2012级微积分(上)期末考试试题

合集下载

2012级高数上期末试卷

2012级高数上期末试卷

2012-2013学年第一学期《高等数学》期末试卷一、填空题(每小题4分,共28分)1.当0→x 时,()11312-+ ax 与1cos -x 是等价无穷小,则=a .2.函数()x x x x f nnn 2211lim +-=∞→的间断点为.3.设()x x xx y 2arcsin 2arctan 1ln 2+-++=,则()='0y .4.曲线x ey arctan =的凹区间为.5.若()()C x F dx x f +=⎰ ,且b at x +=,则()=⎰dt t f .6.设()25=f ,()350=⎰dx x f ,则()='⎰dx x f x 50.7.设()dt e x F xx t ⎰-=2,则()='x F .二、计算题(每小题6分,共36分)1.求极限ne e e x nxx x x +++→ 20ln 1lim .2.设x xe y 2=,求()n y .3.设()x y y =由方程组⎩⎨⎧=-+-+=01cos 1y t e t e x y t 所确定,求022=x dx y d 的值.4.设()x f 在1=x 处可导且()21='f ,求极限()()xx f x f x +--→11lim 0.5.求 ⎰-22a x x dx ,其中a 是非零常数.6.计算⎰+312ln 1e x x dx.三、综合题(满分36分)1.(本题7分)证明函数()⎪⎩⎪⎨⎧≤>-+=0,00,11x x x x x f 在0=x 处连续,但不可导.2.(本题7分)试证:当0>x 时,()x x x x <+<-1ln 212.3.(本题7分)试在曲线段()802<<=x x y 上求一点M 的坐标,使得由曲线在M 点切线与直线8=x ,0=y 所围成的三角形面积最大.4.(本题7分)求定积分dx x ee ⎰ 1ln .5.(本题8分)求由不等式θcos 3≤r 和θcos 1+≤r 所确定的公共部分的面积.。

大一微积分期末试题附答案

大一微积分期末试题附答案

微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。

微积分试题及答案

微积分试题及答案

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求02lim x x→等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、limββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin limsin x x xx x→-求 5、计算 6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x x xdx='=+-++=3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==Q :::当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:2201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxxx x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x a aL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x MM M xf A x f A xεεξε→∞→∞=∴∀>∃>>-<><<>∴-<=Q 当时,有取=,则当0时,有即2、 证明:[]()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1x x x f x xe f x f f e f e f x x e x f x xe ξξξξ=-=-<=->∈=='=+>∈∴-Q Q 令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根。

微积分的(上、下)模拟的试卷和答案

微积分的(上、下)模拟的试卷和答案

北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。

一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设函数()f x 的定义域是[]0,4,则函数1)f 的定义域是( ) 2、数列nn n)211(lim +∞→的极限为( )。

[A] e 4 [B] e 2 [C] e[D] e 33、函数y = )。

[A] ()21,,y x x =+∈-∞+∞[B] [)21,0,y x x =+∈+∞[C] (]21,,0y x x =+∈-∞[D] 不存在4、1arctany x=, 则dy =( )。

[A] (1,1)-[B] (1,0)-[C](0,1)[D] [1,25][A] 21dx x +[B] 21dxx -+[C] 221x dx x+ [D]()221dxx x +5、xx xx sin cos 1lim0⋅-→=( )6、设,ln x y =则'y =( )。

[B] 1x;[C] 不存在7、函数4334+-=x x y 的二阶导数是( )。

[A] 2x [B] 21218x x - [C] 3249x x -[D] x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭( )9、已知()03f x '=-,则()()0003lim x f x x f x x x∆→+∆--∆=∆( )10、函数1()()2x xf x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠[C](){},0x y x y +>[D](){},,x y x y -∞<<+∞-∞<<+∞12、幂级数1nn x n ∞=∑的收敛域是( )[A] -1 [B] 0[C] 1/2[D] 不存在[A] 2e -[B] e[C]2e [D] 1[A] 12 [B] -12[C]3[D] -3[A] 1[B] -1[C]0[D] 不存在[A] []1,1- [B] [)1,1- [C] (]1,1-[D] ()1,1-13、设)(x f 为],[b a 上的连续函数,则⎰⎰-babadt t f dx x f )()(的值( )14、若f x ax nn n ()==∞∑0,则a n =( )15、设(,)f x y 为连续函数,且(,)(,)d d Df x y xy f u v u v =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。

