【与名师对话】高考数学一轮复习 11.5 二项分布及应用课时作业 理(含解析)新人教A版

合集下载

2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章 第七节 二项分布与正态分布 Word版含答案

2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章 第七节 二项分布与正态分布 Word版含答案

第七节 二项分布与正态分布2019考纲考题考情1.条件概率(1)条件概率的定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=为在事P (AB )P (A )件A 发生的条件下,事件B 发生的条件概率。

(2)条件概率的性质①条件概率具有一般概率的性质,即0≤P (B |A )≤1。

②如果B ,C 是两个互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A )。

2.相互独立事件的概率(1)相互独立事件的定义及性质①定义:设A ,B 是两个事件,若P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立。

②性质:若事件A 与B 相互独立,那么A 与,与B ,与B A A 也都相互独立。

B (2)独立重复试验概率公式在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n )。

(3)二项分布的定义在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则P (X =k )=C p k (1-p )n -k ,k =k n0,1,2,…,n 。

此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率。

3.正态分布(1)正态曲线的定义函数φμ,σ(x )=e ,x ∈(-∞,+∞),其中实数μ和σ(σ>12πσ-0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线。

(2)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=φμ,σ(x )d x ,则称随机变量X 服从正态分布,记作N (μ,σ2)。

b∫a (3)正态曲线的特点①曲线位于x 轴的上方,与x 轴不相交。

②曲线是单峰的,它关于直线x =μ对称。

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。

2021年高考数学大一轮总复习 11.2 二项式定理高效作业 理 新人教A版

2021年高考数学大一轮总复习 11.2 二项式定理高效作业 理 新人教A版

2021年高考数学大一轮总复习 11.2 二项式定理高效作业 理 新人教A版一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(xx·课标全国Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1解析:展开式中x 2项系数为C 25+a C 15=10+5a,10+5a =5,a =-1,故选D. 答案:D2.(xx·临汾百题精选)若(1-2x )xx=a 0+a 1x +…+a xx x(x ∈R ),则a 12+a 222+…+a 200922009的值为( )A .2B .0C .-1D .-2解析:本题考查二项式定理展开式.由已知,令x =12,则(1-2×12)xx =C 02009+a 12+a 222+…+a 200922009=0,所以a 12+a 222+…+a 200922009=-1.故选C.答案:C3.(xx·陕西)设函数f (x )=⎩⎪⎨⎪⎧x -1x 6,x <0,-x , x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:f [f (x )]=(1x-x )6,所以T 4=C 36(1x)3(-x )3=-20.答案:A4.(xx·盘锦一模)已知(x2-ix)n的展开式中第三项与第五项的系数之比为-314,其中i2=-1,则展开式中系数为实数且最大的项为( ) A.第三项B.第四项C.第五项D.第五项或第六项解析:T3=-C2n x2n-5,T5=C4n x2n-10.由-C2n∶C4n=-314得n2-5n-50=0,∴n=10,又T r+1=C r10(-i)r,据此可知当r=0,2,4,6,8,10时其系数为实数,且当r=4时,C410=210最大.故选C. 答案:C5.(xx·莱州模拟)如果(3x-13x2)n的展开式中各项系数之和为128,则展开式中1x3的系数是( )A.7 B.-7C.21 D.-21 解析:令x=1,得(3-1)n=128,解得n=7,展开式第r+1项为令7-53r=-3,得r=6,T r+1=3C67·x-3=21x-3,故选C. 答案:C6.(xx·大庆模拟)(x+3x)12的展开式中,含x的正整数次幂的项共有( )A.4项B.3项C.2项D.1项解析:设展开式中第r+1项为T r+1,当r=0,6,12时x的指数为正整数.答案:B二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上) 7.(xx·四川)二项式(x+y)5的展开式中,含x2y3的项的系数是________.(用数字作答)解析:含x 2y 3的项的系数为C 35=10. 答案:108.(xx·济宁二模)已知(1+ax )5=1+10x +bx 2+…+a 5x 5,则b =________. 解析:C 25(ax )2=bx 2⇒10a 2=b ,又∵C 15ax =10x ⇒a =2.∴b =40. 答案:409.(xx·浙江模拟)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:1010.(xx·江西红色六校联考)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是______.答案:2三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.(xx·蚌埠月考)若(1-2x )xx=a 0+a 1x +a 2x 2+…+a xx x(x ∈R ). 求(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a xx )的值. 解:令x =0,则得a 0=(1-2×0)xx =1.令x =1,则得a 0+a 1+a 2+…+a xx =(1-2×1)xx=1. ∴(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a xx ) =2009a 0+(a 0+a 1+a 2+…+a xx ) =xx×1+1=xx.12.(xx·邹城模拟)已知(12+2x )n,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解:(1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0. ∵n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5. ∴T 4的系数=C 37(12)423=352,T 5的系数=C 47(12)324=70,当n =14时,展开式中二项式系数的最大的项是T 8.∴T 8的系数=C 714(12)727=3432.(2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0. ∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵(12+2x )12=(12)12(1+4x )12, ∴⎩⎪⎨⎪⎧C k124k≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4<k <10.4,∴k =10. ∴展开式中系数最大的项为T 11,T 11=C 1012·(12)2·210·x 10=16896x 10.13.(xx·汕头二模)若在(x +124x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项.解:(x +124x)n 的展开式中前三项是T 1=C 0n (x )n ,T 2=C 1n (x )n -1·124x,T 3=C 2n (x )n-2(124x)2,其系数分别是C 0n ,12C 1n ,14C 2n ,由2·12C 1n =C 0n +14C 2n ,解得n =1或n =8,n =1不合题意应舍去,故n =8.当n =8时,T r +1=C r 8(x )8-r·(124x)r=C r8·12r ·,T r +1为有理项的充要条件是16-3r4∈Z ,所有r 应是4的倍数,故r 可为0、4、8,故所有有理项为T 1=x 4,T 5=358x ,T 9=1256x 2.36325 8DE5 跥>31860 7C74 籴31945 7CC9 糉94+23015 59E7 姧26140 661C 昜38920 9808 須21675 54AB 咫'23823 5D0F 崏37665 9321 錡K。

