3.1.1方程的根与函数的零点(优秀经典公开课比赛教案)

合集下载

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标:1. 让学生理解方程的根与函数的零点的概念,掌握它们之间的关系。

2. 培养学生运用函数的零点定理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 方程的根与函数的零点的定义。

2. 函数的零点定理及应用。

3. 方程的根与函数的零点之间的关系。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念,函数的零点定理。

2. 难点:方程的根与函数的零点之间的关系,函数的零点定理在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点之间的关系。

2. 利用实例分析,让学生直观地理解函数的零点定理。

3. 运用小组讨论法,培养学生的团队合作精神,提高解决问题的能力。

五、教学过程:1. 导入:引导学生回顾方程的解与函数的零点的概念,为新课的学习做好铺垫。

2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。

3. 实例分析:分析具体例子,让学生理解函数的零点定理及应用。

4. 练习:布置练习题,让学生巩固所学知识。

6. 作业布置:布置作业,让学生进一步巩固所学知识。

7. 课后反思:教师对本节课的教学进行反思,为学生下一步的学习做好准备。

六、教学评价:1. 课后作业:检查学生对课堂所学知识的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在团队合作中的参与程度,以及他们的问题解决能力。

4. 期中期末考试:全面评估学生在整个学期的学习成果。

七、教学资源:1. 教学PPT:提供直观的教学演示,帮助学生更好地理解概念。

2. 练习题库:为学生提供丰富的练习资源,帮助他们巩固知识。

3. 教学视频:为学生提供额外的学习资源,帮助他们从不同角度理解知识点。

4. 网络资源:利用互联网为学生提供更多相关知识的学习资料。

八、教学进度安排:1. 第1周:介绍方程的根与函数的零点的概念。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。

让学生掌握方程的根与函数的零点之间的关系。

培养学生运用数形结合的思想方法解决问题的能力。

1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。

引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。

引导学生理解方程的根与函数的零点之间的关系。

1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。

引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。

布置练习题,巩固学生对方程的根与函数的零点的理解和运用。

第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。

让学生学会运用一元二次方程的根的判别式解决实际问题。

培养学生运用数形结合的思想方法解决问题的能力。

2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生掌握一元二次方程的根的判别式及其应用。

引导学生运用一元二次方程的根的判别式解决实际问题。

2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。

布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。

第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。

培养学生运用判定定理判断方程的根与函数的零点的情况。

3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。

引导学生运用判定定理判断方程的根与函数的零点的情况。

3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。

引导学生进行思考和讨论,深化对判定定理的理解和运用。

布置练习题,巩固学生对判定定理的掌握。

第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。

新疆和硕县高中数学第三章函数的应用3.1.1方程的根与函数的零点教案新人教A版必修1(new)

新疆和硕县高中数学第三章函数的应用3.1.1方程的根与函数的零点教案新人教A版必修1(new)

《方程的根与函数的零点》
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some
unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

高中数学3.1.1 (第1课时)方程的根与函数的零点优秀课件

高中数学3.1.1 (第1课时)方程的根与函数的零点优秀课件

4 假设函数f(x)在区间(0 , 2)内有零点,那D么
( ). A.f(0)>0,f(2)<0 B.f(0)·f(2)<0 C.在区间(0,2)内,存在x₁,x₂使f(x₁)·f(x₂)<0
y D.以上说法都不正确
O
2x
5.以下各图象表示的函数中没有零点的是( D )
B
7. 函数f(x)在区间[a,b]上单调且图象连续,且
f(a)·f(b)<0,那么函数f(x)在区间(a,b)上( D )
A. 至少有三个零点
B. 可能有两个零点
C. 没有零点
D. 必有唯一零点
假设改成:函数f(x)在区间[a,b]上图象连续
8 方程2x+x=0在以下哪个区间内有实数根( D )
A. (-2 ,-1)
B. (0 , 1)
C. (1 , 2)
C. x=1
D. 不存在
2. 函数f(x)=x2-2x的零点个数是( C )
A. 0
B. 1
C. 2
D. 3
3. 假设函数f(x)的图象在R上连续不断,且满足
f(0)<0,f(1)>0,f(2)>0,那么以下说法正C确的选项
是( ) A. f(x)在区间(0 , 1)上一定有零点,在区间(1 , 2) 上一定没有零点 B. f(x)在区间(0 , 1)上一定没有零点,在区间(1 , 2) 上一定有零点 C. f(x)在区间(0 , 1)上一定有零点,在区间(1 , 2) 上可能有零点 D. f(x)在区间(0 , 1)上可能有零点,在区间(1 , 2) 上一定有零点
1 , 2 x=1 , x=2 0,-1 , 1 1
3
y
O
﹣2﹣1 1 2 3 4 x

