金属卟啉类化合物电化学性质的研究目的意义及进展

合集下载

金属卟啉类化合物特性及光催化机理与应用研究

金属卟啉类化合物特性及光催化机理与应用研究

金属卟啉类化合物特性及光催化机理与应用研究王攀;罗光富;曹婷婷;饶志;方艳芬;黄应平【摘要】概述了卟啉及金属卟啉类化合物的合成、性质及相关应用,重点综述了卟啉及金属卟啉类化合物的光电特性和光电化学性质,包括光致电子转移、光激发能量转移和高价金属卟啉氧化物种形成等,归纳了其光催化作用机理,包括光致电子转移产生的对分子氧的活化机理(超氧阴离子自由基机理)、光激发能量转移导致基态三线态氧活化产生的单线态氧机理和高价氧化物种对分子氧和H2O2的活化产生具有高氧化活性自由基机理,并对异相光催化体系及光催化应用作了概括.%This paper outlines the synthetic methods and some properties of porphyrins and their metal complexes s especially summarizes their principal optoelectric and photoelectrochemical properties such as photo-induced electron transfer and photo-excited energy transfer and the formation of high-valence metalloporphy-rin oxygen species. The applications and the mechanisms of the photocatalysis are also generalized, namely the photo-induced electron-transfer mechanism, the activations of molecular oxygen by dye-sensitized mechanism (superoxide anion mechanism), the photo-excited energy transfer mechanism that suggests how the triplet oxygen in ground state turns into the singlet oxygen, and the mechanism of activations of molecular oxygen and hydrogen peroxide by high-valence metal oxides in which free radicals with highly oxidative activities are supposed to be produced. Heterogeneous photocatalytic systems and applications of photocatalysis are also summarized.【期刊名称】《三峡大学学报(自然科学版)》【年(卷),期】2011(033)005【总页数】9页(P84-92)【关键词】金属卟啉;光催化;机理;综述【作者】王攀;罗光富;曹婷婷;饶志;方艳芬;黄应平【作者单位】三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002【正文语种】中文【中图分类】O627;O644.1卟啉及其金属卟啉类化合物应用十分广泛,包括有金属离子的检测[1]、光催化动力学疗法[2]、太阳能的光电转化[3]、液晶材料的制备[4]、选择性催化氧化[5]、光催化环氧化[6]和光催化降解有毒有机污染物等[7].近年来,卟啉及金属卟啉类化合物在光催化处理有毒有机污染物方面倍受研究者的关注,然而对其光催化作用机理还需要进行深入的研究和探讨.本文从卟啉及金属卟啉的基本性质出发,对卟啉的光电化学性质作了总结,并对其在光催化方面的应用等进行了归纳,重点综述了其光催化氧化作用机理.1 卟啉类化合物分子结构特性与化学合成卟啉类化合物是一类中心由20个C和4个N形成的具有一个24个中心26个电子的大π键,并且所有大环原子处于同一平面上的大共轭杂环类芳香性化合物,其中C和N均为sp2杂化,C上P轨道的一个单电子和N上P轨道的孤对电子参与共轭.卟啉和类卟啉化合物的共轭能约为1670~2500kJ/mol,具有较为稳定共轭结构,而中心环16π环18π电子体系对体系的稳定能贡献最大.由于共轭大环的存在,这类化合物在380~420nm之间出现非常强的吸收带,一般具有很深的颜色.卟啉主要吸收带通常称为Soret带(亦称为B带)和Q带,其中B带是卟啉环的a1u(π)-eg(π*)允许跃迁,为强吸收,其吸光系数均为10-4级,而Q带为弱吸收带,它们是卟啉环的a2u(π)-eg(π*)准允许跃迁.中性卟啉的Q带通常含有4个峰(见图1所示).图1 卟啉分子的Q带和B带吸收光谱卟啉因其吡咯环上的-NH键的存在而具有一定的弱碱性.作为弱碱,其pKa1≈7,pKa2≈4,它们可以被质子化形成双阳离子型卟啉.卟啉和它们的金属配合物均可被亲电试剂取代,例如在meso-和吡咯的β位上发生氘代、硝化和Vilsmeier酰化等取代反应,形成各种各样的卟啉及金属卟啉.卟啉类化合物经硼氢化钠、Na/Hg或催化加氢可以得到还原卟啉类化合物.卟啉化合物是用吡咯或者取代吡咯与各种醛通过缩合反应制得,在合成卟啉过程中,反应条件及方式对卟啉的产率有较大的影响.已有众多经典的合成方法,包括Alder-Longo法[8]、Lindsey法[9]2+2[10]合成法、和3+1[11]合成法等.