微积分考试试卷及答案6套

微积分考试试卷及答案6套

微积分考试试卷及答案6套微积分试题 (A 卷)⼀. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>?ε,总存在δ>0,使得当时,恒有│?(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β是等价⽆穷⼩量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是。

6. 设函数y =?(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为。

8. ='?))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最⼤时产量Q 是。

⼆. 单项选择题 (每⼩题2分,共18分)1. 若数列{x n }在a 的ε邻域(a -ε,a +ε)内有⽆穷多个点,则()。

(A) 数列{x n }必有极限,但不⼀定等于a (B) 数列{x n }极限存在,且⼀定等于a(C) 数列{x n }的极限不⼀定存在 (D) 数列{x n }的极限⼀定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的()。

(A) 可去间断点 (B) 跳跃间断点 (C) ⽆穷型间断点→13)11(lim x x x()。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ()时,需求量减少的幅度⼩于价格提⾼的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,⼜a 是常数,则下列结论正确的是()。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

(整理)经济数学-微积分期末考试试卷与答案

经济数学--微积分期末测试第一学期期末考试试题 ( B )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1. 函数⎪⎩⎪⎨⎧<<-≤-=43939)(22x x x x x f 的定义域是(A );(A) )4,3[- (B) )4,3(- (C) ]4,3(- (D) )4,4(-2. 函数214y x =-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条3. 设函数)1,0()1(log 2≠>++=a a x x y a ,则该函数是(A )(A) 奇函数 (B) 偶函数 (C) 非奇非偶函数 (D) 既奇又偶函数4. 下列函数中,与3y x =关于直线y x =对称的函数是(A );33()()()()A y B x C y x D x y ===-=-5.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点6. 已知点(1,3)是曲线23bx ax y +=的驻点,则b a ,的值是(B )(A ) 9,3=-=b a (B ) 9,6=-=b a (C ) 3,3=-=b a (D ) 3,6=-=b a7. 当0x →时,下列函数极限不存在的是(C );1s i n11()()s i n()()t a n1x x A B x C D x x xe + 8. 极限 =-→x x x 1ln lim 0(C );()1()0()1()A B C D -不存在9.下列函数中在[-3,3]上满足罗尔定理条件的是(C );2221()()()2()(3)A xB C x D x x -+10.若函数()f x 在点0x 处可导,则极限x x x f x x f xx ∆∆--∆+→2)2()2(lim000=(C ); 00001()4()()3()()2()()()2A fx B f x C f xD f x '''' 11. 0x →时,下列函数中,与x 不是等价无穷小量的函数是(C )(A) x tan (B) )1ln(x + (c) x x sin - (D) x sin12.下列极限中,极限值为e的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13. 若ln xy x =,则dy =(D ); 222ln 11ln ln 11ln ()()()()x x x xA B C dx D dx x x xx---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D). 2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分) 1.xex x y -+-=1121,求y '解:)11()1(1)()1(1122112'-+'-+-='+'-='--xex x x ex x y xx2112211222)1(1)1(1221x e x x e x x x xx--+-=--+--+-=-- 2分 7分2. 求极限 xx x 12)1(lim +∞>- 解:1lim )1(lim 012lim)1ln(lim)1ln(12222=====++++∞→∞→∞→∞→e ee ex x xx x xx x xx x x 3. 求曲线1204=+-y x x y 在1=x 对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得 020*******3='++-'y y x yx y ,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==5. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得2分5分7分3分6分 7分2分2分5分7分6. 求⎰dx xx tan解:⎰⎰⎰+-=-==c x x d x x d xx dx xx cos ln 2cos cos 12cos sin 2tan 7. 求 ⎰xdx e xsin解:⎰⎰⎰⎰-=-==x x x x x x xde x e xdx e x e xde xdx e cos sin cos sin sin sin⎰--=xdx e x e x e x x x sin cos sin 移项可得c e x x xdx e x x +-=⎰)cos (sin 21sin 8. 已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x xx x xux x xx xx x x xx xf x xe exee x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e c x e c x e c ----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.证明题(本题6分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分7分6分6分7分2分4分7分5分7分2分证明:0a =时,(0)0f = ()()()f a b f b fa f b∴+==+时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()(f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)四.应用题(本题8分)设生产t 个产品的边际成本为t t C 2100)(+=',其固定成本(即0=t 时的成本)为100元,产品单价规定为500=P 元,假定生产出的产品都能完全销售,求生产量为多少时利润最大?最大利润是多少?解:由已知,边际成本c t t dt t dt t C t C ++=+='=⎰⎰100)2100()()(2由固定成本为100,可得100100)(02=--==t t t t C c于是有:成本函数:100100)(2++=t t t C 收入函数:t t R 500)(=利润函数:100400)100100(500)()()(22-+-=++-=-=t t t t t t C t R t L 由04002)(=+-='t t L ,得唯一驻点2000=t ,又由02)(<-=''t L ,可知,驻点0t 是极大值点,同时也是最大值点。