高中数学 3.1.1方程的根与函数的零点教学精品课件 新人教A版必修1

高中数学 3.1.1方程的根与函数的零点教学精品课件 新人教A版必修1
第八页,共47页。
方程、函数、图象之间的关系
2:由实例你能否得出方程与函数之间 的关系?
第九页,共47页。
2:方程、函数、图象之间的关系 方程 f(x)=0 有实数根⇔函数 y=f(x)的图象 与 x 轴有交点⇔函数 y=f(x)有零点.
第十页,共47页。
【质疑探究 2】 (1)如何确定函数零点? (①代数法:求方程 f(x)=0 的实数根; ②几何法:对于不能用求根公式求解的方 程,可以将它与函数 y=f(x)的图象联系起 来,并利用函数的性质找出零点)
第十九页,共47页。
(3)相邻两个零点之间的函数值有何特征? (对于任意一个函数,相邻的两个零点之间 的所有函数值保持同号)
第二十页,共47页。
2:(1)二次函数
f(x)=ax2+bx+c 的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 f(x) 6 m -4 -6 -6 -4 n 6
第二十九页,共47页。
跟踪训练 1 1:已知函数 f(x)=x2+3(m+1)x+n 的零点是 1 和 2,求函 数 y=logn(mx+1)的零点. 解:由题可知 f(x)=x2+3(m+1)x+n 的两个零 点为 1 和 2. 则 1 和 2 是方程 x2+3(m+1)x+n=0 的两根.
第三十页,共47页。
第三十三页,共47页。
解:法一 令 f(x)=x-3+ln x=0, 则 ln x=3-x,……………………2 分 在同一平面直角坐标系内画出函数 y=ln x 与 y=-x+3 的图象,……………………4 分 如图所示:…………………………8 分

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

§4.1.1方程的根与函数的零点教学目标: (一)知识与技能:1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系. 2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法:自主发现、探究实践,体会函数的零点与方程的根之间的联系. (三)情感、态度、价值观:在函数与方程的联系中体验数学转化思想的意义和价值. 教学重难点:重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探究发现函数零点的存在性. 教学过程设计(一)回顾旧知,发现问题 问题1 求下列方程的根.(1)023=+x ;(2)0652=+-x x ;问题2观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x 轴交点的关系,上述结论是否仍然成立?(二)总结归纳,形成概念 1、函数的零点:辨析练习:函数223y x x =--的零点是:( )A .(-1,0),(3,0);B .x =-1;C .x =3;D .-1和3. 2、等价关系:变式练习: 求下列函数的零点(1)65)(2+-=x x x f ; (2)12)(-=x x f (3):xy 1=; (四)分组讨论,探究结论(零点存在性)问题4:函数y =f(x)在某个区间上是否一定有零点?怎样的条件下,函数y =f(x)一定有零点? (1)观察二次函数32)(2--=x x x f 的图象:○1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>). ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察下面函数)(x f y =的图象○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).(3)观察屏幕上的函数图象:若函数在某区间内存在零点,则函数在该区间上的图象是 (间断/连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是 (相同/互异) 由以上探索,你可以得出什么样的结论?讨论:(1)从这一结论中可看出,函数具备了哪些条件,就可断言它有零点存在呢?(2)如果函数具备上述两个条件时,函数有多少零点呢?(3)如果把结论中的条件“图象连续不断”除去不要,又会怎样呢? (4)如果把结论中的条件“f(a)f(b)<0’’去掉呢?(5)若函数y =f (x ) 在区间(a , b )内有零点,一定能得出f (a )·f (b )<0的结论吗? (6)在什么样的条件下,就可确定零点的个数是唯一的呢? 变式训练1.若函数()y f x =在区间[],a b 上的图像为连续不断的一条曲线,则下列说法正确的是 ( )A .若()()0f a f b >,则不存在实数(),c a b ∈,使得()0f c =B .若()()0f a f b <,则存在且只存在实数(),c a b ∈,使得()0f c =C .若()()0f a f b >,则有可能不存在实数(),c a b ∈,使得()0f c =D .若()()0f a f b <,则有可能不存在实数(),c a b ∈,使得()0f c = 2. 已知定义在R 上的函数()f x 的图象是连续不断的,且有如下对应值表:那么函数()f x 一定存在零点的区间是 ( ) A .(),1-∞ B .()1,2 C .()2,3 D .()3,+∞ 3. 若函数2()f x x ax b =++的零点是2和-4,则a=,b=.(五)观察感知,例题学习试一试:你能判断出方程 3ln +-=x x 实数根的个数吗? 六)反思小结,提升能力 1.函数零点的定义2.等价关系 函数Y=f(x)的零点函数Y=f(x)的图象与X 轴交点的横坐标方程f(x)=0实数根3.函数的零点或相应方程的根的存在性以及个数的判断课后思考.求函数22)(x x f x-=的零点个数。