这些合成方法各有优缺点,如Alder-Longo法,其操作简单,实验条件不是很苛刻,易于合成无取代及非水溶性取代卟啉,且反应产率较高,但是反应温度较高,其不能选用对酸敏感的醛类作为反应物,同时酸会使吡咯发生聚合,产生大量焦油状的副产物,也给分离纯化带来了一定的困难.Lindsey法是基于还原卟啉的合成,然后再氧化生成卟啉,此法能够克服酸对反应体系的影响,反应的产率较高且易分离纯化,然而其反应体系中原料浓度(一般10-2 M)较低,不利于大量合成.2+2和3+1合成法主要应用于不对称卟啉的合成,其合成活性较高,常在常温下进行,反应的副产物较少,是合成卟啉方法中产率最高的方法之一.图2 卟啉的合成方法2 金属卟啉类化合物特性金属离子进入卟啉环内以后形成的金属配合物称为金属卟啉,对称性较卟啉配体强,吸收峰数目减少.金属卟啉一般为D4h对称,卟啉配体则为D2h对称.卟啉可以与二价金属离子如Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)形成不带电的四配位金属卟啉络合物,其中Ni(Ⅱ),Cu(Ⅱ)的卟啉络合物对另外的配体亲和力低;而 Mg (Ⅱ),Cd(Ⅱ)和Zn(Ⅱ)等二价金属离子容易与其他配体继续配位形成五配位络合物;Fe(Ⅱ),Co(Ⅱ),Mn(Ⅱ)能形成变形的八面体络合物[12].卟啉与金属形成配合物的难易程度不同,一般与金属离子的半径有较大关系,如离子半径较大的Hg、Pb及Cd不能进入卟啉配合,只能在卟啉分子的上或者下面反应,形成“坐顶络合物”,这个配合物能使卟啉核变性,易于与其他金属离子配合生成金属卟啉[13].高价金属卟啉属于金属卟啉配合物,然而中心离子的价态要比一般状态下的金属离子的价态高1到2价,因金属离子的价态升高,其比低价的金属卟啉具有更优异的氧化还原性质,同时与金属中心配位的轴向配体数目也相应的增多,在一定程度上会影响金属催化特性.在活化H2O2及O2过程中,金属离子通常在其轴向上与O结合形成双键,又被称高价卟啉金属氧络合物.高价卟啉金属氧络合物常用于端基的氧化及选择性环氧化方面,如在氯化血红素[14]及辣根过氧化物酶[15]模拟血红素选择性催化氧化烷烃及烯烃的反应体系中,催化剂的本质就是高价卟啉金属氧络合物.在细胞色素P450的催化环氧化过程中的催化剂也属于高价铁物种[16].3 卟啉及金属卟啉类化合物光电及光催化性质3.1 光致电子转移所谓光致电子转移(Photoinduced Electron Transfer PET)[17],即受光激发的物质与未受激发的物质之间的电子的传递,和受光激后的物质将产生的电子由一个位点转移至另一位点的电子的传递.卟啉由于具有流动性较强的大π共轭结构,作为一个有色染料基团,它在光照的条件下通常都能发生光致电子的转移.在光致电子转移的体系中,卟啉配体常作为电子的供体,在受光激发后,能将光激发后产生的光电子转移至电子受体.卟啉的光致电子转移通常发生在共价结合的体系中,如Baskaran等[18]研究了作为电子供体间位取代的卟啉与作为电子受体的碳纳米管结合后的光致电子转移(图3).研究发现,在550nm激发光照射下,卟啉与碳纳米管共价结合后,在650nm和700nm处的荧光发射淬灭效率达95%~100%.在非共价结合(如:氢键、芳香π堆积、疏水作用等)的超分子自组装体系中,卟啉组装体也能发生光生电子转移的现象.在非共价的光生电子转移的过程中,氢键可以作为电子传递的界面(图3),如Derege研究Zn卟啉和Fe卟啉通过氢键组成体系中的电子传递特性发现:Zn卟啉作为电子的供体,而Fe卟啉作为电子的受体,其间的电子是通过苯甲酸取代基上两个羧基形成的分子间氢键传递的[19].光致电子转移能够有效的降低光致发光效率,提高光能向化学能的转化效率,这样有利于能量的传递.如Shan等将卟啉负载于纳米Pt上制成的催化剂能将光激发产生的电子转移至金属核上,提高了催化剂光催化还原水制氢,有效的将光能转变为化学能,反应过程中伴随着光生电子的转移,经过光电转移后的卟啉中产生了具有氧化活性的类似空穴的物种V+,需要在体系中加入EDTA来有效防止自身的氧化,说明光致电子转移赋予了卟啉催化剂光氧化能力[20].图3 共价和氢键电子转移卟啉与金属离子配位生成的金属卟啉因配体的存在具有一定的光致电子转移的特性.一般情况下,金属卟啉中的金属中心具有较高的氧化态,在光电转移过程中常作为电子受体,而卟啉配体则作为光致电子的供体.在光照条件下,卟啉配体将光致电子转移至金属中心,致使光致电荷分离,产生了类似半导体的具有催化氧化性和还原性的电子-空穴对,赋予了金属卟啉的光催化性质.3.2 卟啉的光致激发态能量转移光致电子传递能够促进光致激发态能量的转移,即光致激发态能量转移的过程中可以伴随着电子的传递(如图4),光致电子转移的结果往往导致光致电荷的分离,从而使电子受体多电子,而电子供体少电子.激发态能量转移最终是将激发态物质的激发态能量转移给未激发的底物,使底物变为激发态,自身则还原为基态,转移前后激发物与底物各自并未发生电子的得失.物质之间能发生能量转移的前提条件是激发态物质发射光谱的能量范围要与底物的吸收光谱的能量范围发生重叠(如图5).图4 电子传递能量转移图5 供体和受体间的能量要求能量转移可分为两大类,即辐射转移和无辐射转移.能量转移可以产生于不同的作用机理,其中包括Förster机理和 Dexter机理[21].所谓Förster机理即能量的转移受自旋规则的限制,一般只存在单线态-单线态(1 D*+1 A→1 D+1 A*)和单线态-三线态(1 D*+3 A→1 D+3 A*)的能量转移.而Dexter理论则是基于分子间电子云重叠作用的电子交换转移.同Förster机理相比,Dexter机理只需要给体-受体分子对的电子云有效的交叠,不论单线态-单态的能量转移,还是三线态-三线态的能量转移均是允许的,即D*+A→D+A*.