X射线衍射在残余应力分析中应用

合集下载

x射线衍射测量残余应力实验指导书

x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。

2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。

二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。

三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。

从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。

材料中内应力分为三大类。

第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。

由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。

第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。

第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。

第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。

在通常情况下, 我们测得是残余应力是指第一类残余应力。

当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。

当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。

材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。

原理见图1。

由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。

当然更适用于薄膜材料的残余应力测量。

图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。

残余应力的测试标准

残余应力的测试标准

残余应力的测试标准残余应力是指在物体内部或表面存在的一种应力状态,它是在物体内部或表面上由于加工、焊接、热处理等工艺过程中产生的应力。

残余应力的存在会对材料的性能和使用寿命产生一定的影响,因此对残余应力进行测试是非常重要的。

下面将介绍残余应力的测试标准及相关内容。

1. 测试方法。

残余应力的测试方法有很多种,常见的包括X射线衍射法、光栅法、中子衍射法、电子衍射法等。

其中,X射线衍射法是应用最为广泛的一种方法。

通过X射线衍射仪器可以测定材料内部的应力状态,得到残余应力的大小和分布情况。

2. 测试标准。

在进行残余应力测试时,需要遵循一定的测试标准,以保证测试结果的准确性和可靠性。

国际上常用的残余应力测试标准有ASTM E837-13、ISO 2360:2003、GB/T 2970-2016等。

这些标准对于测试方法、设备精度、样品制备、测试程序、数据处理等方面都有详细的规定,使用者可以根据实际情况选择合适的标准进行测试。

3. 测试样品。

在进行残余应力测试时,选择合适的测试样品对于测试结果的准确性至关重要。

通常情况下,可以选择金属材料、焊接接头、热处理件等作为测试样品。

对于不同材料和工艺的测试样品,需要根据标准要求进行制备和处理,以保证测试的有效性。

4. 测试结果。

残余应力测试的结果通常以应力大小和分布图形式呈现。

通过对测试结果的分析,可以了解材料内部或表面的应力状态,为进一步的工艺改进和材料设计提供参考依据。

同时,测试结果也可以用于评估材料的质量和可靠性,对于产品的使用和维护具有重要意义。

5. 应用领域。

残余应力测试在航空航天、汽车制造、电子设备、建筑结构等领域都有着广泛的应用。

通过对材料残余应力的测试,可以有效地预防材料的疲劳破坏、断裂和变形,提高产品的使用寿命和安全性,对于保障工程质量和产品质量具有重要意义。

6. 结语。

残余应力的测试标准对于保证测试结果的准确性和可靠性至关重要。

通过遵循相关的测试标准和方法,可以得到准确的残余应力测试结果,为材料的设计和工艺改进提供科学依据。

x射线衍射测定表面残余应力的基本原理

x射线衍射测定表面残余应力的基本原理

x射线衍射测定表面残余应力的基本原理
X射线衍射是一种常用的非破坏性分析方法,可用于测定材料内部的残余应力。

其基本原理是利用X射线在晶体中发生衍射现象来获取有关晶体结构的信息。

当入射X射线照射到晶体表面时,其中的晶粒会发生散射。

这个散射过程中,
X射线会与晶体中的原子相互作用,导致X射线改变方向。

这种改变方向的现象
