近世代数课件-2-8正规子群与商群
03 正规子群与商群 近世代数

证明 a H , a : h ah 是 H 到 aH 的一一映射; a : h ha 是 H 到 Ha 的一一
映射;
Sl aH | aG , Sr Ha | aG
则 : aH Ha1 是 Sl 到 Sr 的一一
映射.
2020/3/13
定义:设H是群G的子群,且g G,gH=Hg, 称H是G的正规子群(或不变子群),记H < G, 对正规子群H不用区分左陪集、右陪集,简称为H的陪集。
2020/3/13
40
2020/3/13
41
2020/3/13
42
2020/3/13
43
2020/3/13
44
2020/3/13
45
2020/3/13
① H G
② H 在 G 中的全部不同的左陪集有:
(1)H {(1), (12)} (12)H (13)H {(13), (123)} (123)H (23)H {(23), (132)} (132)H
2020/3/13
21
例 G S3
{(1), (12), (13), (23), (123), (132)}
从而 H 在 G 中左陪集的个数也有限. 设
#(G : H ) r ,且
G a1H U a2H UL U ar H
由前定理, ai H I aj H 且
| aiH || ajH | H
所以,
| G || a1H | | a2H | L | ar H | r | H | H #(G : H )
进而引出拉格朗日(Lagrange)定理:子群
的阶都是有限母群阶的因子。
《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数课件群的概念

ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an
近世代数--正规子群与商群

练习
1.设N G,且[G : N ] 2,证明: N G.
2.设N G, 证明 : N G NG (N ) G.
作业
教材P69第1,4题
第八节 正规子群与商群
• 正规子群的定义 • 正规子群的等价性命题 • 商群 • 小结
设H G,若
一、正规子群的定义
定义 设N G, 若a G, 有aN Na, 则称N是G的正规子群, 记作N G. 正规子群也称不变子群
例1 任意一个群G都有两个正规子群e与G,
这两个正规子群称为G的平凡正规子群.
证明
(1) (2)an aN Na an n1a, n1 N ana1 n1 N
(2) (3)显然
(3) (4)由(3)知a1Na N n N, a1na N 于是n a(a1na)a1 aNa1 N aNa1 aNa1 N
则(G / N,)是一个群. G / N称为G关于N的商群.
推论 商群G / N的阶是N在G中的指数[G : N ],
当G是有限群时, G / N的阶是 | G | . |N|
四、小结
1.正规子群: G中每个元素a对应的左陪集aN和 右陪集Na都相等;
2.正规子群的等价性命题:它既是正规子群的性质, 也是正规子群的判定定理;
(4) (5)aN,a N ana1 aNa1 N ana1 n1, n1 N an n1a Na aN Na 反之, n N aNa1 n an2a1, n2 N na an2 aN Na aN 故aN Na
近世代数12群的概念

ae ea , a G ; (3)对于任意的 a G ,存在 bG ,使得
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
2020/6/
数学与计算科学学院Company Logo
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
例 1 令 N , Z, Q , R 和C 依次表示正整数集、 整数集、有理数集、实数集和复数集.则 Z, Q ,R 和 C 关于加法分别构成交换群; N 关于加法不构成
群. Q \{0}, R \{0} 和C \{0}关于乘法分别构成交换
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
设 G 是一个群, a G .由于“ ”适合结合律,因
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
第一章 群 论
2020/6/26
数学与计算科学学院
LOGO
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
定义 2.1 一个代数运算.若“ ”满足条件:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
近世代数 2.8子群