卟啉的基态属于单重态(0S),受光激发后优先生成激发单重态(1S*),然后可以转化为激发三重态(3S*),在发生能量的转移过程中可以利用激发单线态活化单线态物质形成激发单线态,或者是活化三线态物质成激发三线态(如Förster机理所述).另一方面,激发态卟啉转变为激发三线态后能够将基态三线态物质活化为激发单线态和更高的激发三线态(如Dexter机理所述),而基态的3 O2为三线态,这样就赋予了卟啉光敏化能量转移活化分子3 O2产生具备更高氧化活性的1 O2的性质.3.3 金属卟啉氧化物种的种类、产生及性质金属卟啉具有光致电子传递和光激发能量转移的性质,这些光电性质都有助于它在光催化方面的应用.然而金属卟啉除了具有上述光电性质外,还具有高价金属卟啉氧化物种这一特殊的化学状态,这一性质也被作为金属卟啉催化机理的一个方面,引起了研究者的关注.金属卟啉氧化物种类较多,如高价锰氧卟啉、高价铬氧卟啉[21]、高价钌氧卟啉以及 Mo、Nb、Ti、V等高价金属氧卟啉[22],只要是金属卟啉的金属中心具有变价,其均能形成金属卟啉氧化物种,因它们在反应过程中通常以中间体的形式存在,又可称其为变价金属卟啉类化合物.变价金属卟啉氧化物种的产生在初期常常伴随着氧化剂的氧化,以高价铁氧卟啉化合物为例,其产生通常由铁(Ⅲ)卟啉与端基氧化物反应制得,如:间氯苯甲酸、亚碘酰苯和双氧水等[23].在选择性氧化反应中以中间氧化产物的形式存在而体现其催化特性.在变价卟啉氧化物种催化氧化的过程中,因金属离子与氧之间键的断裂方式的不同,产生的中间氧化物种也不同,通常情况下,异裂产生氧化物种FeV=O.因在反应的过程中常伴随着电荷的分离及自由基信号的产生,金属卟啉可被称为高价金属卟啉π阳离子自由基,如:铁(Ⅳ)氧卟啉π阳离子自由基([(Porp)+.FeIV=O]+),而均裂则产生FeⅣ=O,其可以通过质子配对电子转移的方式转变为([(Porp)+.FeIV=O]+).在细胞色素P450中,低自旋的过氧羟基铁卟啉通过异裂的方式产生一个FeV=O物种,这个物种可以更准确的用[FeIV=O(*Por)]+来表示,其自由基阳离子的产生反映在配体的电子自旋离域性上面.高价金属卟啉π阳离子自由基是一个亲电物种,这样有利于其与烯烃等物质的接触来实现其选择性催化氧化[24].变价金属卟啉氧化物种往往出现在酶催化体系中,酶催化剂通常为Fe、Cu的变价金属卟啉化合物,在生物体中通常与氧结合,扮演着运输和活化分子氧的重要角色.如属于血红素酶的辣根过氧化物酶,其既能活化过氧化氢,也能活化分子氧,除了具有过氧化物酶的特点外,也能催化氧化某些底物.变价金属卟啉的催化氧化的机理包含两种,一种是自由基的反应,而另外一种则是氧合过氧化物酶的机理.氧合过氧化物酶在很多方面与氧合肌红蛋白相似,它们都含有一个与组氨酸结合的正铁血红素,同时氧分子作为它们的第五或者第六配体.然而氧合过氧化物酶能高度的活化分子氧,而氧合肌红蛋白则不能活化分子氧,这是因轴向配体的不同使分子氧O-O键的强弱不同导致.Atkinson等利用共振拉曼光谱研究了辣根氧合过氧化物酶和氧合肌红蛋白之间的性质差异,研究发现:含有卟啉环的辣根氧合过氧化物酶的环有轻微的扩展,其Fe中心更接近于卟啉平面,且其较氧合肌红蛋白有较高的Fedx-Oπ*反键轨道,其Fe-O键的拉曼光谱分别为570和562cm-1.这是由于氧合过氧化物酶中的Fe-His键提高了Fe3dx轨道能量,使其更接近于O的π*轨道,形成了更高的Fedx-Oπ*反键轨道的缘故,这样就减弱了O-O键,从而在过氧化物反应体系中作为一个电子受体来活化分子氧参与氧化反应[25].同时,不同价态的高价铁物种的氧化性随着轴向配体的种类、卟啉中心离子的电性及反应的底物的不同而有所不同.如Kang等研究了不同对位取代的吡啶氧作为轴向配体对高价金属卟啉π阳离子自由基的氧化反应活性的影响,发现不同取代的轴向配体的价铁物种的氧化性不同,其氧化活性随着轴向配体的拉电子效应的增强而增强,其氧化活性顺序为1-OCH3>1-CH3>1-H>1-Cl[26].这是因为拉电子轴向配体及阴离子配体能加强Fe-H的键强度,提高了其夺氢活性,同时减弱Fe=O双键的强度,有利于其键的断裂及氧的转移来实现催化氧化.由此可知金属卟啉在一定程度上能活化分子氧,并可通过金属离子及配体的选择来调节其催化特性,具有光催化的潜质.4 卟啉光催化机理4.1 卟啉敏化光致电子转移光催化X.Q等用碘化氨基卟啉(TAPPI)和磺基苯基Co卟啉(TPPSCo)与一维的ZnO复合形成的异相光催化剂,在可见光下活化分子氧光催化降解了RhB,提高了ZnO可见光催化活性,并初步描述了其催化氧化机理[27].最具有典型代表的是卟啉敏化TiO2光催化降解,蔡金华等制备的5-(对-烯丙氧基)苯基-10,15,20-三对氯苯基卟啉(APTCPP)敏化的 TiO2复合微球APTCPP-MPSTiO2有效提高了TiO2对α-松油烯的光催化氧化,催化氧化产物主要是土荆芥油素[28].在光催化氧化过程中,卟啉作为有色染料,将受光激发后产生的电子转移至半导体ZnO或者TiO2的价带,使产生的电子与卟啉配体发生了分离,避免了其光生电子与空穴的复合,有利于价带电子还原分子氧O2产生·O2-、·OH等氧化物种,实现对底物的选择性氧化及降解,光催化氧化机理如图6所示.图6 光电子转移及卟啉敏化ZnO和TiO2作者课题组利用β-CD-Hemin(CDH)光催化降解RhB和二氯酚(DCP),发现其在可见光、H2O2及中性条件下能够很好的氧化RhB及DCP,其矿化率分别可达72%和85%[29],拓宽了Fenton体系的pH应用范围,提高其实际应用性,并具有较高的催化稳定性.