称为衍射,衍射的角度和晶体的结构以及晶格参数密切相关。

X射线衍射测定表面残余应力的原理是利用晶体中晶面的平面间距与入射X射线的衍射角度之间的关系。

当晶体受到残余应力的影响时,晶面的平面间距会发生改变。

这种改变会导致入射X射线的衍射角度产生相应的偏移。

通过测量衍射角
度的改变,可以反推出材料中的残余应力大小和分布情况。

为了获得准确的残余应力测量结果,需要选择合适的晶体材料和衍射仪器。


用的晶体材料包括钼、铜和钨等。

衍射仪器通常采用X射线源、衍射仪器和探测
器组成,可以实现对入射X射线的发射和检测。

测量过程中,需要准确控制入射
角度和衍射角度,并进行有效的数据分析和处理。

X射线衍射测定表面残余应力的基本原理可应用于材料工程、金属加工、航空
航天等领域,有助于了解材料的力学性能和结构变化。

通过这种非破坏性的分析方法,可以提高材料的质量控制和设计优化,从而提升产品的可靠性和性能。

x射线衍射法测残余应力

x射线衍射法测残余应力

x射线衍射法测残余应力x射线衍射法是一种常用的测量材料中残余应力的方法。

残余应力是指在材料内部存在的无外力作用下的应力状态。

x射线衍射法通过观察材料晶体的衍射图样,可以间接获得材料中的残余应力信息。

在材料制备和加工过程中,常常会产生各种类型的应力,如热应力、机械应力等。

这些应力可能会导致材料的性能下降甚至失效。

因此,了解材料中的残余应力分布情况对于材料的设计和使用具有重要意义。

x射线衍射法测量残余应力的原理是基于布拉格衍射定律。

根据布拉格衍射定律,当x射线入射到晶体上时,会与晶体中的原子产生相互作用,形成衍射峰。

这些衍射峰的位置和强度与晶体中的晶格常数、晶体结构以及晶体内部的应力状态有关。

x射线衍射实验通常使用x射线衍射仪进行。

首先,将待测材料制备成适当的样品,通常为薄片或者粉末。

然后,将样品放置在x射线衍射仪的样品台上,调整x射线的入射角度和入射波长,使得x 射线与样品发生衍射。

通过观察和分析衍射图样,可以得到一些重要的信息。

首先,衍射峰的位置可以计算出晶格常数,从而了解材料的晶体结构。

其次,衍射峰的宽度可以反映出材料中的残余应力大小。

在材料中存在应力时,晶体中的晶面会发生畸变,从而导致衍射峰的展宽。

根据衍射峰的形状和宽度,可以计算出材料中的残余应力大小和分布情况。

x射线衍射法测量残余应力具有许多优点。

首先,它是一种非破坏性的测量方法,可以对样品进行多次测量,而不会对样品的性能和结构造成损害。

其次,x射线衍射法可以测量材料中的残余应力分布情况,而不仅仅是某一个点的应力值。

这对于了解材料的应力状态以及应力的来源具有重要意义。

然而,x射线衍射法也存在一些限制。

首先,它只能测量具有晶体结构的材料,无法对非晶态材料进行测量。

其次,x射线衍射法对于样品的制备要求较高,需要将样品制备成适当的形状和尺寸,并且表面应该光滑且无缺陷。

此外,x射线衍射法对于测量环境的稳定性要求较高,温度和湿度的变化都会对测量结果产生影响。

X射线衍射技术在薄膜残余应力测量中的应用

X射线衍射技术在薄膜残余应力测量中的应用

关键 词 : 残余应 力 ; 平行 光镜 ; 细 管 ; 毛 同步 辐射 源 X 射线 : 二维探 测 器 中图分类号 : TG1 5 2 1. 2 文献标 识 码 : A
文章 编号 :0 19 3 (0 7 1 —7 50 1 0 —7 1 2 0 ) 11 4 —5
随着 转 靶 和 同 步 辐 射 X 射 线 源 等大 功 率 X射 线
X 射线 穿透 深度 很 浅 ( 于传 统 材 料一 般 仅 为几 十微 对 米 ) 因此 可 以认 为 材 料 表 面 处 于 平 面应 力 状 态 , 时 , 这 不 同方位 角 下 测 量 得 到 衍 射 晶 面 的 X射线 衍射 峰 会 发 生相应 的移动 ;( k ) h 1 晶面 间距 dk s 2 成线 I i h与 n
维普资讯

帆 等 : 射 线衍 射 技术 在 薄 膜 残 余 应 力 测 量 中 的 应 用 X
X射 线 衍 射 技 术 在 薄 膜 残 余 应 力测 量 中 的应 用
杨 帆 , 维栋 蒋建 清 费 ,
(1 东 南大 学 材料 科 学与工 程学 院 , . 江苏 南 京 2 1 8 ; 1 1 9 2 哈 尔滨 工 业大 学 材料 科 学与工 程学 院 , 龙江 哈尔 滨 1 0 0 ) . 黑 5 0 1
tu 、 rm) 中子衍 射 法 ( ur ndf a t n 、 痕 法 (n Ne to i rci ) 压 f o i— d nain meh d 和 X 射 线 衍 射 法 ( —a i rc e tt t o ) o X ry df a— f
性 关 系 , 时可 以通 过 拟合 dk s 曲线求 得材 料 此 ~ i h I n 中的残余 应 力 。s 法 测 量残 余 应力 的基 本公 式 如 i n

