第八讲 verilog的可综合性
systemverilog 可综合 语法

systemverilog 可综合语法-概述说明以及解释1.引言1.1 概述SystemVerilog是一种硬件描述语言,其可综合语法用于描述硬件设计的行为和结构。
可综合语法是指在编写SystemVerilog代码时,能够被综合工具翻译成底层硬件电路,并最终映射到FPGA或ASIC等可编程器件上的语法规则和风格。
因此,可综合语法在硬件设计中起着至关重要的作用。
在硬件设计中,可综合语法使设计工程师能够通过代码描述硬件的功能和结构,包括处理器、逻辑电路、存储器等。
通过使用可综合语法,设计工程师可以更加灵活地实现各种功能和性能要求,同时也能提高设计的可维护性和可重用性。
SystemVerilog的可综合语法特点是其结构化的设计风格,丰富的数据类型和内置的高级语言功能。
与传统的硬件描述语言相比,SystemVerilog提供了更多的抽象层次和编程特性,可以更高效地完成复杂的硬件设计任务。
例如,SystemVerilog支持面向对象的设计方法,可以使用类和对象对设计进行建模和封装。
此外,SystemVerilog还提供了多种数据类型和运算符,使设计工程师可以更方便地处理各种数据和信号。
综上所述,可综合语法在SystemVerilog中具有重要的地位和作用。
通过使用可综合语法,设计工程师能够更加方便地描述和实现各种硬件功能,提高设计的效率和可靠性。
在今后的硬件设计中,可综合语法的应用将更加广泛,并且不断发展和完善,以满足不断变化的设计需求。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构的目的是为了给读者提供清晰的导航和理解文章的逻辑框架。
通过合理的结构,读者可以更好地理解文章的目的和内容,并能够有序地阅读和理解整个文档。
本文的结构如下:第一部分是引言部分,用于介绍文章的背景和相关信息。
在引言部分,我们将概述SystemVerilog可综合语法的定义和作用,并介绍本文的结构和目的。
第二部分是正文部分,主要内容是关于SystemVerilog可综合语法的定义和特点。
第八讲verilog的可综合性

e);
input a, b, c, d;
output e;
AND2
AND2
OR2
reg e;
d
always @( a or b or c
a
e
or d)
b
m2
m3_b_0
m3
AND2
if (a & b) e = d;
else if (a & ~b) e = ~c;
c
m3_b.O
else if (~ a & b) e = 1'b0;
条件操作符
<< >>
> < >= <=
==
!=
&
^ ~^
|ห้องสมุดไป่ตู้
&&
||
?:
三、部分verilog结构的综合 ①赋值语句assign
赋值语句综合为组合逻辑电路 assign out= (a & b) | c; 综合为以下门级电路
c
a
out
b
un1_out
out
assign {c_out,sum}=a + b + c_in;
XOR2
[5]
AND2
[5]
OR2
XOR2
[6]
AND2
[6]
OR2
XOR2
[7]
AND2
[7]
un103_sum_1.m2 un103_sum_1.m3_b_0 un103_sum_1.m3
un124_sum_1.m2
un124_sum_1.m3_b_0 un124_sum_1.m3
Verilog可综合与不可综合语句汇总

1)所有综合工具都支持的结构:always,assign,begin,end,case,wire,tri,aupply0,supply1,reg,integer,default,for,function,and,nand,or,nor,xor,xnor,buf,not,bufif0,bufif1,notif0,notif1,if,inout,input,instantitation,module,negedge,posedge,operators,output,parameter。
(2)所有综合工具都不支持的结构:time,defparam,$finish,fork,join,initial,delays,UDP,wait。
(3)有些工具支持有些工具不支持的结构:casex,casez,wand,triand,wor,trior,real,disable,forever,arrays,memories,repeat,task,while。
建立可综合模型的原则要保证Verilog HDL赋值语句的可综合性,在建模时应注意以下要点:(1)不使用initial。
(2)不使用#10。
(3)不使用循环次数不确定的循环语句,如forever、while等。
(4)不使用用户自定义原语(UDP元件)。
(5)尽量使用同步方式设计电路。
(6)除非是关键路径的设计,一般不采用调用门级元件来描述设计的方法,建议采用行为语句来完成设计。
(7)用always过程块描述组合逻辑,应在敏感信号列表中列出所有的输入信号。
(8)所有的内部寄存器都应该能够被复位,在使用FPGA实现设计时,应尽量使用器件的全局复位端作为系统总的复位。
(9)对时序逻辑描述和建模,应尽量使用非阻塞赋值方式。
对组合逻辑描述和建模,既可以用阻塞赋值,也可以用非阻塞赋值。
但在同一个过程块中,最好不要同时用阻塞赋值和非阻塞赋值。
(10)不能在一个以上的always过程块中对同一个变量赋值。
可综合的verilog语句