在降解过程中,金属卟啉先与H2O2反应形成HOOFeⅢ-L,在光照和β-CD辅助条件下,通过电子由金属到配体的电荷转移(MLCT)导致O=FeIV-L和·OH的产生,由于·OH较高价铁物种具有更高的氧化活性而对有机底物具有较高的氧化矿化效果.说明电子转移存在于金属卟啉配合物类Fenton光催化氧化降解有毒有机污染物体系之间.其机理如下:Maldotti等在表面活性剂的作用下形成的[Fe(III)(TDCPP)]微乳异相光催化体系在可见光及分子氧的条件下,能将环己烯和环辛烯氧化生成环氧化物、酮和醇等氧化产物.在氧化过程中,[Fe(III)(TDCPP)]在可见光照下发生配体到金属Fe(III)中心的光致电子转移(LMCT),生成[Fe(II)(TDCPP)],使其在轴向上与O2结合后生成铁氧端基自由基,并在烯丙基位置上发生自由基亲电加成反应,生成过氧产物[30],此过氧产物经过异裂和均裂的方式生成酮类物质和醇类物质,其卟啉端在异裂过程中产生了高价Fe氧络合物,参与催化环氧化反应,成功实现了卟啉对分子氧的活化和转移.其机理如图7所示.图7 金属卟啉光催化活化分子氧机理S D.G等利用苯基卟啉及其Cu、Ag和Sn的金属卟啉在太阳光及不同的pH条件下光催化降解甲基橙,发现在氧气饱和的溶液中,金属卟啉能够有效降解甲基橙,测定其催化降解的活性能力大小为TPP<CuTPP<AgTPP<SnTPP.并推测机理与半导体光催化机理中的空穴与电子类似[31],其中也涉及到光致电荷的分离.综上表明,在卟啉类化合物的光催化降解过程中,常常伴随着光致电子转移及分离,产生的分离态电子或空穴以实现卟啉类化合物的光催化活性,是卟啉类化合物光催化机理的一个方面.4.2 卟啉敏化能量转移光催化H.J等采用四磺基卟啉及Cu、Fe卟啉在未加任何氧化剂的情况下就能催化氧化降解TNT,生成三硝基苯甲酸和三硝基苯[32],虽然文中未能对其光催化机理作较为深入的研究,但可以初步推测其催化氧化过程可能涉及到光致能量转移活化分子氧历程.J.H 等将5-(4-烯丙氧基)苯基-10,15,20-三(2,6-二氯苯基)卟啉用3-巯基丙基三甲氧基硅烷修饰后负载于纳米SiO2球上用于可见光光催化降解1,5-二羟基萘,发现其能很好的催化氧化1,5-二羟基萘,并且其催化降解速率与氧气的浓度呈正比,说明此卟啉修饰的纳米二氧化硅催化剂能活化分子氧催化氧化无色小分子物质[33].众所周知SiO2为惰性载体,其导带不能为电子传递所用,故此催化剂不能产生光致电荷分离,而文中卟啉具有活化分子氧的能力,表明卟啉可以不通过光生电子的传递来活化分子氧来产生氧化物种.S D,G等将苯基卟啉及其金属卟啉(银、铜和锡)应用于异相光催化降解甲基橙,其催化降解机理涉及到敏化活化分子氧的氧化机理[31].W.K,J P等利用可溶性及非水溶性Sn卟啉负载SiO2进行了异相光催化降解4-氯苯酚和AO7,其氧化机理为活化分子氧机理[34].C.J,P.M 在研究水溶性卟啉光敏化降解二氯苯酚的机理过程中,采用激光作为敏化光源,同时运用对红外线敏感的光电倍增管测定了单线态氧在1270nm处淬灭时发射光谱,并由此计出TDCPPS、ZnTDCPPS和SnTDCPPS的单线态氧量子效率,分别为0.83%、0.55%和0.61%,更加确切地证明了单线态氧的存在[35].综上所述,在卟啉类化合物的光催化降解过程中,除了光致电子转移及分离产生的分离态的电子或空穴外,激发态卟啉类化合物能量转移活化分子氧及底物也能实现卟啉类化合物的光催化氧化,是卟啉类化合物光催化机理的一个方面.其机理可概括如图8所示.图8 卟啉敏化能量转移活化分子氧和底物4.3 变价金属卟啉光催化C.C J在研究中报道了锑卟啉在光照条件下具有活化分子氧的功能,在其光催化活化分子氧历程中经历了双电子或者是四电子还原氧分子的过程,其锑卟啉活化分子氧产生双氧水的历程可简述为:K.C等将Fe卟啉负载于纳米SiO2上用于五氯酚的氧化降解,发现在光催化条件下,催化剂能实现对五氯酚的高效氧化转化,并在实验过程中采用EPR和DR-UV-Vis光谱技术验证了高价Fe氧卟啉盐离子自由基的存在[37].Manhdi等利用卟啉敏化剂在光照条件下选择性环氧化环庚烯,其反应过程中伴随着变价金属卟啉物种的产生.综上所述,卟啉在体现其催化氧化过程中常伴随着高价金属卟啉物种的产生,作为中间氧化物种的金属卟啉物种具有一定的选择性催化氧化及活化分子氧等氧化剂的能力,是描述其光催化过程不可缺少的一个环节,其中具有典型代表的高价金属卟啉的是高价铁卟啉和高价锰卟啉[38],其机理可概述如下:卟啉类化合物的光催化过程较为复杂,其光催化氧化机理也较为多样,各种催化机理之间存在相互的联系,不能为单一的催化机理所能概括.另外,卟啉类化合物中的变价金属卟啉具有更加广阔的探讨空间,其催化活性往往因卟啉配体中取代基电性的不同及金属离子的不同而使氧化能力的大小不同.另外,卟啉的功能多样性可以通过对其基本电子结构的调节来实现,位于中心离子上的电性和轴向配体在卟啉类化合物光催化性质方面起着至关重要的作用,也是影响高价金属卟啉光催化活性的一个主要因素.5 金属卟啉异相光催化Konstantinos的异相光催化体系具有比均相的Fe卟啉更高的催化氧化五氯酚转化的效率,且催化剂具有较高的循环利用性[37].同时不同的载体负载对卟啉负载敏化催化剂有较大的影响,这就要求考虑卟啉负载后其与载体连接的稳定性、连接后的活性等因素[35].另外进行载体负载后的光催化机理也会发生相应的改变. Giuseppe等在文中将四丁基苯基卟啉和其金属卟啉负载于聚晶TiO2上,并将其应用在光催化降解4-硝基酚中,发现负载后的催化剂的催化活性有了较大提高是因为卟啉负载使其光生空穴离域化,从而有了较长的生存时间,更有利于其对底物的光催化氧化[39],与负载前的TiO2自身半导体光催化和卟啉自身的染料敏化。

