陶瓷散热基板与MCPCB的散热差异分析比较
LED散热核心之争--陶瓷基板与铝基板孰强孰弱?

LED散热核心之争昨日(3日),德国照明大厂欧司朗发布2017财年第二季度业绩报告,2017年1-3月实现营收10.5亿欧元(折合人民币78.97亿元),比上年同期增长约为10%。
在半导体照明飞速发展的今天,LED的重点难题—散热,将成为一个大问题,那么到底怎么样才能最高效率的散热呢?今天我们就来聊聊LED散热的重点—芯片。
现在芯片的制造可谓是多种多样,LED芯片也不例外。
芯片的导热率将会直接影响到散热,当然,作为芯片也不能光看散热,还有介电常数、热膨胀系数等。
今天用市场上应用广泛的铝基板和一直比较低调的陶瓷基板做个对比。
铝基板--常见于LED照明产品。
有正反两面,白色的一面是焊接LED引脚的,另一面呈现铝本色,一般会涂抹导热凝浆后与导热部分接触。
铝基板常用的金属铝基的板材主要有1000系、5000系和6000系,这三系铝材的基本特性如下:○11000系列代表1050、1060 、1070 ,1000系列铝板又称为纯铝板,在所有系列中1000系列属于含铝量最多的,纯度可以达到99.00%以上。
由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。
○25000系列代表5052、5005、5083、5A05系列。
5000系列铝板属于较常用的合金铝板系列,主要元素为镁,含镁量在3-5%之间,其又称为铝镁合金。
主要特点为密度低、抗拉强度高、延伸率高等。
在相同面积下铝镁合金的重量低于其他系列,故常用在航空方面,比如飞机油箱。
○36000系列代表6061 主要含有镁和硅两种元素,故集中了4000系列和5000系列的优点6061是一种冷处理铝锻造产品,适用于对抗腐蚀性、氧化性要求高的应用。
可使用性好,接口特点优良,容易涂层,加工性好。
5000系铝基板的导热率在135W/(m·K)左右,6000系在150W/(m·K)左右1000系在220W/(m·K)左右。
最佳化大功率LED之厚膜技术

最佳化大功率LED之厚膜技术根据美国能源部能源效率和可再生能源办公室提供的资讯,散热是成功设计大功率LED系统的最重要因素之一。
发光二极管只能将20%到30%的电能转化为可见光,其余转化为热量,必须从大功率LED芯片导入电路板和散热片。
多余的热量会减少LED的光输出,缩短其寿命。
因此,散热效率的提升对于最佳化大功率LED的性能潜力非常重要。
用散热基板替代目前,用于高功率/高亮度用途的LED基板或模组被銲接到一个金属基印刷电路板(MCPCB)、增强散热型印刷电路板或陶瓷基板上,然后将基板黏接到散热片上。
虽然这种配置在LED行业广泛应用,但它不是最佳的散热方法,而且制造成本可能很高。
MCPCB和增强散热型印刷电路板具有良好的散热性能,但设计灵活度有限,而且如果需要提高散热效能,成本可能很高,原因是需要额外花费散热孔加工费用和昂贵的导热绝缘材料费用。
陶瓷基板可以采用导热性不强但价格便宜的陶瓷(如氧化铝陶瓷),也可以采用导热性强但价格十分昂贵的陶瓷(如氮化铝陶瓷)。
总而言之,陶瓷基板的成本高于MCPCB和增强散热型印刷电路板基板。
为替代上述基板,大功率LED厂商正在测试直接在铝基板上制作电路的方法,因为这种方法能提供优良的导热性。
由于其优势,LED产业有兴趣采用铝,但在铝基板上制作LED电路需要绝缘层。
现在,厚膜技术的进展使大功率LED产业能够获得使用铝基板的好处。
厚膜散热浆料供应商贺利氏材料技术公司研制的铝基板用材料系统(IAMS)是一种低温烧结(低于600℃)的厚膜绝缘系统,可以印刷和烧结在铝基板上。
IAMS材料系统包含介电浆料、银导电浆料、玻璃保护层和电阻浆料。
这些材料都适合于3000、4000、5000和6000系列铝基板。
IAMS的优点贺利氏公司厚膜材料部全球LED专案经理近藤充先生说:“IAMS是为铝基板设计的绝缘系统。
铝无法承受超过摄氏660度以上的温度,标准的厚膜产品基于陶瓷,必须在高温下烧结,温度高达摄氏800度至900度。
陶瓷电路板和铝基板那个散热性更好?