高中数学高一必修第三章《方程的根与函数的零点》教育教学课件

高中数学高一必修第三章《方程的根与函数的零点》教育教学课件
由图象知g(x)=lg (x+1)的图象和h(x)=2-2x的图象有且只有一个交点, 即f(x)=2x+lg (x+1)-2有且只有一个零点.
反思与感悟
判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来 确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用 函数图象交点的个数判定函数零点的个数.
反思与感悟
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的 图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点. 在写函数零点时,所写的一定是一个数字,而不是一个坐标.
跟踪训练1 函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是____4____. 解析 f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1) =(x+1)2(x-1)(x+2)2(x-3). 可知零点为±1,-2,3,共4个.
4.下列各图象表示的函数中没有零点的是( D )
函数 = - 的零点个数是 B



无数个
则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4
=3.40>0.由于f(1)·f(2)<0,
∴方程ex-(x+2)=0的一个根在(1,2)内.
反思与感悟
在函数图象连续的前提下,f(a)·f(b)<0,能判断在区间(a,b)内有 零点,但不一定只有一个;而f(a)·f(b)>0,却不能判断在区间(a,b)内 无零点.
3.1.1 方程的根与函数的零点
主讲老师:
CONTENTS
1 • PART 01学习目标 2 • PART 02问题导学
3 • PART 03题型探究

新疆和硕县高中数学第三章函数的应用3.1.1方程的根与函数的零点教案新人教A版必修1

新疆和硕县高中数学第三章函数的应用3.1.1方程的根与函数的零点教案新人教A版必修1
例题讲解
观察,思考教师在处理问题的思维,并记忆格式。
在黑板上板演的过程,就是给学生讲解思维,渗透数学思想的过程,并训练学生的解题思路及写题过程。
随堂练习与学生展示
小组讨论解决问题,并在黑板上展示。
用所学的知识解决问题,增强学生的自信心。培养学生学习数学的兴趣。
点评与课堂小结
小组讨论,尝试自己小结
这一环节培养学生自学能力和归纳总结的能力。
就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3. 1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。
教师活动
学生活动
设计意图
目标解读
学生仔细聆听,分析教师解读的学习目标,从而确定本节课的目标。
为学生确立目标,带着目标学习会起到更好的效果。
预习反馈
观看ppt
展示预习优秀的同学为学生树立榜样。使得学生进步
知识梳理
跟随教师的思维,感受知识概念的产生过程。
通过对知识进行,简介有效的梳理,让学生学到的新知识在脑海中形成体系。
恰当使用信息技术:本节的教学中应当充分使用信息技术。实际上,一些内容因为涉及大数字运算、大量的数据处理、超越方程求解以及复杂的函数作图,因此如果没有信息技术的支持,教学是不容易展开的。因此,教学中会加强信息技术的使用力度,合理使用多媒体和计算器。
作业布置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1方程的根与函数的零点
一、教材分析
1、本节内容在教材中的地位和作用
本节内容是高中新课程数学必修1第三章“函数与方程”的第一节,“函数与方程”这个单元体现了函数与方程、不等式、算法等内容的横向联系,也为今后通过多次接触、反复体会、螺旋上升方式学习函数奠定了基础。