《微积分》期末复习题及答案-推荐下载


对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

微积分(一)综合测试2试题及答案


=
1 2
[xf
(2x)


f
(x)dx]
=
1 2
2x cos [
2x − 2x
sin
2x

sin 2x 2x
]+C
= x cos 2x − sin 2x +C 2x
7.计算不定积分 ∫
1+
dx 1− x2

解 令x = sin t, dx = cos tdt
dx
cos tdt
dt
1− cost

1+
第3页共7页
3
解 ∵ f (x)可导必连续,f (1− 0) = f (1 + 0) = 1, ⇒ a + b = 1 (1) 当x >1时,f '( x) = ( ax + b) ' = a, 当x <1时,f '( x) = 2 x 而由可导及连续有:f (1+ ) = f (1− ) ⇒ a = 2 (2) ∴联立(1),(2)求解得 a = 2, b = −1
L"( x) = −2( e + a) < 0, 驻点唯一,∴当Q = d − b 时,利润最大, 2(e + a)
最大利润是Lmax
=
(d − b)2 4(e + a)
(2)∵ Q ' = − 1 , ∴η =- Q ' = 1 ⋅ 1 (d − eQ) = d − eQ
e
Q eQ
eQ
(3) 当 η =1 时, Q= d 2e
《微积分》上册 综合练习题 2 一、填空题(每小题 2 分,共 20 分):
1.设 f (1 −1) = x ,则f (x) = 1 。

《微积分》期末考试试卷(含ABC三套)


四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x

D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x

2
tan x 1 x
D、 lim x sin
x
1 1 x

3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11/13
n! 九、 (8分 )求 lim ln . n n
n
12/13
十、 (8分 )设函数S ( x ) | cos t | dt ,
0
x
(1)当n Z , n x ( n 1) 时 , 证明2n S ( x ) 2( n 1); S( x) (2)求 lim . x x
3.设I tan 4 xdx , 则I ( ).
4.设二阶可导函数f ( x ) 0,已知y f ( x ) ln f ( x ), 则y ( ).
2
1 x
( x 2 2 x 3)e 5.设曲线y 2 , 则该曲线的水平渐近线是( ). ( x 1)arctan x
2. 设s 0, 计算I n
0
e sx x ndx ( n 1,2,).
ቤተ መጻሕፍቲ ባይዱ
6/13
1 dy 6 四、 x 满足初始条件y(1) 1 (8分 )求微分方程 2 y dx yx 的特解 .
7/13
x arctan t (8分 )设 五、 确定了可导函数y f ( x ), 2 y ln(1 t ) sin y 求y f ( x )的极值点, 并判定是极大值点还是极小值点.
图形绕直线x

2
旋转而成的旋转体的体积。
10/13
(10分 )设f ( x ), g ( x )在[a , b]上二阶可导, 且g( x ) 0, 八、 f (a ) g (b ) g (a ) g (b ) 0, 求证 : (1)在(a , b )内, g ( x ) 0; f ( ) f ( ) (2)在(a , b)内至少存在一点 , 使 . g( ) g ( )
3/13
二、求极限(12分,每小题6分)
x 1. 求 lim cos . m m
m
4/13
2.设f ( x ) (0, ), 对任意的正数a , b, 积分 关, 且f (1) 1, 求f ( x ).
ab a
f ( x )dx与a无
5/13
三、计算积分(10分,每小题5分) dx 1. 计算 . n x( x a )
13/13
8/13
六、 (8分 )证明数列 x1 a , x2 a a , , xn a a a , (a 0)
n个根号
的极限存在, 并求其极限值.
9/13
(8分 )求曲线y sin x 0 x , y 1及x 0所围成 七、 2
2012级微积分(上) 期末考试试题
数学科学学院:汪小平 wxiaoping325@
一、填空题(20分,每小题4分)
dx 1.设函数y x ln x , 则其反函数x f ( y )的导数 ( ) dy
1
2.设y e
cos 2
1 x
, 则y ( ).
2/13
相关文档
最新文档