【与名师对话】高考数学一轮复习 2.11 导学的应用课时作业(1)理(含解析)新人教A版

【与名师对话】高考数学一轮复习 2.11 导学的应用课时作业(1)理(含解析)新人教A版

【与名师对话】2015高考数学一轮复习 2.11 导学的应用课时作业(1)理(含解析)新人教A 版一、选择题1.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x, 令f ′(x )>0,解得x >2. 答案:D2.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)解析:f ′(x )=3x 2+2ax +(a +6),因为函数有极大值和极小值,所以f ′(x )=0有两个不相等的实数根,所以Δ=4a 2-4×3(a +6)>0,解得a <-3或a >6.答案:B3.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)解析:不等式(x -1)f ′(x )≥0等价于⎩⎪⎨⎪⎧x -1≥0,fx 或⎩⎪⎨⎪⎧x -1≤0,fx 可知f (x )在(-∞,1)上递减,(1,+∞)上递增,或者f (x )为常数函数,因此f (0)+f (2)≥2f (1).答案:C4.(2013·贵州省六校联盟第一次联考)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).下面四个图象中,y =f (x )的图象大致是( )解析:令y =xf ′(x )=0结合上图可得f ′(x )零点为x 1=-1,x 2=1,故f (x )极点在x 1=-1,x 2=1处取得,B 、D 排除;另一方面结合图象可知x >0,f ′(x )>0的解集为(1,+∞),x >0,f ′(x )<0的解集为(0,1);x <0,f ′(x )>0的解集为(-∞,-1),x <0,f ′(x )<0解为(-1,0)故f (x )在(-∞,-1)增函数,在(-1,1)减函数,在(1,+∞)增函数,由此可知选择C.答案:C5.若函数f (x )=x 3-6bx +3b 在(0,1)内有最小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞) D.⎝ ⎛⎭⎪⎫0,12 解析:f (x )在(0,1)内有最小值,即f (x )在(0,1)内有极小值,f ′(x )=3x 2-6b ,由题意,函数f ′(x )的草图如图,∴⎩⎪⎨⎪⎧f ,f ,即⎩⎪⎨⎪⎧-6b <0,3-6b >0,解得0<b <12.故选D.答案:D6.(2013·辽宁卷)设函数f (x )满足x 2f ′(x )+2xf (x )=e x x , f (2)=e28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意[x 2f (x )]′=ex x ,令g (x )=x 2f (x ),则g ′(x )=e xx,且f (x )=gxx 2,因此f ′(x )=xgx -2g x x 3=e x-2g x x3.令h (x )=e x -2g (x ),则h ′(x )=e x-2g ′(x )=e -2e xx=exx -x,所以x >2时,h ′(x )>0;0<x <2时,h ′(x )<0.从而有h (x )≥h (2)=0,即f ′(x )≥0,所以当x >0时,f (x )是单调递增的,f (x )无极大值也无极小值.答案:D 二、填空题7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析:令f ′(x )=3x 2-12=0,得x =-2或x =2, 列表得:答案:328.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.解析:因为f (x )=x (e x -1)-12x 2,所以f ′(x )=e x -1+x e x -x =(e x-1)·(x +1).令f ′(x )>0,即(e x -1)(x +1)>0,解得x ∈(-∞,-1)或x ∈(0,+∞).所以函数f (x )的单调增区间为(-∞,-1]和[0,+∞).答案:(-∞,-1]和[0,+∞)9.f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 解析:f (x )=x 3-2cx 2+c 2x ,f ′(x )=3x 2-4cx +c 2,f ′(2)=0⇒c =2或c =6.若c =2,f ′(x )=3x 2-8x +4,令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒23<x <2,故函数在⎝ ⎛⎭⎪⎫-∞,23及(2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫23,2上单调递减,∴x =2是极小值点,故c =2不合题意,c =6.答案:6 三、解答题10.(2013·福建卷)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在点A (1, f (1))处的切线方程; (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞), f ′(x )=1-a x. (1)当a =2时, f (x )=x -2ln x, f ′(x )=1-2x(x >0),因而f (1)=1, f ′(1)=-1,所以曲线y =f (x )在点A (1, f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时, f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ,又当x ∈(0,a )时, f ′(x )<0;当x ∈(a ,+∞)时, f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.11.已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值. 解:(1)由题意得f ′(x )=3ax 2+2x +b ,因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2= 2.则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时,g ′(x )>0,从而g (x )在区间[-2,2]上是增函数.由上述讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.12.(2013·石家庄第二次模拟)已知函数f (x )=12e 2x-ax (a ∈R ,e 为自然对数的底数).(1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-14e 2x +x 2+x 在区间(0,+∞)上为增函数,求整数m 的最大值.解:(1)定义域为(-∞,+∞), f ′(x )=e 2x-a ,当a ≤0时,f ′(x )>0,所以f (x )在(-∞,+∞)上为增函数;当a >0时,由f ′(x )=0得x =ln a 2,且当x ∈⎝ ⎛⎭⎪⎫-∞,ln a 2时, f ′(x )<0, 当x ∈⎝⎛⎭⎪⎫ln a 2,+∞时f ′(x )>0,所以f (x )在⎝ ⎛⎭⎪⎫-∞,ln a 2为减函数,在⎝ ⎛⎭⎪⎫ln a 2,+∞为增函数. (2)当a =1时,g (x )=(x -m )⎝ ⎛⎭⎪⎫12e 2x -x -14e 2x +x 2+x ,若g (x )在区间(0,+∞)上为增函数,则g ′(x )=(x -m )(e 2x-1)+x +1≥0在(0,+∞)恒成立,即m ≤x +1e 2x -1+x 在(0,+∞)恒成立.令h (x )=x +1e 2x -1+x ,x ∈(0,+∞);h ′(x )=e2xe 2x-2x -3e 2x -12,x ∈(0,+∞); 令L (x )=e 2x-2x -3,可知L ⎝ ⎛⎭⎪⎫12=e -4<0,L (1)=e 2-5>0,又当x ∈(0,+∞)时L ′(x )=2e 2x-2>0,所以函数L (x )=e 2x-2x -3在x ∈(0,+∞)只有一个零点,设为α,即e 2α=2α+3,且α∈⎝ ⎛⎭⎪⎫12,1;由上可知当x ∈(0,α)时L (x )<0,即h ′(x )<0; 当x ∈(α,+∞)时L (x )>0,即h ′(x )>0,所以h (x )=x +1e 2x -1+x ,x ∈(0,+∞),有最小值h (α)=α+1e 2α-1+α,把e 2α=2α+3代入上式可得h (α)=12+α,又因为α∈⎝ ⎛⎭⎪⎫12,1,所以h (α)∈⎝ ⎛⎭⎪⎫1,32,又m ≤h (x )恒成立,所以m ≤h (α),又因为m 为整数, 所以m ≤1,所以整数m 的最大值为1. [热点预测]13.(2013·安徽省“江南十校”高三联考)已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )图象在点⎣⎢⎡⎦⎥⎤23,f ⎝ ⎛⎭⎪⎫23处的切线的斜率为1时,求函数f (x )在⎣⎢⎡⎦⎥⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围; (3)在(1)的条件下,过点P (1,-4)作函数F (x )=x 2[f (x )+3ln x -3]图象的切线,试问这样的切线有几条?并求出这些切线方程.解:(1)由题可知f ′(x )=a +2x 2-3x ,f ′⎝ ⎛⎭⎪⎫23=1,解得a =1.故f (x )=x -2x-3ln x ,∴f ′(x )=x -x -x2,由f ′(x )=0,得x =2. 于是可得下表:min (2)∵f ′(x )=a +2x 2-3x =ax 2-3x +2x2(x >0) 由题可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1、x 2,并令h (x )=ax 2-3x +2则⎩⎪⎨⎪⎧Δ=9-8a >0x 1+x 2=3a >0x 1x 2=2a >0解得0<a <98.(3)由(1)知f (x )=x -2x-3ln x ,故F (x )=x 3-3x 2-2x (x >0),F ′(x )=3x 2-6x -2(x >0) 设切点为T (x 0,y 0),由于点P 在函数F (x )的图象上, ①当切点T 不与点P (1,-4)重合,即当x 0≠1时, 由于切线过点P (1,-4),则y 0+4x 0-1=3x 20-6x 0-2 所以x 30-3x 20-2x 0+4=(x 0-1)(3x 20-6x 0-2), 化简得x 30-3x 20+3x 0-1=0, 即(x 0-1)3=0,解得x 0=1(舍去).②当切点T 与点P (1,-4)重合,即x 0=1时,则切线的斜率k =F ′(1)=-5,于是切线方程为5x +y -1=0. 综上所述,满足条件的切线只有一条,其方程为5x +y -1=0.。