陶瓷电路板和铝基板那个散热性更好?陶瓷电路板和铝基板的导热能力都比较高,但是在基板的使用上到底是通常电路板还是铝基板好呢?首先看铝基板的构成和导热系数“铝基板是一种具有良好散热功能的金属基覆铜板,一般单面板由三层结构所组成,分别是电路层(铜箔)、绝缘层和金属基层。
用于高端使用的也有设计为双面板,结构为电路层、绝缘层、铝基、绝缘层、电路层。
极少数应用为多层板,可以由普通的多层板与绝缘层、铝基贴合而成。
”铝基板导热系数差不多在1.0~2.0之间,从结构上可以看出,铝基板是有绝缘层的,那么它的导热系数主要与绝缘层有关,加了绝缘层的铝基板,导热系数并不突出,不过比一般的FR-4基板要好很多。
目前的铝基板多用进口导热胶,相对导热更好。
材质和结构——陶瓷基板和铝基板的不同之处陶瓷基板是以陶瓷作为基板材料,在结构上,因为陶瓷本身的绝缘性能就非常好,所以陶瓷不需要绝缘层。
路边的电线杆大家都见过,上面的绝缘子就是陶瓷的。
目前市面上的陶瓷基板主要氮化铝陶瓷和氧化铝陶瓷两种,氧化铝陶瓷的热导率差不多在15~31,氮化铝差不多在135~175,数据参考《电气电子绝缘技术手册》。
很明显,陶瓷的导热性能会比铝基板好太多了,绝缘层是铝基板最核心的技术,主要起到粘接,绝缘和导热的功能。
铝基板绝缘层是功率模块结构中最大的导热屏障。
绝缘层热传导性能越好,越有利于器件运行时所产生热量的扩散,也就越有利于降低器件的运行温度,从而达到提高模块的功率负荷,减小体积,延长寿命,提高功率输出等目的。
也就是说,铝基板受制于绝缘层。
陶瓷基板没有绝缘层,也就不会有这样的困扰。
相信经过小编的讲述,您对陶瓷电路板和铝基板的特种有更多了解了,在使用板材这款可以根据需求而选择不同的板材。
更多电路板打样和制作可以咨询金瑞欣特种电路板官网。
陶瓷基板的种类特性和工艺

三、陶瓷基板旳特征
陶瓷散热基板特征比较中,主要选用散热基板旳:(1)热传导率、 (2)工艺温度、(3)线路制作措施、(4)线 径宽度,四项特征作进一步旳讨论:
2023/12/13
三、陶瓷基板旳特征——热传导率
热传导率又称为热导率,它代表了基板材料本身直接传导热能旳一种能力,数值愈高代表其散热能力愈 好。LED散热基板最主要旳作用就是在于,怎样有效旳将热能从LED芯片传导到系统散热,以降低 LED 芯片旳温度,增长发光效率与延长LED寿命,所以,散热基板热传导效果旳优劣就成为业界在选用 散热基板时,主要旳评估项目之一。
检视表一,由四种陶瓷散热基板旳比较可明看出,虽然Al2O3材料之热传导率约在20~24之间,LTCC为 降低其烧结温度而添加了30%~50%旳玻璃材料,使其热传导率降至2~3W/mK左右;而HTCC因其普遍 共烧温度略低于纯Al2O3基板之烧结温度,而使其因材料密度较低使得热传导系数低Al2O3基板约在 16~17W/mK之间。一般来说,LTCC与HTCC散热效果并不如DBC与DPC散热基板里想。
2023/12/13
二、陶瓷基板旳种类——DBC
直接敷铜陶瓷基板因为同步具有铜旳优良导电、 导热性能和陶瓷旳机械强度高、低介电损耗旳 优点,所以得到广泛旳应用。在过去旳几十年 里,敷铜基板在功率电子封装方面做出了很大 旳贡献,这主要归因于直接敷铜基板具有如下 性能特点:
热性能好;
电容性能;
直接敷铜陶瓷基板最初旳研究就是为了处理大电 流和散热而开发出来旳,后来又应用到AlN陶瓷旳 金属化。除上述特点外还具有如下特点使其在大 功率器件中得到广泛应用:
4.在工艺温度与裕度旳考量, DPC旳工艺温度仅需 250~350℃左右旳温度即可 完毕散热基板旳制作,完全 防止了高温对于材料所造成 旳破坏或尺寸变异旳现象, 也排除了制造成本费用高旳 问题。
各种散热基板特性比较

各种散热基板特性比较
∙
