3.2一元二次不等式及其解法
【超级经典】一元二次不等式及其解法(含答案)

1 , 2
由函数 y 4 x 4 x 1的图象为:
2
原不等式的的解集是 { } . 方法二:∵ 原不等式等价于: (2 x 1) 0 ,
2
1 2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
∴原不等式的的解集是 { } . (4)方法一:
2 2 因为 0 ,方程 x 4 x 5 0 无实数解,
函数 y x 4x 5 的简图为:
2
所以不等式 x 4 x 5 0 的解集是 .
2
所以原不等式的解集是 . 方法二:∵ x 4x 5 ( x 2) 1 1 0
2
函数 y x 5x 的简图为:
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} .
2
方法二: x 5x 0 x( x 5) 0
2
x 0 x 0 或 x 5 0 x 5 0
解得
x 0 x 0 或 ,即 0 x 5 或 x . x 5 x 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
【经典例题】 类型一:解一元二次不等式 例 1. 解下列一元二次不等式 (1) x 5x 0 ;
2
(2) x 4 x 4 0 ;
2
(3) x 4 x 5 0
2
思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为 (5)2 4 1 0 25 0 所以方程 x 5x 0 的两个实数根为: x1 0 , x2 5
3.2一元二次不等式及其解法

想一想,当x取何值时,y 的值大 于零?(或小于零?) y O m x y n O x
复习
当x m时y 0 当x m时y 0
当 x n时 y 0 当 x n时 y 0
考察:对一次函数y=2x-7,当x为何值 时,y=0;当x为何值时,y<0;当x为何值 时,y>0?
-2 O
3
x
结论:
解一元二次不等式
ax2+bx+c>0
(a>0,△=0 )的步骤: ① 将二次不等式化成一般式;
② 求出方程ax2+bx+c=0的两根; ③ 画出y=ax2+bx+c的图象;
④ 根据图象写出不等式的解集.
求解一元 二次不等式 ax2+bx+c>0 (a>0)的程序框 图:
△≥0
x
结合函数图 象进行思考
Hale Waihona Puke -2 O3x思考:对二次函数 y=x2-x-6,当x为何值 时,y=0?当x为何值时,y<0?当x为何值时, y>0 ?
y
当 x=-2 或 x=3 时, y=0 即 x2x6=0 当2<x<3 时, y<0 即 x2x6<0 当 x<2 或 x>3 时, y>0 即 x2x6>0
b 2a
x< x1或x> x2
举例
例1 解不等式x2-6x-7>0 y
解:方程x2-6x-7=0的解是
x1 1, x 2 7
作函数图象的草图 所以,不等式的解集是
-1 o
7 x
{x | x<-1 或 x > 7 }
3.2一元二次不等式及其解法(2)

2
2
x的 取 值 范 围 为{ x | -1 7 x 1 3 }.
2
2
11分 12分
探究提高 (1)解决恒成立问题一定要搞清谁是自 变量,谁是参数.一般地,知道谁的范围,谁就是变 量,求谁的范围,谁就是参数. (2)对于二次不等式恒成立问题,恒大于0就是相应 的二次函数的图象在给定的区间上全部在x轴上方,恒 小于0就是相应的二次函数的图象在给定的区间上全 部在x轴下方.
例3:已知 ax2 (1 a)x 1 0 恒成立,
求a的取值范围。
y
解:不等式恒成立,即解集为R
y ax2 (1 a)x 1的大致图像如图:
O
x
a 0, 0
由 (1 a)2 4a 0解得: 3 2 2 a 3 2 2
又a 0
解 (1)不等式mx2-2x-m+1<0恒成立,即函数f(x)=
mx2-2x-m+1的图象全部在x轴下方.