人教版2020届高考一轮数学(理)复习:课时作业70二项分布、正态分布及其应用(含答案)

人教版2020届高考一轮数学(理)复习:课时作业70二项分布、正态分布及其应用(含答案)

4 9

5 9.
20
6.为向国际化大都市目标迈进,某市今年新建三大类重点工程,
它们分别是 30 项基础设施类工程、 20 项民生类工程和 10 项产业建设
类工程.现有 3 名民工相互独立地从这 60 个项目中任选一个项目参与
建设,则这 3 名民工选择的项目所属类别互异的概率是 ( D )
11 A. 2 B.3
故这 3 名民工选择的项目所属类别互异的概率是
P= A 33P(AiBi Ci)=
1 111 6×2× 3× 6=6.
7.位于坐标原点的一个质点 P 按下述规则移动:质点每次移动
一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都

1 2.质点
P
移动五次后位于点
5 (2,3)的概率是 16.
3 则第二次取得白球的概率为 5.
解析: 口袋中装有大小形状相同的红球 2 个,白球 3 个,黄球 1
个,甲从中不放回地逐一取球,设事件 A 表示“第一次取得红球”,
21
231
事件 B 表示“第二次取得白球”,则 P(A)=6=3,P(AB)=6×5=5,
∴第一次取得红球后,第二次取得白球的概率为
1
(2)(ⅰ)由 (1)知, Z~N(200,150), 从而 P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6. (ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间 (187.8,212.2)的概 率为 0.682 6, 依题意知 X~B(100,0.682 6),所以 E(X)=100×0.682 6=68.26. 12.(2019 ·广东顺德一模 )某市市民用水拟实行阶梯水价,每人月 用水量不超过 w 立方米的部分按 4 元/立方米收费,超出 w 立方米的 部分按 10 元/立方米收费,从该市随机调查了 100 位市民,获得了他 们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频 数成等差数列.

高考数学一轮复习 11.1 随机事件的概率课时作业 理(含解析)新人教A版

高考数学一轮复习 11.1 随机事件的概率课时作业 理(含解析)新人教A版

【与名师对话】2015高考数学一轮复习 11.1 随机事件的概率课时作业 理(含解析)新人教A 版一、选择题1.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( )A .甲获胜的概率是16B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是12解析:“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率是P =1-12-13=16; 设事件A 为“甲不输”,则A 是“甲胜”、“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23(或设事件A 为“甲不输”看作是“乙胜”的对立事件,所以P (A )=1-13=23). 答案:A2.在一次随机试验中,彼此互斥的事件A 、B 、C 、D 的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件 B .B +C 与D 是互斥事件,也是对立事件 C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件解析:由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D.答案:D3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( )A.0.3 B.0.5 C.0.8 D.0.7解析:由互斥事件概率加法公式知:重量在(40,+∞)的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.答案:D4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310B.15C.110D.112解析:从五个小球中任取两个共有10种,而1+2=3,2+4=6,1+5=6,取出的小球标注的数字之和为3或6的只有3种情况,故取出的小球标注的数字之和为3或6的概率为310.答案:A5.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A.0.45 B.0.67 C.0.64 D.0.32解析:摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P=1-0.45-0.23=0.32.答案:D6.(2013·石家庄高三模拟)现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7 527 0 293 7 140 9 857 0 347 4 373 8 636 6 947 1 417 4 698 0 371 6 233 2 616 8 045 6 011 3 661 9 597 7 424 7 610 4 281根据以上数据估计该射击运动员射击4次至少击中3次的概率为 ( ) A .0.852 B .0.819 2 C .0.8 D .0.75解析:20组数据中有5组数据,表示的是击中次数少于3次,7 140,1 417,0 371,6 011,7 610,所以射击4次至少击中3次的概率为1-520=34=0.75,选D.答案:D 二、填空题7.若A 、B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 解析:∵A 、B 为互斥事件,∴P (A ∪B )=P (A )+P (B ), ∴P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3. 答案:0.38.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.解析:(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14159.(2013·宁波模拟)已知盒子中有散落的黑白棋子若干粒,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.解析:从中取出2粒棋子,“都是黑棋子”记为事件A ,“都是白棋子”记为事件B ,则A 、B 为互斥事件.所求概率为P (A ∪B )=P (A )+P (B )=17+1235=1735.答案:173510.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则xy为整数的概率是________.解析:将抛掷甲、乙两枚质地均匀的正四面体所得的数字x ,y 记作有序实数对(x ,y ),共包含16个基本事件,其中x y为整数的有:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求概率为816=12.答案:12三、解答题11.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为14,得到黑球或黄球的概率是512,得到黄球或绿球的概率是12,试求得到黑球、黄球、绿球的概率各是多少?解:分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D .由于A 、B 、C 、D 为互斥事件,根据已知得到⎩⎪⎨⎪⎧14+P B +P C +P D =1,P B +P C =512,PC +PD =12,解得⎩⎪⎨⎪⎧P B =14,PC =16,PD =13.∴得到黑球、黄球、绿球的概率分别为14,16,13.12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去开会的概率; (2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解:(1)记“他乘火车去开会”为事件A 1,“他乘轮船去开会”为事件A 2,“他乘汽车去开会”为事件A 3,“他乘飞机去开会”为事件A 4,这四个事件不可能同时发生,故它们是彼此互斥的.故P (A 1+A 4)=P (A 1)+P (A 4)=0.3+0.4=0.7. (2)设他不乘轮船去开会的概率为P , 则P =1-P (A 2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5, 1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会. [热点预测]13.一个袋中装有大小相同的黑球、白球和红球.已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是25;从中任意摸出2个球,至少得到1个白球的概率是79.求:(1)从中任意摸出2个球,得到的都是黑球的概率; (2)袋中白球的个数.解:(1)由题意知,袋中黑球的个数为10×25=4.记“从袋中任意摸出2个球,得到的都是黑球”为事件A , 则P (A )=C 24C 210=215.(2)记“从袋中任意摸出2个球,至少得到1个白球”为事件B ,设袋中白球的个数为x , 则P (B )=1-P (B )=1-C 210-x C 210=79,解得x =5.即袋中白球的个数为5个.。