∙陶瓷基板:现阶段较普遍的陶瓷散热基板种类共有HTCC、LTCC、DBC、DPC四种:
1、HTCC(高温共烧多层陶瓷基板):属于较早期发展之技术,但由于其较高的制程温度
(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,目前渐渐被LTCC取代。
2、LTCC(低温共烧多层陶瓷基板):将氧化铝+30%~50%的玻璃粉+有机黏着剂混成浆
料,利用刮刀将浆料刮成片状,再将每片陶瓷基板制造线路后再压合而成,因在制程中有加入玻璃粉,故共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。
3、DBC(Direct Bonded Copper):将陶瓷基板的单面或双面覆上铜,利用高温
(1065~1085℃)使铜与陶瓷层黏合后,再制造线路,其技术瓶颈在于不易解决Al2O3与Cu 板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战。
4、DPC(Direct Plate Copper):将陶瓷基板利用真空溅镀镀上铜层,再利用显影制程
制造线路,其制程结合材料与薄膜制程技术,其产品为近年最普遍使用的陶瓷散热基板。
各种散热基板特性比较:
图3 各种散热基板特性比较(点击查看原图)。
LED散热用铝基pcb好还是陶瓷pcb呢

LED散热用铝基pcb好还是陶瓷pcb呢在LED行业,会用到铝基板或者陶瓷pcb,铝基板和陶瓷pcb到底那个更好呢?LED 的散热主要是看芯片,LED散热除了芯片的散热,还有介电常数以及热膨胀系数。
今天小编从材质等方面详细阐述一下:铝基pcb铝基板是属于金属基板,采用的板材主要有1000系、5000系和6000系,这三系铝材的基本特性如下:一,5000系列代表5052、5005、5083、5A05系列。
5000系列铝板属于较常用的合金铝板系列,主要元素为镁,含镁量在3——5%之间,其又称为铝镁合金。
主要特点为密度低、抗拉强度高、延伸率高等。
在相同面积下铝镁合金的重量低于其他系列,故常用在航空方面,比如飞机油箱。
二,1000系列代表1050、1060、1070,1000系列铝板又称为纯铝板,在所有系列中1000系列属于含铝量最多的,纯度可以达到99.00%以上。
由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。
三,1000系列代表1050、1060、1070,1000系列铝板又称为纯铝板,在所有系列中1000系列属于含铝量最多的,纯度可以达到99.00%以上。
由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。
在看一下陶瓷pcb陶瓷基板——是指铜箔在高温下直接键合到氧化铝(Al2O3)或氮化铝(AlN)陶瓷基片表面(单面或双面)上的特殊工艺板。
所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。
陶瓷pcb具有以下一些特点:◆机械应力强,形状稳定;高强度、高导热率、高绝缘性;结合力强,防腐蚀。
◆极好的热循环性能,循环次数达5万次,可靠性高。
◆与PCB板(或IMS基片)一样可刻蚀出各种图形的结构;无污染、无公害。
◆使用温度宽——55℃——850℃;热膨胀系数接近硅,简化功率模块的生产工艺。
各种基板热传导系数

各种基板热传导系数一、金属基板热传导系数金属基板是一种常见的热传导材料,其热传导系数通常较高。
金属基板具有良好的导热性能,能够快速将热量从一个区域传递到另一个区域。
常见的金属基板包括铝基板、铜基板等。
铝基板的热传导系数约为200-250 W/(m·K),而铜基板的热传导系数约为350-400 W/(m·K)。