金属卟啉材料的应用研究

金属卟啉材料的应用研究

金属卟啉材料的应用研究卟啉分子是一种含有氮杂环的大分子有机化合物,是一种具备重要功能的分子。

卟啉分子在自然界中广泛存在,如血红素、叶绿素等,也是制备金属配合物的重要前体之一。

金属卟啉材料由卟啉分子与金属离子形成的复合物,由于其独特的电子结构和化学性质,在光、电、磁等领域具有潜在的应用价值。

一、金属卟啉材料的制备方法1、原位合成法:将卟啉分子和合适的金属离子在溶剂中混合,通过热合成或光合成反应形成金属卟啉材料。

2、后修饰法:首先制备好卟啉分子,然后将其与金属离子反应得到金属卟啉材料。

二、金属卟啉材料的应用1、生物医学领域:金属卟啉材料具有发光性、荧光性等特性,可以作为生物分子探针、细胞成像探针,广泛应用于生物医学研究、临床诊断和治疗。

2、光电器件领域:金属卟啉材料的电子结构和化学性质使其在光电器件中具有重要应用,并有望用于制备太阳能电池、有机发光二极管等设备。

3、催化领域:金属卟啉材料由于其良好的催化活性和选择性,被广泛应用于催化反应中,如氧化反应、加氢反应、脱氢反应、卤化反应等。

4、传感器领域:金属卟啉材料具有高灵敏度、高选择性等特性,可制备多种传感器,如气体传感器、体内监测传感器等。

5、材料科学领域:金属卟啉材料可作为材料合成和功能设计的重要组成部分,可以制备高性能电极、分子筛等材料。

三、金属卟啉材料的研究进展随着材料科学和化学技术的不断发展,金属卟啉材料的研究取得了重大进展。

在生物医学领域,金属卟啉材料已被广泛用于荧光成像、抗癌治疗等方面的研究。

光电器件领域也取得了很大进展,目前金属卟啉材料已成功制备出太阳能电池、有机发光二极管等光电器件。

在催化领域,金属卟啉材料的应用范围也越来越广泛,成为了催化领域的研究热点之一。

金属卟啉材料也被广泛应用于传感器、材料合成等领域。

四、未来展望金属卟啉材料的应用前景十分广阔,且仍待进一步探索和研究。

在生物医学领域,金属卟啉材料可进一步用于纳米药物、光动力学治疗等方面的研究。

卟啉类化合物的应用及其前景

卟啉类化合物的应用及其前景

在光催化领域,卟啉类化合物可以作为催化剂在可见光条件下促进有机反应。 例如,在环己烷的液相氧化反应中,卟啉类化合物可以吸收可见光,激发电子, 并促进氧气与环己烷的电子转移,从而实现氧化反应。此外,卟啉类化合物还 可以应用于光催化降解污染物,例如在污水处理中,通过光催化反应可以有效 地降解有机污染物。
2、金属卟啉的制备
将四苯基卟啉和金属盐按照1:1的摩尔比例混合,加入适量的溶剂,搅拌均匀。 将混合物加热至适宜温度,保持一定时间,然后冷却至室温。经过滤、洗涤、测定产物的吸光度,对比标准曲线,确定产物中四苯基卟啉和 金属卟啉的含量。进一步分析实验结果可知,反应条件和溶剂用量对四苯基卟 啉和金属卟啉的合成具有重要影响。优化反应条件和溶剂用量可提高产物收率 和纯度。
根据现有的研究成果和实验验证,卟啉类化合物的应用前景非常广阔。首先, 由于卟啉类化合物具有优异的光电性能和良好的生物相容性,其在太阳能电池、 光催化反应和生物医学领域的应用潜力巨大。其次,通过结构优化和分子设计, 可以进一步提高卟啉类化合物的性能,从而拓展其应用范围。此外,随着绿色 化学和可持续发展的理念日益受到重视,卟啉类化合物的合成方法也将得到进 一步改进,提高其生产效率并降低成本。
参考内容
基本内容
卟啉类试剂是一类具有特殊化学结构的有机化合物,其在化学、生物学、材料 科学等领域具有广泛的应用。近年来,随着科学技术的不断进步,卟啉类试剂 的合成方法与技术也得到了长足的发展。本次演示将简要介绍卟啉类试剂合成 的进展,以期让读者了解其未来的发展方向。
一、卟啉类试剂概述
卟啉类试剂是指由四个吡咯环组成的环形化合物,其具有独特的物理和化学性 质,如大环共轭体系、较强的吸电子能力、高稳定性等。这些特性使得卟啉类 试剂在很多领域都具有重要的应用价值,如光电器件、生物传感器、药物开发 等。