高考一轮复习课时作业(人教版):12-5二项分布及其应用word版含答案

12-5二项分布及其应用A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2010·辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ).A.12B.512C.14D.16解析 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×14+13×34=512. 答案 B2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ). A .0.12 B .0.42 C .0.46 D .0.88解析 由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88. 答案 D3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( ). A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1]解析 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A. 答案 A4.(2010·江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ). A .p 1=p 2 B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能 解析 p 1=1-⎝ ⎛⎭⎪⎫1-110010=1-⎝ ⎛⎭⎪⎫9910010=1-⎝ ⎛⎭⎪⎫9 80110 0005,p 2=1-⎝ ⎛⎭⎪⎫C 299C 21005=1-⎝ ⎛⎭⎪⎫981005则p 1<p 2. 答案 B5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ). A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125解析 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,故选B. 答案 B二、填空题(每小题4分,共12分)6.(2010·重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.解析 由题意得该篮球运动员两次罚球都命中的概率为1-1625=925,∴该队员每次罚球的命中率为35. 答案 357.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.728.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 解析 设A =“两个闹钟至少有一个准时响”. ∴P (A )=1-P (A )=1-(1-0.80)(1-0.90) =1-0.2×0.1=0.98. 答案 0.98三、解答题(共23分)9.(11分)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率; (3)求这支篮球队在6场比赛中胜场数的期望和方差. 解 (1)P =⎝ ⎛⎭⎪⎫1-132×13=427.所以这支篮球队首次胜场前已负两场的概率为427;(2)6场胜3场的情况有C 36种,∴P =C 36⎝ ⎛⎭⎪⎫133⎝⎛⎭⎪⎫1-133=20×127×827=160729. 所以这支篮球队在6场比赛中恰胜3场的概率为160729; (3)由于ξ服从二项分布,即ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.所以在6场比赛中这支篮球队胜场的期望为2,方差为43.10.(12分)某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解 (1)该公司决定对该项目投资的概率为 P =C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:P (A )=C 33⎝ ⎛⎭⎪⎫133=127, P (B )=C 13⎝ ⎛⎭⎪⎫133=19, P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29, P (D )=C 13⎝ ⎛⎭⎪⎫133=19.∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( ). A.35 B.34 C.12D.310解析 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=12,故选C. 答案 C2.一个电路如图所示,A 、B 、C 、D 、E 、F为6个开关,其闭合的概率都是12,且是相互独立的, 则灯亮的概率是( ). A.164 B.5564 C.18 D.116解析 设A 与B 中至少有一个不闭合的事件为T , E 与F 至少有一个不闭合的事件为R , 则P (T )=P (R )=1-12×12=34,所以灯亮的概率P =1-P (T )P (R )P (C )P (D )=5564. 答案 B二、填空题(每小题4分,共8分)3.(2011·重庆高考)将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.解析 由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132. 答案 11324.(2010·福建)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析 由已知条件第2个问题答错,第3、4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8, P =P [](A ∪A )A AA =(1-P (A )] P (A ) P (A )=0.128. 答案 0.128 三、解答题(共22分)5.(10分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如下图.(1)求直方图中x 的值;(2)计算一年中空气质量为良或轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知57=78 125,27=128,31 825+2365+71 825+31 825+89 125=1239 125,365=73×5)解 (1)x =150-⎝ ⎛⎭⎪⎫31 825+2365+71 825+31 825+89 125=11918 250.(2)⎝ ⎛⎭⎪⎫11918 250+2365×50×365=219. (3)每天空气质量为良或轻微污染的概率为P ,则P =219365=35,设X 是一周内空气质量为良或轻微污染的天数 则X ~B ⎝ ⎛⎭⎪⎫7,35,P (X =0)=C 07⎝ ⎛⎭⎪⎫257, P (X =1)=C 17⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫256, P =1-⎝ ⎛⎭⎪⎫257-7×3×2657=78 125-128-1 34478 125=76 65378 125.6.(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,(ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).解 (1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15. (ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2. 由于X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,710.∴P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100,P (X =1)=C 12710×⎝ ⎛⎭⎪⎫1-710=2150, P (X =2)=⎝ ⎛⎭⎪⎫7102=49100.所以X 的分布列是X 的数学期望E (X )=0×9100+1×2150+2×49100=75.。

课标A版--高考数学一轮复习---§11.4 二项分布与正态分布--(附答案)