这些高热传导系数使得金属基板在散热领域得到广泛应用,如LED照明、电子设备等。
二、陶瓷基板热传导系数陶瓷基板是一种具有良好绝缘性能的材料,通常用于高温环境下的散热应用。
陶瓷基板具有较低的热传导系数,一般在2-10 W/(m·K)之间。
这是因为陶瓷材料的结构特点决定了其热传导性能较差,其内部存在许多孔隙和微观结构,导致热量传导受阻。
陶瓷基板由于其绝缘性能优异,常用于电子元器件的绝缘散热、高温热敏电阻等应用。
三、有机基板热传导系数有机基板是一种常见的热传导材料,其热传导系数相对较低。
有机基板通常由聚酰亚胺、聚酰胺等有机高分子材料组成,其热传导系数一般在0.1-0.5 W/(m·K)之间。
由于有机基板具有较低的热传导系数,其散热性能较差,常需要通过其他方式提高散热效果,如增加散热片、采用散热胶等。
有机基板在电子设备、通信设备等领域得到广泛应用。
四、复合材料基板热传导系数复合材料基板是一种由不同材料组成的热传导材料,其热传导系数通常介于金属基板和有机基板之间。
复合材料基板的热传导系数取决于不同材料的组成比例和热传导性能。
例如,玻纤增强环氧基板具有较高的热传导系数,约为1-2 W/(m·K),而铝基板与聚酰亚胺基板的复合材料基板的热传导系数则介于两者之间。
复合材料基板可以通过合理设计材料组成和结构,实现良好的散热性能,并满足特定的应用需求。
五、硅基板热传导系数硅基板是一种常见的热传导材料,其热传导系数较高。
硅基板的热传导系数约为100-150 W/(m·K),具有良好的导热性能。
LED灯散热途径分析与陶瓷基板研究

摘要led具有节能、省电、高效、反应时间快等特点已得到广泛应用,但是led发光时所产生的热能若无法导出,将会导致led工作温度过高,从而影响led灯的寿命、光效以及稳定性。
本文从led温度产生的原因出发,分析led灯的散热途径以及陶瓷散热基板技术。
【关键词】led灯散热陶瓷基板led半导体照明芯片工作时发的光线是不含紫外线和红外线的,因此它的光线不能带走热量,所以工作时温度就会不断上升。
为了降低led工作温度,延长led灯的寿命就必须要把它发光时产生的热能及时导出。
led 从芯片到整个散热器的每一个环节都必须充分考虑散热。
任何一个环节不当的设计都会引起严重的散热问题。
1 温度对led灯的影响led的光衰表明了它的寿命,随着使用的时间,亮度会就越来越暗,直到最后熄灭。
通常定义衰减30%的时间作为其寿命。
led温度与寿命的关系图如图1所示,从图中我们可以看到,led灯的寿命随着工作温度的升高而缩短。
图2是结面温度与发光量之间的关系图,如果结温为25度时发光为率100%的话,那么当结温上升到50度时,发光率下降到95%;100度时下降到80%;150 度就只有68%。
2 led温度产生原因分析led发热是因为加入的电能只有约20%-30%转换成了光能,而一大部分都转化成了热能。
led结温的产生是由于两个因素所引起的。
(1)pn区载流子的复合率并不是100%,也就是电子和空穴复合的时候不全都产生光子,泄漏电流及电压的乘积就是这部分产生的热能。
但现在内部光子效率已经接近于90%,因此这部分热能并不是led结温产生的主要因素。
(2)导致led结温的是主要因素是内部复合产生的光子不能全部射出到芯片外部而转化的热能,目前这种外部量子效率只有30%左右,其大部分都转化为热量了。
led散热可以通过以下途径实现:(1)从空气中散热;(2)热能直接由电路板导出;(3)经由金线将热能导出;(4)若为共晶及flip chip 制程,热能将经由通孔至系统电路板而导出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷散热基板与MCPCB的散热差异分析比较