§8 子群一、子群的定义定义若群G的非空子集H对于G的乘法来说作成一个群, 则称H为G的子群, 记为H ≤G .例1 设G是一个群, 则H1 = G和H2 = { e } 都是G的子群(平凡子群).非平凡子群H也叫真子群, 记为H <G .例2 对于普通乘法来说, C*是一个群. R*是C*的一个子群.例3 在整数加群Z中, H = { 2n | n∈Z } 是一个子群.推论设H ≤G, 则H的单位元就是G的单位元e ; ∀a∈H, a 在H中的逆元就是a在G中的逆元.二、子群的判别定理1 群G的非空子集H作成G的子群的充要条件是(i) ∀a, b∈H⇒ab∈H;(ii )∀a∈H⇒a -1∈H.定理2 群G的非空子集H作成G的子群的充要条件是(iii) ∀a, b∈H⇒ab -1∈H.定理3 群G的非空有限子集H作成G的子群的充要条件是(i) ∀a, b∈H ⇒ab∈H.三、子群的生成设G是一个群, 取定a∈G, 作子集H = { a n | n∈Z }.则H是G的一个子群. H叫做元a生成的(循环)子群:H = ( a ) .例4 G = { 1, -1, i, -i} 关于普通乘法作成一个群( i是虚数单位) . 由元- 1 生成的循环子群为H = ( -1 ) = { 1, -1 }.例5 在模6的剩余类加群Z6中, 由元[ 2 ] 生成的循环子群为H = ( [ 2 ] ) = { [ 0 ], [ 2 ], [ 4 ] }.四、循环群的子群定理4 循环群的子群仍为循环群.例6 在模6的剩余类加群Z6是循环群, 所以其子群都是循环子群. 故Z6的所有子群为H0 = ( [ 0 ] ) = { [ 0 ] };H1 = ( [ 1 ] ) = ( [ 5 ] ) = Z6= { [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] };H2 = ( [ 2 ] ) = ( [ 4 ] ) = { [ 0 ], [ 2 ], [ 4 ] };H3 = ( [ 3 ] ) = { [ 0 ], [ 3 ] }.。
近世代数学习课件
定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:
正规子群和商群
性质1 群 G 的任何两个不变子群的交还是 G 的不变子群.
证明:首先由前面可知它是子群;而且
a H I N , H , N是G的不变子群,则x G, xax1 H且xax1 N xax1 H I N 因此H I N是G的不变子群.
性质2 不变子群与子群的乘积是子群;
h1n1 1 h2n2 n11 h11h2 n2
n11h3n2
h3n3n2
h3 n3n2 HN
这一节里要讲到一种重要的子群,就是正规子群.
给了一个群 G ,一个子群 H ,那么 H的一个右陪 集 Ha 未必等于 H的左陪集 aH ,这一点我们在上一节 的例2里已经看到.
伽罗华在180年多前发现,对任意群G, H是G的任一子群,a为G中任一元,则aH与 Ha未必相等,但对于能使aH=Ha成立的子 群H则具有特别重要的意义,他把这类子群
叫做正规子群(也叫不变子群),由它可以 定义一种和G相关的新群—商群.
定义 1 N G, a G, 都有aN Na, 则称 N 是群 G 的一个正规子群(或不变子群)
记作 N G .
例1 任意群 G 的两个平凡子群都是正规子群.
{e}: a G, a{e} {a} {e}a G : a G, aG G Ga
问:H G ,SL {aH | a G} 关于子集乘法做成群吗?
定理:N G,G / N {aN | a G} 关于乘法 aN bN (ab)N 做成群.
且称 G / N {aN | a G} 为 G 关于N 的商群.
证明:① N =eNG / N ,故非空;
② 乘法运算是封闭的(该乘法是代数运算): aN aN ,bN bN ,(aN )(bN ) (ab)N ,(aN )(bN ) (ab)N n1, n2 N , a an1, b bn2 ab a(n1b)n2 a(bn3 )n2 abN abN abN
近世代数课件2
代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.
近世代数主要知识点PPT课件
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么גx:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
2020/4/27
§2.8 正规子群与商群
以群的陪集分解为基础,引入一类特殊子群的定义和构造 新的群的方法。
本节教学目的与要求: 理解正规子群和商群的定义,掌握正规子群与商群之间的
关系以及正规子群的判断方法。 对正规子群与商群的关系及正规子群的判断是重点,学会
并掌握有关正规子群判断方法的命题证明方法是难点。
2020/4/27
§2.8 正规子群与商群
一.正规子群的定义 二.正规子群的等价定义—正规子群的判断方法 三.商群的定义 四.商群的性质
2020/4/27
18:18
四、商群的性质
Z / (m) {(m), 1 (m), 2 (m),L , m 1 (m)},
2020/4/27
18:18
作业:P62第2,3题,
2020/4/27
18:18
2020/4/27
18:18
一、正规子群的定义 注:
2020/4/27
18:18
一、正规子群的定义
2020/4/27
18:18
二、正规子群的等价定义
2020/4/27
18:18
二、正规子群的等价定义
注:
2020/4/27
18:18
三、商群的概念
定义
2020/4/27
18:18
四、商群的性质 注