§11.4二项分布与正态分布考纲解读分析解读 1.了解条件概率和两个事件相互独立的概念,掌握求条件概率的步骤,会求条件概率.2.掌握独立事件的概率求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌握正态曲线的性质.4.独立事件的概率及正态分布均为近几年高考的热点.本节在高考中一般以选择题、解答题形式出现,难度为易或中等,分值约为5分或12分.五年高考考点一条件概率、相互独立事件及二项分布1.(2015课标Ⅰ,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案A2.(2014课标Ⅱ,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45答案A3.(2017课标全国Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.答案 1.964.(2016四川,12,5分)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.答案5.(2017天津,16,13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解析本小题主要考查离散型随机变量的分布列与数学期望,事件的相互独立性,互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.(1)随机变量X的所有可能取值为0,1,2,3.P(X=0)=××=,P(X=1)=×1-×1-+1-××1-+××=,P(X=2)=××+××+××=,P(X=3)=××=.所以,随机变量X的分布列为随机变量X的数学期望E(X)=0×+1×+2×+3×=.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=×+×=.所以,这2辆车共遇到1个红灯的概率为.6.(2016课标全国Ⅱ,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解析(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分)(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)====.因此所求概率为.(7分)(3)记续保人本年度的保费为X元,则X的分布列为EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a(元).因此续保人本年度的平均保费与基本保费的比值为1.23.(12分)教师用书专用(7—11)7.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.答案8.(2016山东,19,12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望EX.解析(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“‘星队’至少猜对3个成语”.由题意,E=ABCD+BCD+ACD+ABD+ABC,由事件的独立性与互斥性,得P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()·P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)·P()=×××+2×=.所以“星队”至少猜对3个成语的概率为.(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P(X=0)=×××=,P(X=1)=2×==,P(X=2)=×××+×××+×××+×××=,P(X=3)=×××+×××==,P(X=4)=2×==,P(X=6)=×××==.可得随机变量X的分布列为所以数学期望EX=0×+1×+2×+3×+4×+6×=.9.(2015湖南,18,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解析(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意知,A1与A2相互独立,A1与A2互斥,B1与B2互斥,且B1=A1A2,B2=A1+A2,C=B1+B2.因为P(A1)==,P(A2)==,所以P(B1)=P(A1A2)=P(A1)P(A2)=×=,P(B2)=P(A1+A2)=P(A1)+P(A2)=P(A1)P()+P()P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=×+×=.故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=+=.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以X~B.于是P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为X的数学期望为E(X)=3×=.10.(2015北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)解析设事件A i为“甲是A组的第i个人”,事件B j为“乙是B组的第j个人”,i,j=1,2, (7)由题意可知P(A i)=P(B j)=,i,j=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=.(2)设事件C为“甲的康复时间比乙的康复时间长”.由题意知,C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6.因此P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=.(3)a=11或a=18.11.(2014陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.解析(1)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P()P()=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为(2)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.考点二正态分布及其应用1.(2015湖北,4,5分)设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)答案C2.(2015湖南,7,5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2386B.2718C.3413D.4772答案C3.(2017课标全国Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.2 69.9110.1310.029.2210.0410.059.95经计算得=x i=9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查.剔除(-3,+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.0.997416≈0.9592,≈0.09.解析本题考查了统计与概率中的二项分布和正态分布的性质及应用.(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望为EX=16×0.0026=0.041 6.(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查.剔除(-3,+3)之外的数据9.22,剩下数据的平均数为×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.=16×0.2122+16×9.972≈1591.134,剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.教师用书专用(4)4.(2015山东,8,5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%答案B三年模拟A组2016—2018年模拟·基础题组考点一条件概率、相互独立事件及二项分布1.(2018四川南充嘉陵一中期中,4)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.400B.300C.200D.100答案C2.(2017湖北武汉部分学校起点考试,11)连续投掷一枚质地均匀的骰子4次,正面朝上的点数恰有2次为3的倍数的概率为()A. B. C. D.答案B3.(2018辽宁庄河高级中学模拟,14)若10件产品包含2件次品,今在其中任取两件,则已知两件中有一件不是次品的条件下,另一件是次品的概率为.答案4.(2018辽宁沈阳东北育才学校第一次模拟,14)抛掷两枚骰子,至少有一个4点或5点出现时,就说这次试验成功,则在8次试验中,成功次数ξ的期望是.答案5.(人教A选2—3,二,2-2-1,例1,变式)袋中有三个白球,两个黑球.现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为.答案考点二正态分布及其应用6.(2018广西柳州高级中学、南宁第二中学第二次联考,3)甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,),N(μ2,),其正态分布的密度曲线如图所示,则下列说法错误的是()A.甲类水果的平均质量μ1=0.4kgB.甲类水果的质量比乙类水果的质量更集中于平均值左右C.甲类水果的平均质量比乙类水果的平均质量小D.乙类水果的质量服从正态分布的参数δ2=1.99答案D7.(2017山东潍坊三模,3)若随机变量X服从正态分布N(4,1),则P(X>6)的值为()(参考数据:若随机变量X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)A.0.1587B.0.0228C.0.0013D.0.4972答案B8.