随着科技日新月异的发展,近年来全球环保的意识抬头,如何有效开发出节能省电的科技产品已成为现今趋势。
就LED产业而言,慢慢这几年内成为快速发的新兴产业之一,在2010年的中国世博会中可看出LED的技术更是发光异彩,从上游到下游的生产制造,每一环节都是非常重要的角色。
针对LED的发光效率会随着使用时间的增长与应用的次数增加而持续降低,过高的接面温度会加速影响其LED发光的色温品质致衰减,所以接面温度与LED发光亮度呈现反比的关系。
此外,随着LED芯片尺寸的增加与多晶LED封装设计的发展,LED载板的热负荷亦倍增,此时除载板材料的散热能力外,其材料的热稳定性便左右了LED产品寿命。
简单的说,高功率LED产品的载板材料需同时具备高散热与高耐热的特性,因此封装基板的材质就成为关键因素。
在传统LED散热基板的应用上,Metal Core PCB(MCPCB)与陶瓷散热基板应用范围是有所区别的,MCPCB主要使用于系统电路板,陶瓷散热基板则是应用于LED芯片基板,然而随着LED需求的演化,二者逐渐被应用于COB(Chip on board)的工艺上,下文将针对此二种材料作进一步讨论与比较。
MCPCB
MCPCB主要是从早期的铜箔印刷式电路板(FR4)慢慢演变而成,MCPCB与FR4之间最大的差异是,MCPCB以金属为核心技术,采用铝或铜金属作为电路板之底材,在基板上附着上一层铜箔或铜板金属板作线路,用以改善散热不佳等问题。
MCPCB的结构图如图1所示:
图1 MCPCB结构图
因铝金属本身具有良好的延展性与热传导,结合铜金属的高热传导率,理当有非常良好的导热/散热效果。
然而,铝本身为一导体,基于产品特性,铝基板与铜之间必须利用一绝缘体做绝缘,以避免铜线路与铝基板上下导通,故MCPCB多采用高分子材料作为绝缘层材料,但绝缘层(Polymer)热传导率仅0.2~0.5W/mK,且有耐热方面的问题。
因此原本热传导率极佳的铝/铜金属,在加入Polymer后,形成热阻,大幅的降低基板整体的热传导效率,导致MCPCB的热传导率仅有1W/mK~2.2W/mK。
近期的研究中,将高导电材料覆合于MCPCB之高分子材料中,虽提升了MCPCB产品的热传导率,但其MCPCB整体主轴方向的热传导率亦仅能提升致3~5W/mK左右。
然而,在实际应用上,MCPCB也面临因冲压分割时造成因金属延伸(如图2所示),此时因金属铜层受冲压变形延伸而导致板边高分子介电绝缘层变形,如此一来,容易使得LED产品的耐压特性不稳定(介电高分子变形破坏)。
图2 MCPCB冲压分割示意图
陶瓷散热基板
近期有许多以陶瓷材料作为高功率LED散热基板之应用,然而LTCC/HTCC二者因采用厚膜工艺备置金属线路,使得线路精准度不高,加上受限于工艺因素,不利于生产小尺寸的产品,因此LTCC/HTCC现阶段工艺能力并不适合小尺寸高功率产品的需求。
1 2 3
|||
另一方面,DBC亦受限于工艺能力,线路分辨率仅适合100~300um,且其量产能力受金属/陶瓷界面空气孔洞问题而受限。
在陶瓷基板产品的线路精确度、材料散热系数、金属表面平整度、金属/陶瓷间接合覆着度考虑,目前以薄膜微影程制作金属线的DPC陶瓷基板的应用范畴最广。
MCPCB与薄陶瓷散热基板的差异
目前市场上多数还是以MCPCB为主要,其原因成本低廉、一开始的发光效率佳,但其散热效果较差,且工艺温度不可超过350℃,故无法应用于高功率LED上,其详细比较可见表1。
高功率、小尺寸的产品为目前在LED产业所发展的重点,在制作越精细精准度越高之情况下,工艺的能力与技术也是相当重要的环节之一。
如何研发出符合市场需求,解决未来产品解决方案,进而发挥出最大的经济效益并且让我们的产品更加环保,以符合绿能所需,也是我们着重的课题之一。