可综合的verilog语句(原创版)目录1.Verilog 语言概述2.Verilog 语句的分类3.可综合的 Verilog 语句4.应用举例正文1.Verilog 语言概述Verilog 是一种硬件描述语言,主要用于数字系统硬件的描述、模拟和验证。
它最初由 Phil Moorby 在 1983 年开发,后来由 Cadence 公司进行商业化推广。
Verilog 具有易学易用、功能强大的特点,广泛应用于集成电路设计、计算机体系结构、数字信号处理等领域。
2.Verilog 语句的分类Verilog 语句主要分为两大类:行为描述语句(Behavioral Description)和结构描述语句(Structure Description)。
行为描述语句主要用于描述数字电路的功能和行为,包括 always 语句、initial 语句等;结构描述语句主要用于描述数字电路的物理结构,包括 module 语句、wire 语句等。
3.可综合的 Verilog 语句可综合的 Verilog 语句是指在数字集成电路设计中,可以被合成器(Synthesizer)转换为实际硬件电路的 Verilog 语句。
这类语句主要包括以下几类:(1)简单的逻辑门和寄存器:如与门、或门、非门、与非门、或非门、异或门等,以及触发器、计数器、寄存器等。
(2)各种运算和操作:如算术运算(加、减、乘、除等)、关系运算(大于、小于、等于、不等于等)、位运算(按位与、按位或、按位异或、取反等)、移位运算等。
(3)控制结构:如 if-else 语句、case 语句、for 循环、while 循环等。
(4)其他:如声明、实例化、端口定义、模块调用等。
4.应用举例以下是一个可综合的 Verilog 语句示例,用于实现一个 4 位全加器的功能:```verilogmodule full_adder(input a, input b, input cin, output sum, output cout);assign sum = a ^ b ^ cin; // 异或运算实现和assign cout = (a & b) | (a & cin) | (b & cin); // 与、或运算实现进位endmodule```在这个例子中,我们声明了一个名为 full_adder 的模块,包含两个输入端口 a、b,一个输入端口 cin,以及两个输出端口 sum 和 cout。
verilog中的可综合与不可综合语句

verilog中的可综合与不可综合语句
verilog中可综合语句:input,output,parameter,reg,wire,always,assign,
begin...end,case,for,posedge,negedge,or,and,default,if,function,generate,integer,while,repeat(while、repeat循环可综合时,要具有明确的循环表达式和循环条件,for可综合时也要有具体的循环范围),·define
不可综合语句:initial,fork...join,wait,time,display,forever。
保证Verilog HDL赋值语句的可综合性,在建模时应注意以下要点:(1)不能使⽤initial,initial⼀般使⽤在测试程序,做初始化。
(2)不建议使⽤延时,#1,这种只是模拟数字电路中因为布线产⽣的信号延时,不可综合,但也不会报错。
(3)不能使⽤循环次数不确定的函数,但forever在综合设计中禁⽌使⽤,只能使⽤在仿真测试程序中。
(4)尽量使⽤同步电路设计⽅式。
(5)除⾮关键电路设计,⼀般不建议调⽤门级元件进⾏设计,⼀般使⽤⾏为级进⾏设计。
(6)当使⽤always进⾏组合逻辑设计时,敏感列表⾥⾯的要列出所有输⼊信号。
(7)在进⾏时序电路进⾏编写时,采样⾮阻塞赋值。
组合逻辑设计时,采样阻塞赋值,但是不能在同⼀个always语句⾥两种混合使⽤。
(8)为避免产⽣锁存器,if,case要进⾏完整的语句赋值,且case语句中避免使⽤X值,Z值。
verilog代码综合成电路

verilog代码综合成电路
标题: Verilog代码综合成电路
Verilog硬件描述语言(HDL)广泛应用于数字电路的设计和验证。
它采用硬件描述语言的文本形式来描述数字电路的行为和结构。
Verilog代码可以使用EDA工具(电子设计自动化工具)进行综合,最终生成门级模拟网表或实际的电路布局。
综合过程通常包括以下几个主要步骤:
1. 代码分析和解析
首先,EDA工具会读取Verilog源代码,对其进行语法和语义分析。
如果代码存在错误,工具会给出相应的错误信息和警告。
2. 优化和技术映射
在这个步骤中,工具会优化代码,并将其映射到目标技术库中的基本逻辑门、触发器等元件。
优化包括如逻辑简化、时序优化等。
3. 网表生成
优化后的逻辑门级描述被转换成硬件描述的数据结构,即网表(Netlist)。
网表包含了设计中每个逻辑元件、互连线路的详细信息。
4. 后续处理
网表可用于门级仿真、功耗估算、布局布线等后续工作。
一些EDA工具还会生成与FPGA或定制芯片相关的配置文件。
Verilog代码综合为我们提供了从高层次抽象硬件描述到实际电路实现的桥梁。
对于复杂的数字系统,HDL和EDA工具使得设计过程自动化、高效和可管理。
verilog语句可综合vs不可综合