残余应力检测方法

残余应力检测方法

残余应力检测方法残余应力是指在物体内部或表面上存在的一种内部应力状态。

残余应力的存在对材料的性能和使用寿命都有很大的影响,因此对残余应力的检测和分析显得尤为重要。

下面将介绍几种常用的残余应力检测方法。

首先,X射线衍射方法是一种常用的残余应力检测方法。

通过对材料表面或内部进行X射线照射,然后观察X射线的衍射图样,可以得到材料的晶格参数,从而计算出残余应力的大小和方向。

这种方法具有非破坏性、快速、准确的特点,因此在工程实践中得到了广泛的应用。

其次,光弹法也是一种常见的残余应力检测方法。

通过在材料表面或内部施加一定的载荷,观察材料的形变情况,再结合材料的弹性参数,可以计算出残余应力的大小和分布情况。

这种方法适用于各种材料,尤其对于复杂形状和大尺寸的工件也有很好的适用性。

此外,声发射方法也可以用于残余应力的检测。

当材料内部存在应力时,会引起微裂纹的扩展和移动,产生声波信号。

通过对这些声波信号的监测和分析,可以得到材料内部残余应力的信息。

这种方法对于复杂结构和高温环境下的残余应力检测具有独特的优势。

最后,磁性方法也是一种常用的残余应力检测方法。

当材料内部存在应力时,会对材料的磁性产生影响,通过对磁性信号的监测和分析,可以得到材料内部残余应力的信息。

这种方法适用性广泛,可以用于各种金属材料的残余应力检测。

总的来说,残余应力的检测对材料的质量控制和工程结构的安全性具有重要意义。

以上介绍的几种方法都具有各自的特点和适用范围,可以根据具体的情况选择合适的方法进行残余应力的检测和分析。

希望以上内容对残余应力检测方法有所帮助。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ X射线衍射方法测量残余应力的原理与方法X 射线衍射方法测量残余应力的原理与方法射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读 616 评论 2 字号:大中小X 射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在 X 射线衍射谱中的表现是不相同的。

微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力) X 射线衍射谱上的表现是使峰位漂移。

在当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

1/ 12X 射线衍射法测量残余应力的发展 X 射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20 世纪初,人们就已经开始利用 X 射线来测定晶体的应力。

后来日本成功设计出的 X 射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961 年德国的---------------------------------------------------------------最新资料推荐------------------------------------------------------ E.Mchearauch 提出了 X 射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

x射线等效残余应力

x射线等效残余应力

x射线等效残余应力摘要:1.引言2.X 射线等效残余应力的定义3.X 射线等效残余应力的测量方法4.X 射线等效残余应力的应用5.结论正文:【引言】在材料科学和工程领域,残余应力是一个重要但难以直接观测的参数。

为了解决这个问题,研究人员发展了许多间接测量方法,其中X 射线等效残余应力是一种常用的方法。

本文将介绍X 射线等效残余应力的定义、测量方法和应用。

【X 射线等效残余应力的定义】X 射线等效残余应力是指材料在经过一定程度的塑性变形后,在微观层面上产生的内部应力。

这种应力是由于材料内部的原子或分子在变形过程中发生重新排列,使得周围区域的原子受到吸引力或排斥力,从而产生应力。

X 射线等效残余应力可以通过X 射线衍射技术来测量。

【X 射线等效残余应力的测量方法】X 射线等效残余应力的测量方法主要基于X 射线衍射技术。

该技术利用X 射线与材料中的原子发生相互作用,通过分析衍射数据可以获取材料的结构信息。

在测量残余应力时,需要对材料进行一定的塑性变形,然后通过X 射线衍射技术测量变形后的材料结构与原始结构的差异,从而计算出等效残余应力。

【X 射线等效残余应力的应用】X 射线等效残余应力测量技术在许多领域都有广泛的应用,包括航空航天、汽车制造、核工业等。

这些领域中的部件在制造和使用过程中常常会受到残余应力的影响,通过X 射线等效残余应力测量技术可以有效地评估和优化材料的性能,提高部件的使用寿命和安全性。

【结论】X 射线等效残余应力是一种间接测量材料内部残余应力的方法,基于X 射线衍射技术。

该方法在航空航天、汽车制造、核工业等领域有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X射线衍射在材料分析中的应用
一、X射线衍射原理
X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。