当m=0时,1-2x<0, 即当x> 1 时,不等式恒成立,不满足题意; 3分
2 当m≠0时,函数f(x)=mx2-2x-m+1为二次函数,
需满足开口向下且方程mx2-2x-m+1=0无解,即
⊿>0
y
x1 x2 x
⊿=0
y
x1(x2) x
⊿<0
y
x
方程
有两个不等实 有两个相
x2+bx+c=0
根
等实根
的根
x1,x2(x1<x2)
x1=x2
ax2+bx+的c>解0(集a>0)﹛x|x<x1或x>x2﹜﹛x|x≠x1﹜
3.2《一元二次不等式及其解法》PPT课件

二次函数、二次方程、与二次不等式的关系
函数
f ( x) x 5 x
方程
x 5x 0
2
不等式
x 5x 0
2
y
方程的解
不等式的解集
y>0 y>0
O
x1 0, x2 5
x x 0或x 5
x2 5 x 0
不等式的解集
x 0 x 5
5
y<0
总结
【典型例题】
例4. 解不等式:
2 x 2 5 x 6 x2 x6
1 2
1 2
二、简单的一元二次含参不等式
常见含参不等式题型: 1).讨论参数,解含参不等式; 2).已知含参不等式解集,求参数的范围。
• 常见可利用的入手知识点: 1、一元二次不等式的解集端点与相应方程根的关系 (结合韦达定理)。 2、一元二次不等式与对应函数的图象关系。
【解析】 2)≤0,
(1)原不等式等价于(x-1)(x+1)(x-2)(x+
如下图所示的阴影区域:
∴原不等式的解集是 x|-2≤x≤-1或1≤x≤2 .
(2)原不等式等价于(x+1)2(x+2)(x-3)≥0,如图所示的 阴影区域:
∴不等式的解集是 x|x≤-2或x≥3或x=-1 .
-2<a<2
a 2, 2
对一切
x R恒成立
不等式的恒成立问题 含参数的不等式恒成立问题的一般处理思路是: • 1、带参函数分析:将不等式化为f(x)>0(或<0) 的形式,然后构造函数f(x),求函数的最小值 (或最大值),再令fmin(x)>0(或fmax(x)<0)
高中数学第三章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修5

B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
人教a版必修5学案:3.2一元二次不等式及其解法(含答案)

3.2 一元二次不等式及其解法材拓展1.一元一次不等式通过同解变形,一元一次不等式可化为:ax >b .若a >0,则其解集为⎩⎨⎧⎭⎬⎫x |x >b a .若a <0,则其解集为⎩⎨⎧⎭⎬⎫x |x <b a .若a =0,b <0,解集为R ;b ≥0,解集为∅. 2.三个“二次”的关系通过同解变形,一元二次不等式可化为:ax 2+bx +c >0或ax 2+bx +c <0 (a >0). 不妨设方程ax 2+bx +c =0的两根为x 1、x 2且x 1<x 2.从函数观点来看,一元二次不等式ax 2+bx +c >0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴上方部分的点的横坐标x 的集合;ax 2+bx +c <0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴下方部分的点的横坐标x 的集合.从方程观点来看,一元二次方程的根是对应的一元二次不等式解集的端点值.3.简单的高次不等式的解法——数轴穿根法数轴穿根法来源于实数积的符号法则,例如要解不等式(x -1)(x -2)(x -3)>0.我们可以列表如下:x 的区间x <1 1<x <2 2<x <3 x >3 x -1 - + + + x -2 - - + + x -3 - - - +(x -3)(x -2)·(x -1) - + - +把表格的信息“浓缩”在数轴得:据此,可写出不等式(x -1)(x -2)(x -3)>0的解集是{x |1<x <2或x >3}. 一般地,利用数轴穿根法解一元高次不等式的步骤是:(1)化成形如p (x )=(x -x 1)(x -x 2)…(x -x n )>0 (或<0)的标准形式; (2)将每个因式的根标在数轴上,从右上方依次通过每个点画曲线; (3)奇次根依次穿过,偶次根穿而不过(即不要改变符号);(4)根据曲线显现出的p (x )的符号变化规律,标出p (x )的正值区间和负值区间; (5)写出不等式的解集,并检验零点是否在解集内. 4.分式不等式的解法 (1)f (x )g (x )>0⇔f (x )·g (x )>0. (2)f (x )g (x )<0⇔f (x )·g (x )<0. (3)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0. (4)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0. 注意:解不等式时,一般情况下不要在两边约去相同的因式.