本节”方程的根与函数的零点”正体现函数与方程及数形结合重要思想,同时为下节“用二分法求方程的近似解”和后续的算法等学习内容打下基础,起着承上启下的作用.
2、教学重难点
重点:体会函数零点与方程根之间的联系,掌握零点的概念及零点存在性定理。

难点:探究并发现零点存在性定理及其应用。

二、三维目标分析
1、知识与技能
结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。

2、过程与方法
培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程互相转化的重要思想。

3、情感态度与价值观
在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。

确定教学目标的依据:
1、新课程标准的基本要求:注重基础,避免拓展,注重联系,突出本质
2、学生的认知水平:已有的认知基础是初中学习过二次函数定义图象及性质和一元二次方程解法,并且体会过“当函数值为0时,求相应自变量的值”的问题,初步认识到一元二次方程与相应二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会.在高中阶段,学生已经学习了函数概念与性质,掌握了研究部分基本初等函数性质的思想方法.
三、教法学法
为了达到三维目标,突出重点攻克难点,我制定了以下的教法和学法
教法:探究式教学法
教学手段:采用多媒体辅助教学,构建学生自主掌握的平台 学法:观察发现 自主探索 合作交流
四、教学过程
(以问题为载体,学生活动为主线 探索、类比、猜想、发现并获得新知)
布置作业,学以致用
必做题
1、求函数:y=-x 2+6x+7的零点
2、方程521=+-x x 的解所在的区间是 ( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)
3、若函数f(x)=x 2-ax-b 的两个零点是2和3,求log a 25 + b 2。

设计意图:必做题巩固学生所学的零点概念及零点存在性定理的应用等新知识,将学生的新知识向外延伸,达到掌握本质注重联系。

选做题
求证:()x
x x f 2
ln -
=在()2,1e 上存在唯一零点. 设计意图:由于学生学力水平的差异,注意分层教学,为学有余力的学生提供更多发展的空间。

探究题
1、.设函数1
x
=ax
f x.
2
)(+
-
(1)利用计算机探求2=
a时函数)(x
a和3=
f的零点个数;
(2)当R
a∈时,函数)(x
f的零点是怎样分布的?
设计意图:激发学生学习潜能和热情,在探究学习中得到数学能力的提高,从小培养科学研究的素养。

现代数学教学的新理念,就是想方设法在教学中培养学生的创新能力和探究意识,本题具有较强的开放性,探究性,基本上可以达到培养探究能力的目的,将学生思维引领到更高的层次。

五、评价与反思
反馈式评价
值得肯定的:
积极探索勇于猜想合作交流敢于表达
值得注意:注重用函数的思想解决方程问题
零点存在性定理的灵活使用
教学反思:现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:(1)在学生已有知识结构和新概念间寻找“最近发展区”
(2)设法走出“概念一带而过,演习铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程”的新天地。

因此教学设计过程:逐层铺垫,降低难度由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形,恰当地使用多媒体和计算器,让学生直观形象地理解问题,了解知识的形成过程。

采用“启发—探究—讨论”教学模式精心设置一个个问题链,给每个学生提供思考、创造、
表现和成功的机会.并进行反馈式评价。

教学设计说明:建构主义认为:知识不是被动接受,而是认知主体积极主动建构的。

本节的教学设计正是在这种教学理念的指导下,让学生经历“创设问题情境——建构概念——探究定理——注重反思——拓展应用”的活动过程,体验参与数学知识的发生、发展过程,提高学习数学的兴趣,成为积极主动的建构者。

本节课让学生充分体验并理解函数与方程相互转化的数学思想方法,是学习数形结合、函数与方程等数学思想方法很好的载体.
板书设计
注:充分体现内容的主次及内容的辅助与陪衬作用。

相关文档
最新文档