似,也关系到性能与适用型,同样也主要决定于散热片重量。
“发热设备制造者”们也对散热器的重量提出了要求,例如:Intel Socket-478接口的CPU要求散热器重量不超过450g,而AMD S ocket-A接口的CPU则要求散热器重量不超过300g。
散热器的重量标准也只在其制订初期受到了“尊重”,当时多数产品能够切实的执行。
目前,则只有OEM与低端产品尚符合此标准要求,而独立品牌高端散热器,尤其是高端CPU 风冷散热器,为了取得更高的性能,基本“无视”此标准的存在。
它们毫不理会脆弱的半导体芯片与电路板的感受,积极的采用导热能力更强、密度更大的铜作为主体材料,放任体积的膨胀,体重的增加。
因此,用户,尤其是玩家们如果选择了“壮硕”的高端风冷散热器,则需要做好发生芯片碎裂、电路板断折等惨剧的心理准备,应在使用时采取适当的加固措施,减小芯片与电路板的负担。
流动参数由于传统的风量散热器都需要风扇来强制对流散热,因此空气的流动参数,也是影响散热性能的重要指标之一。
其实本部分应放到风扇技术介绍当中,但是考虑到这些参数的重要性,我们认为有必要将其放置在本期内容的第三部分当中。
一个优质的风扇,是将散热器潜能发挥到极至的必要条件。
风速风速即风扇出风口或进风口的空气流动速度,单位一般为m/s;仅是某一位置的速度数值,不能完全体现风扇的性能。
风速在不同位置数值可能有较大差异,且平均值难以计算,一般不用来表示风扇的性能,仅在详细设计分析中才会使用。
相关元素:风速的高低主要取决于扇叶的形状、面积、高度以及转速。
扇叶形状设计、面积、高度的影响较为复杂,将在后文说明;风扇转速越快,风速越快,则是显而易见的常识,无需赘述。
风速的高低会影响到风量以及噪音的大小。
同样的过风面积,风速越高,风量越大;气流之间、空气与扇叶、外框、散热片之间的摩擦都会产生噪音,同样的风扇、散热片设计,噪音必然会随着风速的提升而增大。
风量风量是风扇最重要的两项性能指标之一。
风量即单位时间内通过风扇出风口(或进风口)截面的空气体积,单位一般为cfm,即立方英尺每分-cubic feet per minute,或cmm,即立方米每分- cubic metres per minute。