化学反应中的金属卟啉催化

化学反应中的金属卟啉催化

化学反应中的金属卟啉催化近年来,金属卟啉催化在化学反应中的应用越来越受到研究者的关注。

金属卟啉催化能够加速反应速率、提高产物收率、降低反应温度等,在有机合成、化学传感器、生物医药等领域具有广泛的应用前景。

一、金属卟啉催化机理金属卟啉是由四个吡咯环与一个金属原子配合而成的化合物。

其空心的结构使其具有良好的催化性质。

金属卟啉的不同种类及其空心结构的不同也决定了其催化反应的机理、速率等。

金属卟啉催化反应的机理大致可以归为两类:一是由金属离子直接催化反应,二是由金属卟啉分子作为氧化剂或还原剂催化反应。

例如,铜卟啉常用于过氧化氢的催化分解反应中,其机理为Cu(II) + H2O2 → Cu(I) + HO. + OH-。

此类反应机理较为复杂,在研究中也需要综合运用多种分析方法。

二、应用前景金属卟啉催化在有机合成中的应用已有多年历史。

例如,对不饱和化合物进行氧化、环化、烷基化等反应,都可以采用金属卟啉催化。

近年来,金属卟啉催化在生物医药领域的应用也逐渐被重视。

例如,将金属卟啉修饰于生物大分子上,可以在低剂量条件下实现精确的诱导型细胞毒性,有望成为一种新型的抗肿瘤纳米药物。

此外,金属卟啉催化也可以作为化学传感器的核心部分,通过组装成不同结构的传感器,可以检测水、氧、阳离子、有机物等物质。

三、研究进展近年来,有越来越多的研究者开展了金属卟啉催化方面的研究,并在其应用方面取得了显著突破。

例如,张思锐等人采用全偏最小二乘法分析了卟啉金属离子在异丙基醚-水混合溶剂中的电子转移反应,发现pH可以影响反应速率,进而探讨公共离子对反应的影响。

刘昱等人则通过改进铜卟啉的制备方法,获得了一种高纯度的铜卟啉材料,并且成功地在室温下合成了一类具有多个键的氧氮杂环化合物。

然而,金属卟啉催化的研究与应用仍然存在一些挑战。

例如,在实际应用中,选择正确的金属卟啉催化剂、寻找合适的反应条件等都是需要解决的问题。

此外,现有的金属卟啉材料还难以实现高纯度、高稳定性的制备。

卟啉分子结构与性质的理论研究

卟啉分子结构与性质的理论研究

卟啉分子结构与性质的理论研究卟啉分子结构与性质的理论研究卟啉是一类特殊的有机分子,具有广泛的应用价值。

如何理解卟啉分子的结构和性质,对于深入研究其应用和开发新的卟啉类化合物具有重要意义。

本文将从卟啉分子的结构、电子结构和光谱性质等方面进行理论研究,探讨卟啉分子在不同环境下的性质变化和应用前景。

首先,我们来看卟啉分子的结构。

卟啉分子由四个吡咯环通过共轭双键连接而成,中间有一个金属离子与卟啉分子配位。

卟啉分子的结构决定了其独特的光学和电化学性质。

吡咯环之间的共轭双键使得卟啉分子呈现出扁平的结构,而金属离子的存在会造成卟啉分子内部的电子重新分布。

这些结构特点不仅影响了卟啉分子的电子结构,还决定了其物理化学性质,如光谱响应和电化学活性。

在理论研究中,电子结构计算是一个重要的手段。

通过量子化学计算方法,我们可以计算卟啉分子的电子能级、分子轨道和电子密度分布等信息。

这些计算结果有助于解释实验观测到的光谱和电化学行为,并揭示卟啉分子内部电子的行为规律。

同时,通过与实验结果的对比,可以验证理论模型的准确性,并不断改进模型以提高计算精度。

卟啉分子的电子结构对其光谱性质有着决定性影响。

卟啉分子吸收、荧光和振动光谱的研究已成为理论和实验研究的热点。

通过理论模拟,在不同环境下模拟卟啉分子的光谱响应,可以预测不同条件下的荧光效率、荧光寿命和吸收峰位置等。

这对于设计新的荧光材料和开发光电子器件具有重要意义。

此外,卟啉分子在电化学领域也具有广泛的应用。

卟啉分子可以作为催化剂、电极材料和传感器等用于电化学系统中。

通过理论计算,我们可以研究卟啉分子在电极表面的吸附行为、电荷转移过程和催化反应机理等。

这些研究有助于优化电化学系统的性能,并指导实验工作的开展。

总之,卟啉分子结构和性质的理论研究对于深入了解其光学、电化学性质具有重要意义。

通过电子结构计算和光谱模拟,可以揭示卟啉分子的电子行为规律,并为开发新的卟啉类化合物提供理论指导。

卟啉类化合物的合成与性质研究

卟啉类化合物的合成与性质研究

卟啉类化合物的合成与性质研究卟啉类化合物是一类具有特殊结构和重要应用价值的有机化合物。

它们由四个吡咯环通过共享碳原子构成,并且在一个或多个环上含有金属原子。

卟啉类化合物在生物学、材料科学和光电子学等领域具有广泛的应用。

本文将探讨卟啉类化合物的合成方法和性质研究。

一、卟啉类化合物的合成方法卟啉类化合物的合成方法多种多样,其中最常见的方法是通过酸催化的缩合反应合成。

这种方法利用吡咯环上的氨基和醛基或酮基之间的反应,生成卟啉环。

此外,还可以通过金属催化的反应合成卟啉类化合物。

金属催化反应的优势在于反应条件温和,产率高,适用范围广。

二、卟啉类化合物的性质研究卟啉类化合物具有许多独特的性质,其中最引人注目的是它们的光学性质。

由于卟啉环中的共轭双键结构,卟啉类化合物具有很强的吸收和发射光谱。

这使得它们在光电子学领域有着广泛的应用,如光敏染料、光电转换器件等。

此外,卟啉类化合物还具有良好的电子传输性质。

由于卟啉环中的共轭结构,电子在分子内可以自由传输,使得卟啉类化合物成为一种优良的电子传输材料。

这一性质使得卟啉类化合物在有机电子器件中有着广泛的应用,如有机太阳能电池、有机场效应晶体管等。

此外,卟啉类化合物还具有较强的配位性质。

由于卟啉环上的氮原子可以与金属形成配位键,卟啉类化合物可以与金属离子形成稳定的配合物。

这些配合物在生物学和催化领域有着重要的应用,如血红素和维生素B12等。

三、卟啉类化合物的应用前景卟啉类化合物由于其独特的结构和多样的性质,具有广泛的应用前景。

在生物学领域,卟啉类化合物被广泛应用于光动力疗法、荧光探针和生物传感器等。

在材料科学领域,卟啉类化合物可用于制备光电材料、催化剂和分子电子器件等。

在光电子学领域,卟啉类化合物可用于制备光电转换器件、光敏染料和有机发光二极管等。

总之,卟啉类化合物的合成与性质研究对于推动生物学、材料科学和光电子学等领域的发展具有重要意义。

通过不断深入研究,我们可以进一步了解卟啉类化合物的结构与性质之间的关系,为其应用提供更加可靠的理论基础。

卟啉类化合物电致发光性能研究进展

卟啉类化合物电致发光性能研究进展
吴 俊 , 钟 国伦 , 一 , , 孙建 中
(. 江 大 学 宁波 理 工 学 院 生 物与 化 学 工 程 分 院 , 江 宁 波 3 5 0 ; 1 浙 浙 1 10 2 浙 江大 学 . 材 料 与 化学 工 程 学 院 , 聚合 反 应 国 家 重 点实 验 室 , 州 30 2 ) 杭 10 7
中图 分 类 号 : 6 1 + O 3. 3 2 文献 标 识 码 : A 文 章 编 号 :0 17 1 (0 7 0 — 3 8 0 10 — 19 2 0 l3 0 0 — 6
Re e r h Pr g e si e t oum i s e tPr p r iso r hy i s s a c o r s n El cr l ne c n o e te fPo p tn
液中具有强的荧光 , 由于 卟啉分 子间容易 聚集 但
产生 自身荧光猝灭 , 固体 作 为发 光 二极 管
很 难 实 现 。近 年 来 , 用 卟 啉掺 杂 或 高分 子链 中 利 引入 卟啉 已成 为 有 机 电 致 发 光 材 料 的研 究 热 点 ,
维普资讯
V0 .3 No3 1 2 . Ma . 2 0 v 07
科 技 通 报
B LE I C E UL T N 0F S I NCE AND T HN 0GY EC 0L
第2 3卷 第 3期
2o O 7年 5月
卟啉类化合物 电致发光性能研究进展
te e lc o pee s r nc i t mtn ids O E ) r rv w d. h im tl m l sa g i l h- iigdoe ( L D ae ei e r aic x o a g e t e
Ke r s o g n c ee t l mie c n e p r h rn e eg a s r y wo d : ra i lcr u n s e c ; o p y ; n r y t n f o i r e