(2017安徽蚌埠二中等四校联考,13)已知随机变量ξ服从正态分布,且方程x2+2x+ξ=0有实数根的概率为,若P(ξ≤2)=0.75,则P(0≤ξ≤2)=.答案0.5B组2016—2018年模拟·提升题组(满分:55分时间:50分钟)一、选择题(每小题5分,共20分)1.(2018山东济南外国语学校12月月考,4)“石头、剪刀、布”又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是()A. B. C. D.答案B2.(2018广东德庆香山中学第一次模拟,9)某个部件由三个元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为()A. B. C. D.答案D3.(2017河北石家庄二中三模,8)在一次试验中,同时抛掷4枚均匀的硬币16次,设4枚硬币正好出现3枚正面向上,1枚反面向上的次数为ξ,则ξ的方差是()A.3B.4C.1D.答案A4.(2016江西高安中学等3月联考,6)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.954 4.A.1193B.1359C.2718D.3413答案B二、填空题(共5分)5.(2018河南洛阳第一次联考,14)已知随机变量X~B(2,p),Y~N(2,σ2),若P(X≥1)=0.64,P(0<Y<2)=p,则P(Y>4)=.答案0.1三、解答题(共30分)6.(2018四川成都第七中学一诊,19)“微信运动”已成为当下热门的运动方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关;(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有x人,超过10000步的有y人,设ξ=|x-y|,求ξ的分布列及数学期望.附:K2=.解析(1)K2==<3.841,故没有95%以上的把握认为“评定类型”与“性别”有关.(2)由题知,从小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为,超过10000步的概率为,ξ的可能取值为0,1,2.当x=y=0或x=y=1时,ξ=0,P(ξ=0)=×+××=;当x=1,y=0或x=0,y=1时,ξ=1,P(ξ=1)=××+××=;当x=2,y=0或x=0,y=2时,ξ=2,P(ξ=2)=+=.故ξ的分布列为所以Eξ=0×+1×+2×=.7.(2017山西太原二模,18)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种:方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b:从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a抽奖一次;满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为350元.(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望;(2)要使所获奖金的期望值最大,顾客A应如何抽奖?解析(1)按方案a抽奖一次,获得奖金的概率P==.顾客A只选择方案a进行抽奖,则其可以按方案a抽奖三次.此时中奖次数服从二项分布B.设所得奖金为w1元,则=3××30=9.即顾客A所奖资金的期望为9元.(2)按方案b抽奖一次,获得奖金的概率P1==.若顾客A按方案a抽奖两次,按方案b抽奖一次,则由方案a中奖的次数服从二项分布B1,由方案b中奖的次数服从二项分布B2,设所得奖金为w2元,则=2××30+1××15=10.5.若顾客A按方案b抽奖两次,则中奖的次数服从二项分布B3.设所得奖金为w3元,则=2××15=9.结合(1)可知,=<.所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.8.(2017山西大学附中第二次模拟,18)在一次篮球定点投篮训练中,规定每人最多投3次,在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分就停止投篮;否则投第3次,某同学在A处的投中率q1=0.25,在B处的投中率为q2,该同学选择在A处投第一球,以后都在B处投,且每次投篮互不影响,用X表示该同学投篮训练结束后所得的总分,其分布列为(1)求q2的值;(2)求随机变量X的数学期望E(X).解析(1)由题意可知,X=0对应的事件为“三次投篮没有一次投中”,∴P(X=0)=(1-q1)(1-q2)2=0.03,∵q1=0.25,∴q2=0.8(q2=1.2舍去).故q2的值为0.8.(2)根据题意得P1=P(X=2)=0.75××0.2×0.8=0.24,P2=P(X=3)=0.25×0.22=0.01,P3=P(X=4)=0.75×0.82=0.48,P4=P(X=5)=0.25×0.8+0.25×0.2×0.8=0.24,∴E(X)=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.C组2016—2018年模拟·方法题组方法1条件概率的求法1.(2017河北“五个一名校联盟”二模,4)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A. B. C. D.答案C2.(2016福建漳州模拟,4)从1,2,3,4,5中任取2个不同的数,在取到的2个数之和为偶数的条件下,取到的2个数均为奇数的概率为()A. B. C. D.答案D方法2独立重复试验及二项分布问题的求解方法3.(2017湖南三湘名校联盟三模,9)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生发球一次成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A. B.C. D.答案C4.(2018广东珠海一中等六校第一次联考)一台仪器每启动一次都随机地出现一个5位的二进制数其中A的各位数字中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101,,若成功一次得2分,失败一次得-1分,则100次独立重复试验的总得分X的方差为.答案形状大小一样但质量不尽相同的小球,从中随机抽取50个作为样本,称出5.(2017广东惠州第二次调研,18)一个盒子中装有大量..它们的质量(单位:克),质量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的质量频率分布直方图(如图).(1)求a的值,并根据样本数据,估计盒子中小球质量的众数与平均值;(2)从盒子中随机抽取3个小球,其中质量在[5,15]内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率).解析(1)由题意,得(0.02+0.032+a+0.018)×10=1,解得a=0.03.又由最高矩形中点的横坐标为20,可估计盒子中小球质量的众数为20克.50个样本中小球质量的平均值为=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克).故估计盒子中小球质量的平均值为24.6克.(2)由题意可知该盒子中小球质量在[5,15]内的概率为0.2,X~B,X的可能取值为0、1、2、3,P(X=0)==,P(X=1)=××=,P(X=2)=×=,P(X=3)==.∴X的分布列为EX=0×+1×+2×+3×=.方法3正态分布及其应用方法6.(2017江西九江十校联考二模,5)设随机变量ξ服从正态分布N(μ,7),若P(ξ<2)=P(ξ>4),则μ与Dξ的值分别为()A.μ=,Dξ=B.μ=,Dξ=7C.μ=3,Dξ=7D.μ=3,Dξ=答案C7.(2016陕西安康三模,19)在一次全国高中五省大联考中,有90万的学生参加,考后对所有学生成绩统计发现,英语成绩服从正态分布N(μ,σ2),用茎叶图列举了20名学生英语的成绩(如图),巧合的是这20个数据的平均数和方差恰比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9.(1)求μ,σ;(2)给出正态分布的数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.954 4.(i)若从这90万名学生中随机抽取1名,求该生英语成绩在(82.1,103.1)上的概率;(ii)若从这90万名学生中随机抽取1万名,记X为这1万名学生中英语成绩在(82.1,103.1)上的人数,求X的数学期望.解析(1)由茎叶图得这20个数据的平均数:=×(79+80+81+82+87+87+88+88+89+90+90+90+90+91+92+93+93+100+101+109)=90,∵这20个数据的平均数和方差恰比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9,英语成绩服从正态分布N(μ,σ2),∴μ=90-0.9=89.1,σ==7.(2)(i)∵英语成绩服从正态分布N(89.1,49),P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,∴P(82.1<X<96.1)=0.6826,P(75.1<X<103.1)=0.954 4.作出相应的正态曲线,如图,其中A、E、F、B的横坐标分别是75.1、82.1、96.1、103.1.则曲边梯形ABCD的面积为0.9544,曲边梯形EFGH的面积为0.6826,由曲线关于直线x=89.1对称,可知曲边梯形EBCH的面积为0.9544-=0.8185,即该生英语成绩在(82.1,103.1)上的概率为0.8185.(ii)∵从这90万名学生中随机抽取1名,该生英语成绩在(82.1,103.1)的概率为0.8185,∴从这90万名学生中随机抽取1万名,这1万名学生中英语成绩在(82.1,103.1)上的人数X的数学期望E(X)=0.8185×10000=8185.。