1)所有综合工具都支持的结构:always,assign,begin,end,case,wire,tri,supply0,supply1,reg,integer,default,for,function,and,nand,or,nor,xor,xnor,buf,not,bufif0,bufif1,notif0,notif1,if,inout,input,instantitation,module,negedge,posedge,operators,output,parameter。
2)所有综合工具都不支持的结构:time,defparam,$finish,fork,join,initial,delays,UDP,wait。
3)有些工具支持有些工具不支持的结构:casex,casez,wand,triand,wor,trior,real,disable,forever,arrays,memories,repeat,task,while。
建立可综合模型的原则要保证Verilog HDL赋值语句的可综合性,在建模时应注意以下要点:1)不使用initial。
2)不使用#10。
3)不使用循环次数不确定的循环语句,如forever、while等。
4)不使用用户自定义原语(UDP元件)。
5)尽量使用同步方式设计电路。
6)除非是关键路径的设计,一般不采用调用门级元件来描述设计的方法,建议采用行为语句来完成设计。
7)用always过程块描述组合逻辑,应在敏感信号列表中列出所有的输入信号。
8)所有的内部寄存器都应该能够被复位,在使用FPGA实现设计时,应尽量使用器件的全局复位端作为系统总的复位。
9)对时序逻辑描述和建模,应尽量使用非阻塞赋值方式。
对组合逻辑描述和建模,既可以用阻塞赋值,也可以用非阻塞赋值。
但在同一个过程块中,最好不要同时用阻塞赋值和非阻塞赋值。
10)不能在一个以上的always过程块中对同一个变量赋值。
verilog之可综合与不可综合