例如:解不等式:2x +1x -3>2x +13x -2.解 原不等式⇔2x +1x -3-2x +13x -2>0⇔(2x +1)2(x -3)(3x -2)>0⇔⎝⎛⎭⎫x +122(x -3)⎝⎛⎭⎫x -23>0⇔x <-12或-12<x <23或x >3.∴原不等式的解集为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,23∪(3,+∞).5.恒成立问题(1)f (x )≥a ,x ∈D 恒成立⇔f (x )min ≥a ,x ∈D 恒成立; f (x )≤a ,x ∈D 恒成立⇔f (x )max ≤a ,x ∈D 恒成立;(2)ax 2+bx +c >0恒成立⇔⎩⎨⎧ a >0Δ<0或⎩⎪⎨⎪⎧a =b =0c >0ax 2+bx +c <0恒成立⇔⎩⎨⎧ a <0Δ<0或⎩⎪⎨⎪⎧a =b =0c <0. 6.一元二次方程根的分布我们以ax 2+bx +c =0 (a >0)为例,借助开口方向向上的二次函数的图象给出根的分布的充要条件.根的分布 二次函数的图象 充要条件x 1<k <x 2f (k )<0x 1<x 2<k⎩⎨⎧ f (k )>0-b2a <k Δ>0k <x 1<x 2⎩⎨⎧f (k )>0-b 2a >k Δ>0k 1<x 1 <x 2<k 2⎩⎨⎧f (k 1)>0f (k 2)>0k 1<-b 2a <k 2Δ>0k 1<x 1<k 2 <x 2<k 3⎩⎪⎨⎪⎧f (k 1)>0f (k 2)<0f (k 3)>0法突破一、分式不等式的解法方法链接:解分式不等式通常是移项通分再求解,切忌随意去分母(仅在分母恒大于零时可以去分母).例1 解不等式:x 2+2x -23+2x -x 2≥x .解 原不等式⇔x 2+2x -23+2x -x 2-x ≥0⇔x 3-x 2-x -23+2x -x 2≥0⇔(x 3-2x 2)+(x 2-x -2)3+2x -x 2≥0⇔(x -2)x 2+(x -2)(x +1)x 2-2x -3≤0⇔(x -2)(x 2+x +1)(x -3)(x +1)≤0⇔x -2(x +1)(x -3)≤0. 由图可知,原不等式的解集为{x |x <-1或2≤x <3}.二、含参数不等式的解法方法链接:对于含有参数的不等式,由于参数的取值范围不同,其结果就不同,因此必须对参数进行分类讨论,即要产生一个划分参数的标准.例2 解不等式:(x -k )(x +3)x +2<x +1 (k ∈R ).解 原不等式⇔kx +3k +2x +2>0⇔(x +2)(kx +3k +2)>0当k =0时,原不等式解集为{x |x >-2}; 当k >0时,(kx +3k +2)(x +2)>0,变形为⎝⎛⎭⎫x +3k +2k (x +2)>0.∵3k +2k =3+2k >3>2,∴-3k +2k<-2.∴x <-3k +2k 或x >-2.故解集为⎩⎨⎧⎭⎬⎫x |x >-2或x <-3k +2k . 当k <0时,原不等式⇔(x +2)⎝⎛⎭⎫x +3k +2k <0由(-2)-⎝⎛⎭⎫-3k +2k =k +2k .∴当-2<k <0时,k +2k <0,-2<-3k +2k ,不等式的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ; 当k =-2时,-3k +2k=-2,原不等式⇔(x +2)2<0不等式的解集为∅;当k <-2时,k +2k >0,-2>-3k +2k .不等式的解集为⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.综上所述,当k =0时,不等式的解集为{x |x >-2}; 当k >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-3k +2k 或x >-2;当-2<k <0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ;当k =-2时,不等式的解集为∅; 当k <-2时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.三、恒成立问题的解法方法链接:在含参数的恒成立不等式问题中,参数(“客”)和未知数(“主”)是相互牵制、相互依赖的关系,在这里是已知参数a (“客”)的取值范围,反过来求x (“主”)的取值范围,若能转换“主”与“客”两者在问题中的地位:视参数a 为“主”,未知数x 为“客”,则关于x 的一元二次不等式就立即转化为关于a 的一元一次不等式,运用反“客”为“主”的方法,使问题迎刃而解.例3 已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.分析 题中不等式含有两个字母x ,p ,由(1)的条件可知,应视p 为变量,x 为常量,再求x 的范围;由(2)的条件可知,应视x 为变量,p 为常量,再求p 的范围.