由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。

由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。

二、X射线衍射在材料分析中的应用
X射线衍射分析方法在材料分析与研究工作中具有广泛的用途:
1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。

物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。

物相分析有定性分析和定量分析2 种:
①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标
准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。

但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。

②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系
.Ii = KiXi/ Um
其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。

根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下;
2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度;
3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试;
4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变;
5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

三、实验设计:DD3镍基单晶高温合金喷丸层残余应力的X射线衍射分析
试样制备与测试方法:
试验材料:DD3镍基单晶高温合金
化学成分:质量分数 (/%) 9.6Co、8.9Cr、6.6W、4.3Al、2.9Ti、3.4T a、2.1Mo
制备及热处理:
将其进行1250℃×4h空冷+870℃×32h空冷的热处理后,其组成相为固溶体相和θ’相,晶体结构为立方晶系采用线切割加工出块状试样。

尺寸为20mm×10mm×4mm(单晶), [111] 晶向为试样的表面法线方向,即单晶 (111) 面与试样表面平行,对试样原始线切割面进行磨削加工,磨削深度超过0.5mm,然后进行喷丸处理。

采用直径为0.2mm的陶瓷丸,喷丸强度为 0.15mmA型试片,确保覆盖率在200%以上。

使用DmaxrC型X射线衍射仪,铜靶,K 辐射测定[3 3 1]衍射晶面。

结合电化学腐蚀技术进行剥层,分别测试喷丸试样不同层深处单晶组分与多晶组分中的残余应力。

由图1,可见试样表面法线z轴为晶体[1 2 3]方向,试样表面某特定方向x轴,即晶体w1w2w3方向,空间OP方向是 [hkl] 晶面的法线方向。

1、叶片的断裂属于疲劳断裂,裂纹源始于叶片的进气边
2、叶片产生断裂的内因:所用材料与常规设计材料不符,且采取的热处理工艺不当;外因:叶片表面颗粒冲蚀产生了凹坑。

图1所示是X 射线衍射应力测定法的基本工作原理。

X射线衍射法测定某种晶体材料的残余应力,是根据晶面间距的变化来计算材料应力的。

通过O 点,沿试件表面应力测定方向的 X 轴, 垂直试件表面方向的 Z 轴,与 Z 轴呈 U角有一条斜线, 它对应的X射线衍射角为2H U x ,则X 方向的应力可利用下式计算:
式中, E 为材料的弹性模量( MPa) , L为材料的泊松比, H 0为无应力状态下材料的X 射线衍射角, 2H U x为衍射角, U为被测表面法线与衍射晶面法线间的
夹角, U0为入射X 射线与被测表面法线的夹角[7, 9, 11]。

实验研究获得的X 射线衍射残余应力测定结果,其应力分布在总趋势上与理论分析和其他方法的测定结果基本一致。

四、结束语
综上所述,X 射线衍射在材料分析中具有广泛的应用,它不仅可以用来进行材料的物相分析和残余应力的分析,还可以对材料的结晶度、微晶大小以及晶体取向进行测定。

随着技术手段的不断创新和完善,X 射线衍射在材料分析领域必将有更广阔的发展前景。

五、参考文献
[1]陈艳华须庆姜传海嵇宁,DD3镍基单晶高温合金喷丸层残余应力的X射线衍射分析中国期刊全文数据库2012/03
[2]李黎习宝田杨永福 X射线衍射法测定圆锯片的适张残余应力北京林业大学学报 2005/03 中国期刊全文数据库
[3]杨帆费维栋蒋建清 X射线衍射技术在薄膜残余应力测量中的应用功能材料 2007/11 中国期刊全文数据库。

相关文档
最新文档