卟啉与金属的配位

卟啉与金属的配位

卟啉与金属的配位卟啉是一类重要的有机化合物,具有独特的结构和性质。

它是由四个呋喃环通过甲烷桥相连而成的环状分子。

卟啉及其衍生物在生物体内起着重要的生物学功能,如呼吸、光合作用和电子传递过程等。

同时,卟啉还可以与金属形成配合物,形成卟啉金属配合物,这种配合物具有广泛的应用价值。

卟啉与金属的配位是基于配位化学原理的。

配位化学研究的是配位体与金属离子之间的相互作用,通过配位键将金属离子与配位体连接在一起形成稳定的配合物。

卟啉具有四个氮原子可以提供孤对电子,能够与金属离子形成配位键。

这种配位键通常采用双电子配位方式,即通过配位体提供一个电子,金属离子提供一个电子,形成一个共价键。

卟啉金属配合物具有许多独特的性质和应用。

首先,卟啉金属配合物具有较强的稳定性,可以在各种环境条件下保持稳定的结构。

这使得卟啉金属配合物在催化剂、荧光探针和生物传感器等领域具有广泛的应用。

例如,卟啉金属配合物可以作为催化剂用于有机合成反应中,通过调控反应条件和配合物结构,可以提高反应的选择性和效率。

此外,卟啉金属配合物还可以用作荧光探针,通过与目标物质的相互作用来检测和分析目标物质的存在和浓度。

这些应用使得卟啉金属配合物在化学、生物和医学等领域中具有重要的地位。

在生物体内,卟啉金属配合物也起着重要的功能。

最典型的例子就是血红素和叶绿素。

血红素是一种卟啉金属配合物,其中的金属离子是铁离子。

血红素在血红蛋白中起着运输氧气的作用,它通过与氧气形成配合物,将氧气从肺部运输到组织器官中。

叶绿素也是一种卟啉金属配合物,其中的金属离子是镁离子。

叶绿素在光合作用中起着接收光能和转化为化学能的作用,它通过与光能形成配合物,促进光合作用的进行。

除了血红素和叶绿素,还有许多其他的卟啉金属配合物在生物体内具有重要的功能。

例如,维生素B12是一种含有钴离子的卟啉金属配合物,它在人体内起着重要的代谢和神经功能的作用。

另外,一些金属离子还可以与卟啉形成特殊的配位体,如氧合血红蛋白中的铁离子与卟啉形成的配位体称为血红蛋白中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属卟啉类化合物电化学性质的研究目的意义及进展1研究的目的及意义 (1)2金属卟啉类化合物电化学性质的研究进展 (2)2.1金属卟啉类概述 (3)2.2金属卟啉电化学研究方法 (3)2.3金属卟啉类化合物氧还原的电催化作用 (4)2.4中心金属离子对金属卟啉催化作用的影响 (4)2.5取代基对金属卟啉类化合物催化作用的影响 (5)2.6不同热处理对金属卟啉类化合物催化活性的影响 (5)2.7不同的载体对金属卟啉类化合物催化活性的影响 (6)2.8 金属卟啉类化合物催化机理 (7)1研究的目的及意义随着能源危机和环境污染日益严重,开发洁净高效的供能、储能系统迫在眉睫。

燃料电池由于具有清洁、高效、可连续大功率放电的特殊性能而受到人们广泛的关注,世界各国都非常重视其技术的开发和应用,大力进行基础研究并促进产业化。

中国国务院2006年2月发布的国家中长期(2006~2020年)科学和技术发展规划纲要中明确地将燃料电池技术列为今后15年重点发展的前沿技术之一。

世界其它各国包括美国、加拿大、德国、以色列、日本等国相继进行了一系列关于燃料电池研究和发展的计划,如美国的“FreedomCAR”计划、“加州氢公路网计划”、“氢燃料行动”(Hydrogen Fuel Initiative)等,大大促进了燃料电池技术的发展。

氧电极是燃料电池的阴极,它是决定电池性能优劣的关键因素,而氧电极的性能又主要取决于催化剂的性能。

因此,寻找经济、高效和稳定的氧还原催化剂一直是研究者追求的目标。

氧还原催化剂的种类较多,但是实际应用较多的是以铂或其合金为主的催化剂,虽然铂在低温燃料电池中是一种很好的氧还原催化剂,但是它价格昂贵和易被CO毒化限制了铂作为电催化剂的应用。

金属卟啉化合物具有高的共轭结构和化学稳定性,它有着与催化酶相似的结构,能促进H2O2的分解,从而使电池的工作电压提高,放电容量增加,无论在酸性还是碱性条件下,对分子氧都有良好的电催化还原活性,美国电技术公司还为它们能够克服铂促进碳基体腐蚀和氧化问题,而且它在直接甲醇燃料电池(DMFC)中避免了从负极透过的甲醇在正极反应造成正极电位损失。

这使得金属卟啉成为燃料电池最有希望的氧还原催化材料,近年来逐渐成为氧还原电催化剂的研究热点,以期取代贵金属作为燃料电池氧还原催化剂。

本实验创新性地使用金属卟啉的低聚物作为燃料电池的氧还原催化剂,对制备出来的金属卟啉低聚物进行表征,通过测试它们的循环伏安曲线,测试他们对O2氧还原的催化效果。

通过对金属卟啉低聚物与空白溶液作比较,金属钴卟啉二聚体与钴卟啉单体比较,研究它们对O2氧还原效应的能力大小。

金属卟啉低聚物作为燃料电池的催化剂与过渡金属作为燃料电池的催化剂具有更多优势,更有希望取代贵金属作为燃料电池和金属空气电池的氧还原催化剂。

今后我们还将对催化剂的最佳工艺进行研究,研究与探索这一新催化剂可能出现的新现象和规律,对活性结构作进一步的推测,以及对材料可行性作出判断。

2金属卟啉类化合物电化学性质的研究进展随着石油资源的枯竭,原油价格上升。

汽车尾气的大量排放,环境污染日趋严重,可持续性绿色能源及其利用转换技术开发迫在眉睫!燃料电池和金属空气电池是高效清洁的能源转换系统,它们在电动车上的发展潜力引起国际上广泛的重视。

燃料电池和金属空气电池的发展关键在于氧电极催化剂不断更新,催化剂材料的研究一直备受关注。

燃料电池常用的电催化剂均以铂金属为主,铂在低温燃料电池中是一种很好的电催化剂,但它价格昂贵,储量少,易被CO 毒化(燃料气中存在的CO或直接甲醇阳极氧化时的中间产物),限制了铂作为电催化剂。

为了解决这一问题,世界各国科研工作者都在努力寻找非贵金属化合物来代替铂,例如:金属氧化物,合金和过渡金属大环化合物等。

在酸性电解液中,金属卟啉是空气电极最有希望的催化剂,它能有效促进H2O2 分解,使电池的工作电压提高,增加放电容量。

金属酞菁和金属卟啉化合物具有高的共轭结构和化学稳定性,对分子氧还原表现出良好的电催化活性,近几年来成为氧还原电催化剂研究热点。

2.1金属卟啉类概述在自然界和生命体中,金属卟啉广泛存在,如:叶绿素(锌卟啉) 、血红素(铁卟啉) 、维生素B12 (钴卟啉) ,其核心结构都是卟啉的金属配合物。

卟啉(porphyrin)是一个环内有空穴的大环化合物(图1) ,可容纳铁、钴、锌、镁等金属元素形成金属配合物。

其通用结构如图1:图1卟啉结构R1~R8 为取代吡咯,可被许多原子和基团取代,派生出更多的衍生物。

5 ,10 ,15 ,20亦称为α,β,γ,δ位,一般为苯基或取代苯基。

卟啉由于具有独特的结构及性能,在许多领域有着广泛的应用。

尤其在生物化学、医药化学、分析化学和光化催化等各个领域,卟啉化学的研究有了迅速的发展。

国内外对其合成及应用进行了大量的研究,取得了很多科研成果。

金属卟啉类物质对分子氧有很好的电催化还原作用,卟啉的过渡金属配合物是由接近平面结构的大杂环配体和处于平面中心的过渡金属离子所组成,其表面具有碱性基团时,可有效促进分子氧的还原活性。