2020版高考数学一轮复习课时作业11函数与方程(理)(含解析)新人教版

课时作业11 函数与方程一、选择题1.函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x x +2,x ≤0的零点个数是( D )A .0B .1C .2D .3解析:当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.2.方程ln(x +1)-2x=0(x >0)的根存在的大致区间是( B )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:令f (x )=ln(x +1)-2x,则f (1)=ln(1+1)-2=ln2-2<0,f (2)=ln3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.3.已知函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( C ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1)D .(1,log 34)解析:∵单调函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( B ) A .1 B .2 C .3 D .4解析:∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.(2019·广东七校联合体联考)若函数f (x )=2x+a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( C )A.⎝⎛⎭⎪⎫-∞,12 B .(-∞,1) C.⎝ ⎛⎭⎪⎫12,+∞D .(1,+∞)解析:易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( C ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x=2⎝ ⎛⎭⎪⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =1+2x 1-xx,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.二、填空题7.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x的零点个数为2.解析:函数g (x )=f (x )-e x的零点个数即为函数y =f (x )与y =e x的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x有2个零点.8.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是⎩⎨⎧⎭⎬⎫x|-32<x <1.解析:∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6.∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为⎩⎨⎧⎭⎬⎫x|-32<x <1.9.已知函数f (x )=⎩⎪⎨⎪⎧log 2x -1,x >1,x 3-3x +1,x ≤1,则函数f (x )的零点个数为3.解析:解法1:当x >1时,由log 2(x -1)=0得x =2,即x =2为函数f (x )在区间(1,+∞)上的一个零点;当x ≤1时,∵f (x )=x 3-3x +1,∴f ′(x )=3x 2-3,由f ′(x )=0得x =-1或x =1,∵当x <-1时,f ′(x )>0,当-1≤x ≤1时,f ′(x )≤0,∴x =-1为函数f (x )=x 3-3x +1在(-∞,1]上的极大值点,∵f (-1)=3>0,f (1)=-1<0,且当x →-∞时,f (x )→-∞,∴函数f (x )=x 3-3x +1在(-∞,1]上有两个不同的零点.综上,函数f (x )的零点个数为3.解法2:当x >1时,作出函数y =log 2(x -1)的图象如图1所示,当x ≤1时,由f (x )=x 3-3x +1=0得,x 3=3x -1,在同一个平面直角坐标系中分别作出函数y =x 3和y =3x -1的图象如图2所示,由图1,2可知函数f (x )的零点个数为3.10.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x+log 2 015x ,则在R 上,函数f (x )零点的个数为3.解析:因为函数f (x )为R 上的奇函数,所以f (0)=0,当x >0时,f (x )=2 015x+log 2 015x 在区间⎝ ⎛⎭⎪⎫0,12 015内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一个零点, 从而函数f (x )在R 上的零点个数为3. 三、解答题11.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上是连续曲线,∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 12.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧f -1≤0,f 1≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎪⎫-12a ≤0,f 1≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).13.(2019·惠州市调研考试)函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=⎩⎪⎨⎪⎧2|x -1|-1,0<x ≤2,12f x -2,x >2,则函数g (x )=xf (x )-1在[-6,+∞)上的所有零点之和为( A )A .8B .32 C.12D .0解析:令g (x )=xf (x )-1=0,则x ≠0,所以函数g (x )的零点之和等价于函数y =f (x )的图象和y =1x 的图象的交点的横坐标之和,分别作出x >0时,y =f (x )和y =1x的大致图象,如图所示,由于y =f (x )和y =1x的图象都关于原点对称,因此函数g (x )在[-6,6]上的所有零点之和为0,而当x =8时,f (x )=18,即两函数的图象刚好有1个交点,且当x ∈(8,+∞)时,y =1x的图象都在y =f (x )的图象的上方,因此g (x )在[-6,+∞)上的所有零点之和为8.故选A.14.已知关于x 的方程|2x-10|=a 有两个不同的实根x 1,x 2,且x 2=2x 1,则实数a =6.尖子生小题库——供重点班学生使用,普通班学生慎用 15.(2019·福州四校联考)已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x2,x <1,若F (x )=f [f (x )+1]+m 有两个零点x 1,x 2,则x 1·x 2的取值范围是( D ) A .[4-2ln2,+∞) B .(e ,+∞) C .(-∞,4-2ln2]D .(-∞,e)16.(2019·德州模拟)已知函数f (x )=-x 2-2x .g (x )=⎩⎪⎨⎪⎧x +14x,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)∵f (1)=-12-2×1=-3, ∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.。

高考数学 12-5 二项分布及应用配套课时作业 理

【与名师对话】2014年高考数学总复习 12-5 二项分布及应用配套课时作业 理 新人教A 版一、选择题1.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)等于 ( )A.516B.316C.58D.38解析:P (X =3)=C 36⎝ ⎛⎭⎪⎫126=516,故选A.答案:A2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.88解析:由题意知,甲、乙都不被录取的概率为 (1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88. 答案:D3.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( )A.110B.210C.810D.910解析:设A 为“第一次失败”,B 为“第二次成功”, 则P (A )=910,P (B |A )=19,∴P (AB )=P (A )P (B |A )=110.答案:A4.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是A.⎝ ⎛⎭⎪⎫125 B .C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125解析:质点P 从原点到点(2,3)需右移两次上移三次,故C 25⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫123=C 25⎝ ⎛⎭⎪⎫125.答案:B5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( )A.18B.14C.12D.116解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件A ·C ·B ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12.所以P (A ·B ·C )=P (A )·P (B )·P (C )=18.答案:A6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )A .0B .1C .2D .3解析:由C k 5⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫125-k =C k +15⎝ ⎛⎭⎪⎫12k +1⎝ ⎛⎭⎪⎫125-k -1即C k 5=C k +15,∴k +(k +1)=5,k =2. 答案:C 二、填空题7.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案:0.1288.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.解析:∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0) =1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.答案:19279.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.解析:由题意知P (B )的值是由A 1,A 2,A 3中某一个事件发生所决定的,故①③错误;∵P (B |A 1)=P B ∩A 1P A 1=12×51112=511,故②正确;由互斥事件的定义知④正确,故正确的结论的编号是②④.答案:②④ 三、解答题10.(2012年陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A表示事件则事件A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.所以X的分布列为E(X)法二:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49.所以X的分布列为E (X )11.(2011年天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中; (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).解:(1)(ⅰ)设“在1次游戏中摸出i 个白球“为事件A i (i =0,1,2,3),则 P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12.且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P (X =0)=⎝⎛⎭⎪⎫1-7102=9100. P (X =1)=C 12710⎝ ⎛⎭⎪⎫1-710=2150. P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是X 的数学期望E (X )=0×100+1×50+2×100=5. 12.(2011年陕西)如图,A 地到火车站共有两条路径L 1和L 2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望.解:(1)A i 表示事件“甲选择路径L i 时,40分钟内赶到火车站”,B i 表示事件“乙选择路径L i 时,50分钟内赶到火车站”,i =1,2.用频率估计相应的概率可得P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9,∵P (B 2)>P (B 1),∴乙应选择L 2,(2)A ,B 分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P (A )=0.6,P (B )=0.9,又由题意知,A ,B 独立,∴P (X =0)=P (A B )=P (A )P (B )=0.4×0.1=0.04,P (X =1)=P (A B +A B )=P (A )P (B )+P (A )P (B )=0.4×0.9+0.6×0.1=0.42,P (X =2)=P (AB )=P (A )P (B )=0.6×0.9=0.54∴X 的分布列为∴E (X )[热点预测]13.2012年3月1日,江苏慈善家陈光标为宣传环保,在北京向市民派发自行车,同时,随着大家对健康、环保出行方式的逐渐认可,依靠自行车出行的人越来越多,自行车租赁业也火热起来.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)甲、乙两人所付的租车费用相同即可能为0元,2元,4元, 则租车费用为0元的概率P 1=14×12=18,租车费用为2元的概率P 2=12×14=18,租车费用为4元的概率P 3=⎝ ⎛⎭⎪⎫1-14-12×⎝ ⎛⎭⎪⎫1-12-14=116.则甲、乙两人所付的租车费用相同的概率P =P 1+P 2+P 3=516.(2)ξ的可能取值为0,2,4,6,8.易知甲、乙两人三小时以上且不超过四小时还车的概率分别为14,14,则P (ξ=0)=14×12=18, P (ξ=2)=14×14+12×12=516, P (ξ=4)=14×14+12×14+12×14=516, P (ξ=6)=14×14+12×14=316, P (ξ=8)=14×14=116.所以甲、乙两人所付的租车费用之和ξ的分布列为E (ξ)=0×18+2×16+4×16+6×16+8×16=8+4+8+2=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【与名师对话】2015高考数学一轮复习 11.5 二项分布及应用课时作业 理(含解析)新人教A版 一、选择题 1.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A.0.85 B.0.819 2 C.0.8 D.0.75 解析:P=C34×0.83×0.2+C44×0.84=0.819 2. 答案:B 2.一个均匀小正方体的六个面中,三个面上标注数1,两个面上标注数2,一个面上标注数3,将这个小正方体抛掷2次,则向上的数之和为3的概率为( )