verilog之可综合与不可综合可综合的意思是说所编写的代码可以对应成详细的,不行综合就是所写代码没有对应的电路结构,例如行为级语法就是一种不行综合的代码,通常用于写测试文件。
建立可综合模型时,需注重以下几点:不用法initial不用法10之类的延时语句不用法循环次数不确定的循环语句,如forever,while等不用法用户自定义原语(UDP元件)尽量用法同步方式设计电路用always块来描述组合规律时,应列出全部输入信号作为敏感信号列表,即always@(*)全部的内部寄存器都应当能够被复位,在用法实现设计时,尽量用法器件的全局复位端作为系统的总复位对时序规律描述和建模,尽量用法非堵塞赋值的方式,对组合规律描述和建模,虽然堵塞和非堵塞赋值的方式都可以,但在同一过程快中最好不要同时用法堵塞赋值和非堵塞赋值。
我个人比较推举用堵塞赋值的方式描述组合规律不能在多个always块中对同一个变量举行赋值。
对同一个对象不能既用法非堵塞赋值,又用法堵塞赋值假如不决定让变量生成锁存器,那么必需在用法if语句或case语句时补全全部条件不行综合语句:initial 初始化语句,只能在testbench中用法,不行综合event event在同步testbench时更实用,不能综合real 不支持real数据类型的综合time 不支持time数据类型的综合assign 和 deassign 不支持对reg数据类型赋值的综合,但支持wire类型赋值的综合以开始的延时语句不能被综合verilog是一种硬件描述语言,我们在写verilog 代码时,首先要有所要写的module在硬件上如何实现的概念,而不是去想编译器如何说明这个module。
比如在打算是否用法 reg 定义时,要问问自己物理上是不是真正存在这个 register, 假如是,它的clock 是什么? D 端是什么?Q 端是什么?有没有清零和置位?同步还是异步?再比如上面研究的三态输出问题,首先想到的应当是在 register 的输出后面加一个三态门,而不是如何才干让编译器知道要“赋值”给一个信号为三态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2 Verilog HDL综合
寄存器传输级(RTL)层次用硬件描述语言verilog编写设计。 术语RTL用于表示HDL的一种风格,该风格的描述采用了数据 流和行为结构相结合的方式。 逻辑综合工具接受RTL级描述并把它转化为优化的门级网表。 Verilog和VHDL是两种最流行的RTL描述语言
else z = ones;
③case语句
case语句综合为数据选择器,一般用于设计庞大的数据选择器。
d7 s[2:0]
[2:0]
[2]
AND2
z_5_0_b_0
d3
[2]
z_5_0_b.O
[1]
z_1_.Q
[1]
z_1_1.SUM1_0_x2
z_ld1[1]
phy
[0]
AND2
[0]
0
S
0 D Q [0]
R
[0]
[0]
z_0_.Q
z_ld0[0]
AND2
[1]
phy ones[1:0]
[1:0]
[0]
OR2
z_1.CO1_0_o2
z_ld0[1]
XOR2
[0]
[0] [1:0] z[1:0]
信号和变量
wire , reg , tri
允许使用向量表示
调用(实例引用) 模块调用和门级原语调用
函数和任务
function, task
不考虑时序结构
过程
always, if, then, else, case,
casex, casez
不支持initial
过程块
begin, end, named blocks, disable
条件操作符
<< >>
> < >= <=
==
!=
&
^ ~^
|
&&
||
?:
三、部分verilog结构的综合 ①赋值语句assign
赋值语句综合为组合逻辑电路 assign out= (a & b) | c; 综合为以下门级电路
c
a
out
b
un1_out
out
assign {c_out,sum}=a + b + c_in;
m1
else if (~ a & ~b)
e = 1'b1;
endmodule
不给出所有if分支值,则综合出的结果会带有锁存器,变为时序逻辑电路。
AND2
[0] [0]
ones[1:0]
[1:0] [1] [0]
XOR2
z_ld1[0]
[1]
AND2
0
S
0 D Q [1] [1:0] z[1:0]
R
z_1.SUM0_0_x2
XOR2
[1]
z_1.SUM1_0_x2
[1]
z_1.N_6_i_i.O
module increment (phy, ones,z); input phy; input [1:0] ones; output [1:0] z; reg [1:0] z; always @ (phy or ones) if (phy) z = ones +1; endmodule
数据流
assign
不考虑延迟信息
循环
for , while, forever
while和forever循环必 须
包括@(posedge k)或(negedge clock)
注意事项:
只有周期到周期的任何RTL verilog结构描述都能为逻辑综合工具所接受。 例while和forever语句必须由@(posedge clock)或@(negedge clock) 终止循环,使其具有强制性的周期到周期的描述。 #<delay>结构指定的延迟将被忽略 不支持initial语句,必须用复位机制来代替。 要明确指定信号和变量的宽度。否则,综合后的可能会产生大量的门级 网表
计算机辅助逻辑综合工具的出现已经把高层次描述向逻辑门的转化过程自 动化了。设计者现在可以把精力集中在体系结构的方案、设计的硬件语言描 述上,由综合工具在内部进行几次反复,生成优化的门级描述。
自动化的逻辑综合已经非常有效地减少了高层次设计到门级网表的转化时 间。它使设计者可以把更多的时间用于更高层次的描述上,因为把设计转换 到门级网表所需的时间大大减少了。
s);
input d0, d1, s;
output out;
reg out;
always @( s or d0 or
d1)
if (s)
out
out = d1;
else
out = d0;
endmodule
定义了所有可能的选项的if—then嵌套语句,综合结果是受条件 控制的纯组合逻辑电路。
module compif (a, b, c, d,
e);
input a, b, c, d;
output e;
AND2
AND2
OR2
reg e;
d
always @( a or b or c
a
e
or d)
b
m2
m3_b_0
m3
AND2
if (a & b) e = d;
else if (a & ~b) e = ~c;
c
m3_b.O
else if (~ a & b) e = 1'b0;
a
XOR2
c_in b
AND2
XOR2
sum
OR2
c_out
assign out= (s) ? d1 : d0;
AND2
d1 s
OR2
out
d0
②if---then语句
单条的if---then语 句综合为一个二选1 数据选择器
AND2
d1 s
d0
OR2
module compif (out, d0, d1,
二、操作符
几乎所有的操作符都可以综合。 ===和!==与x和z有关的操作符不可综合 写表达式时,要用圆括号使逻辑关系明确,最好不要依赖运算的优先级
操作符类型
连接及复制操作符 一元操作符 算术操作符
符号
{ } {{}} !~&|^ + -* %
逻辑移位操作符 关系操作符 相等操作符 按位操作符
逻辑操作符
一、verilog结构类型
逻辑综合工具并不能处理随意编写的verilog结构描述:通常,周期到周期的任 何RTL verilog结构描述都能为逻辑综合工具所接受。
支持综合的Verilog结构类型
结构类型
关键字或描述
注释
端口
input, inout, output
参数
parameter
模块定义
module
第八讲 verilog的可综合性
•逻辑综合 •Verilog的逻辑综合 •Verilog的可综合风格
8.1 逻辑综合
逻辑综合:在标准单元库和特定的设计约束的基础上,把设计的高层次描 述转换成优化的门级网表的过程。 标准单元库可以包含简单的单元,例如与门、或门和或非门等基本逻辑门, 也可以包含宏单元,例如加法器、多路选择器和特殊的触发器。