2.2金属卟啉电化学研究方法在卟啉的电化学测试中,主要是对每种催化剂的催化活性做出评价。

可以用循环伏安法、旋转圆盘电极(RDE) 、旋转环盘电极(RRDE) 、全电池测试通过循环伏安曲线,极化曲线等反映出金属卟啉对氧还原催化过程中的变化。

RDE主要应用于半电池中的氧化还原过程中,操作在室温下进行,文献中都作了详细的描述。

Michel 等通过旋转环盘电极(RRDE) ,测出5种铁剂催化剂的电子传递数目( n)和H2O2的百分含量,得到了RRDE实验最适宜的实验条件,研究得出在n > 3.9 %、H2O2 < 5 %时催化剂催化活性最好。

在燃料电池测试过程中,气体扩散电极及单个电池的组装Michel等人作了详尽的介绍,在以上各方法中循环伏安法是现在测定卟啉和金属卟啉氧化还原电位使用最广泛的方法。

Gojkovic等人通过循环伏安法、XPS将FeTMPP2Cl负载在碳粉上,在氩气保护下,从200~1000℃进行热处理,循环伏安曲线分别在酸性和碱性溶液中测得,从曲线明显得出,热处理温度变化过程中,循环伏安法对于金属铁离子电催化的观察要比XPS技术灵敏得多。

2.3金属卟啉类化合物氧还原的电催化作用金属卟啉对氧还原有着催化作用,但是他们对氧还原作用非常复杂,不同的中心金属离子、卟啉环上不同取代基、不同的热处理温度、不同载体以及载体的热处理等都会影响到卟啉对氧还原的催化作用。

2.4中心金属离子对金属卟啉催化作用的影响卟啉能与许多金属形成金属配合物,这些金属离子通常为Co、Fe、Ni 和Mn,其Co的配合物由于具有更高的活性,被研究最多。

作为氧电极电还原催化剂,Fe和Co卟啉配合物被Kuwana等人和Anson等人广泛的研究。

在几种催化剂材料的性能比较中发现,在活性炭上,负载钴四甲氧基苯基卟啉(CoTMPP)能体现出更高的活性,是具有应用价值的催化剂之一。

进一步的研究表明,CoTMPP表现出了比LaNiO3、MnO2 等更高的催化活性。

钴四苯基卟啉(CoTPP)与活性炭混合后在700℃、惰性气体保护下加热5h ,根据透射显微镜(TEM)曲线可以看出,电极的微孔在热处理之后具有更好的形态和结构。

通过测定极化曲线比较发现,催化剂的活性顺序为CoTPP > Ag。

此外,锰卟啉具有相当高的的初期催化活性,但是稳定性很差。

其它金属卟啉配合物的催化活性远远不如钴铁卟啉。

2.5取代基对金属卟啉类化合物催化作用的影响具有不同卟啉环的金属卟啉的催化活性与卟啉环上取代基的电子授予能力有关,催化活性随取代基授予电子能力的增加而增加Euihwan等人把4种不同取代基的钴卟啉负载在石墨电极上,用于催化氧还原,并对他们的催化机理作了比较分析。

结果表明,卟啉环上的α,β,γ,δ位没有取代基的卟啉将O2还原为H2O和H2O ,而在α,β,γ,δ位带有取代基的卟啉只能将O2 还原为H2O2,结论表明,金属卟啉环上α,β,γ,δ位取代基仅仅是H或较小的烷基,催化剂具有较好的催化活性,有助于O2的四给电子基团的引入促进中心金属或卟啉环的氧化而阻止了其还原,相反,对卟啉环来说,吸电子取代基的引入降低了中心金属离子的电子云密度,使还原容易并阻止了氧化。

陶建中等人应用循环伏安法研究了硝基对不同氧化态金属卟啉电化学性质的影响,结果表明,与四苯基金属卟啉(MTPP)相比,MTNPP中心金属还原的半电势( E1/ 2 )均向正移,这是因为在强吸电子基的存在下,使得中心金属和卟啉环的电子云密度降低,有利于稳定低价态的离子,从而促进了还原反应的进行。

王亚军等人也说明了在同等条件下,当卟啉环上的苯环引入供电子基后,卟啉中心金属离子周围电子云密度增大,不同取代基卟啉锰催化剂的催化效果是随着取代基( - Cl →- H→- OCH3 )的变化,催化性能逐渐减弱。

2.6不同热处理对金属卟啉类化合物催化活性的影响尽管金属卟啉配合物有着相同的催化能力,但经过热处理后,将会出现较高的活性和稳定性。

Tatsuhiro[18]等人研究了钴卟啉聚集在石墨电极上热处理的氧还原性质。

在200~1200℃范围内,对钴卟啉进行热处理,经旋转盘电极测得热处理温度在600~800℃催化效果较好。

Gojkovic等人对铁卟啉从200~1000℃进行热处理,结果发现O2的还原速率随着热处理温度的增长,在700~1000℃达到平稳,在碱性溶液中,FeTMPP2Cl/BP在700~1000℃热处理的催化活性与Pt/BP类似,但在酸性中欠佳。

Claude等人研究了不同的钴卟啉负载在不同的碳载体上,经过热处理测出了半电势E1/2Tafel 斜率、电I/A等,从而比较。

早在四十年前CoN4 配合物就用来催化氧化还原反应,之后许多MN4金属大环配合物(M 是过渡金属,特别是Co和Fe)吸附在碳载体上,通过热处理,可以提高氧化还原的活性,并且在酸性介质中可以提高他们的稳定性。

因此,热处理直接影响着金属卟啉对氧还原催化活性的大小。

Michel等人认为最好的电催化活性位发生在500~700℃,在这个温度范围内,催化活性位是N4负载在碳载体上,这个活性位被称为“低温活性位”,另外一个活性位称为“高温活性位”,温度在大于800℃。

Faubert等人分别将铁、钴四苯基卟啉(FeTPP、CoTPP)吸附在炭黑上,在氩气饱和下进行热处理,热处理温度在100~1000℃。

当热处理温度在500~700℃时,催化剂的活性位或是N4与金属的键联,或是一些分子碎片中包含了部分N与金属键合物,通过燃料电池测试催化剂的稳定性比较差,温度大于900℃时,CoTPP/ C和FeTPP/ C具有更好的活性和稳定性,并且N与金属的键联消失,大量的金属离子被石墨包围。

相关文档
最新文档