A.16 B.14 C.13 D.12 解析:设第i次向上的数是1为事件Ai,第i次向上的数是2为Bi,i=1,2,则P(A1)=P(A2)=12,P(B1)=P(B2)=13,则所求的概率为P(A1B2)+P(A2B1)=P(A1)P(B2)+P(A2)P(B1)

=12×13+12×13=13. 答案:C 3.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向

为向上或向右,并且向上、向右移动的概率都是12.质点P移动五次后位于点(2,3)的概率是( ) A.125 B.C25125

C.C35123 D.C25C35125 解析:质点P从原点到点(2,3)需右移两次上移三次, 故C25122123=C25125. 答案:B 4.如图所示的电路,有a,b,c三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a闭合”为事件A,“b闭合”为事件B,“c闭合”为事件C,则灯亮应为事件A·C·B,且A,C,B之间彼此独立,

且P(A)=P(B)=P(C)=12. 所以P(A·B·C)=P(A)·P(B)·P(C)=18. 答案:A 5.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值为( )

A.0 B.1 C.2 D.3

解析:由Ck512k125-k=Ck+1512k+1125-k-1 即Ck5=Ck+15,∴k+(k+1)=5,k=2. 答案:C

6.(2013·山西模拟)某人抛掷一枚硬币,出现正反的概率都是12,构造数列{an},使得

an= 1 第n次抛掷时出现正面,-1 第n次抛掷时出现反面,记Sn=a1+a2+…+an(n∈N*),则S4=2的概率为

( ) A.116 B.18 C.14 D.12 解析:依题意得知,“S4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S4=2”的概率为C34123·12=14. 答案:C 二、填空题 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率

为1625,则该队员每次罚球的命中率为________.

解析:设该队员每次罚球的命中率为p,则1-p2=1625, p2=925.又0=35.

答案:35 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128. 答案:0.128 三、解答题 9.(2014·河北沧州质量监测)某教育研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:

版本 人教A版 人教B版 苏教版 北师大版 人数 20 15 5 10 (1)从这50名教师中随机选出2名,求2人所使用版本不同的概率; (2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列和数学期望. 解:(1)从50名教师随机选出2名的方法数为C250=1 225, 选出2人所使用的版本相同的方法数为C220+C215+C25+C210=350,

故2人使用版本不相同的概率为:P=1-3501 225=57. (2)ξ所有可能取值为0,1,2, ∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119, P(ξ=2)=C220C235=38119.

ξ的分布列为

ξ 0 1 2 P 317 60119 38119

∴E(ξ)=317×0+60119×1+38119×2=136119=87. 10.(2013·江西师大附中、鹰潭一中高三联考)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000

元,6 000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立. (1)求小王过第一关但未过第二关的概率; (2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望. 解:(1)设小王过第一关但未过第二关的概率为P1,

则P1=452×14+34×14=725.

(2)X的取值为0,1 000,3 000,6 000,则P(X=0)=15+45×15=925, P(X=1 000)=452×14+34×14=725,

P(X=3 000)=452×342×1-232-C12232×13

=775, P(X=6 000)=452×342×232+C12232×13

=415, ∴X的概率分布列为 X 0 1 000 3 000 6 000 P 925 725 775 415

∴X的数学期望E(X)=0×925+1 000×725+3 000×775+6 000×415=2 160. 11.(2013·保定市高三第一次模拟)每一个父母都希望自己的孩子能升上比较理想的中学,于是就催生了“择校热”,这样“择校”的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能6∶15骑车从家出发到学校,途径5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),

假定他在每个路口遇见红灯的概率均为13,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯的情况统计如下: 红灯 1 2 3 4 5 等待时间(秒) 60 60 90 30 90 (1)设学校规定7∶20后(含7∶20)到校即为迟到,求这名学生迟到的概率; (2)设ξ表示该学生第一次停车时已经通过的路口数,求它的分布列. 解:(1)当1、2、3、5路口同时遇到红灯时,该学生会迟到.故该生迟到的概率为P=

134·13+23=181.

(2)由题意知ξ取值为0,1,2,3,4,5, 则P(ξ=0)=13,P(ξ=1)=23·13=29

P(ξ=2)=232·13=427,P(ξ=3)=233·13=881

P(ξ=4)=234·13=16243,P(ξ=5)=235=32243.

ξ 0 1 2 3 4 5 P 13 29 427 881 16243 32243

12.(2013·北京东城统一检测)为迎接6月6日的“全国爱眼日”,某高中学校学生会随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图,若视力测试结果不低于5.0,则称为“好视力”. (1)写出这组数据的众数和中位数; (2)求从这16人中随机选取3人,至少有2人是“好视力”的概率; (3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望. 解:(1)由题意知众数为4.6和4.7;中位数为4.75. (2)设Ai表示所选3人中有i个人是“好视力”,至少有2人是“好视力”记为事件A,

则P(A)=P(A2)+P(A3)=C24C112C316+C34C316=19140.

(3)X的可能取值为0,1,2,3.由于该校人数很多,故X近似服从二项分布B3,14. P(X=0)=343=2764,

P(X=1)=C13×14×342=2764,

P(X=2)=C23×142×34=964,

P(X=3)=143=164,

X的分布列为

X 0 1 2 3

P 2764 2764 964 164

故X的数学期望E(X)=3×14=34. [热点预测]

相关文档
最新文档