解 (1)不等式化为:(x -1)p +x 2-2x +1>0, 令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又因为|p |≤2,所以-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0.即⎩⎪⎨⎪⎧(x -1)·(-2)+x 2-2x +1>0,(x -1)·2+x 2-2x +1>0. 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0. ∴x >3或x <-1. 故x 的取值范围是x >3或x <-1.(2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0.∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立,所以p >(1-x )max .而2≤x ≤4,所以(1-x )max =-1, 于是p >-1.故p 的取值范围是p >-1. 四、一元二次方程根的分布 方法链接:一元二次方程根的分布一般要借助一元二次函数的图象加以分析,准确找到限制根的分布的充要条件.常常从以下几个关键点去限制,①判别式,②对称轴,③根所在区间端点函数值的符号.例4 已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组 ⎩⎪⎨⎪⎧f (0)=2m +1<0f (-1)=2>0f (1)=4m +2<0f (2)=6m +5>0解得:-56<m <-12.五、一元二次不等式的实际应用 方法链接:解一元二次不等式应用题的关键在于构造一元二次不等式模型,解出不等式后还应注意变量应具有的“实际含义”.例5 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点.即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.分析对比项 调整前 调整后税率 8% (8-x )%收购量 m (吨) (1+2x %)m (吨)税收总收入 2 400m ×8%2 400(1+2x %)m×(8-x)%解 设税率调低后的“税收总收入”为y 元. y =2 400m (1+2x %)·(8-x )%=-1225m (x 2+42x -400) (0<x ≤8).依题意,y ≥2 400m ×8%×78%即:-1225m (x 2+42x -400)≥2 400m ×8%×78%整理得x 2+42x -88≤0,解得-44≤x ≤2. 根据x 的实际意义,知0<x ≤8, 所以0<x ≤2为所求.区突破1.忽略判别式的适用范围而致错例1 若不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立,求实数a 的取值范围. [错解] 不等式(a -2)x 2+2(a -2)x -4<0, 对x ∈R 恒成立.⇔{ a -Δ<0 ⇔{ a(a -2)2-4(a -2)(-4)<0 ⇔-2<a <2.[点拨] 当a -2=0时,原不等式不是一元二次不等式,不能应用根的判别式,应当单独检验不等式是否成立.[正解] 当a -2=0,即a =2时,原不等式为-4<0,所以a =2时成立. 当a -2≠0时,由题意得{ a -Δ<0, 即{ a(a -2)2-4(a -2)(-4)<0, 解得-2<a <2.综上所述,可知-2<a ≤2. 温馨点评 在中学阶段,“判别式”是与“二次”联系在一起的,对于一元一次不等式不能应用判别式法来判断.在处理形如ax 2+bx +c 的问题时,要注意对x 2系数的讨论.2.混淆“定义域为R ”与“值域为R ”的区别而致错例2 若函数y =lg(ax 2-2x +a )的值域为R ,求a 的取值范围. [错解1] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴ax 2-2x +a >0对x ∈R 恒成立.∴{ aΔ<0, 即{ a-4a 2<0,∴a >1. [错解2] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴代数式ax 2-2x +a 能取遍一切正值. ∴Δ=4-4a 2≥0, ∴-1≤a ≤1.[点拨] 上述解法1把值域为R 误解为定义域为R ;解法2虽然理解题意,解题方向正确,但是忽略了a <0时,代数式ax 2-2x +a 不可能取到所有正数,从而也是错误的.[正解] 当a =0时,y =lg(-2x )值域为R , a =0适合.当a ≠0时,ax 2-2x +a =a ⎝⎛⎭⎫x -1a 2+⎝⎛⎭⎫a -1a 为使y =lg(ax 2-2x +a )的值域为R , 代数式ax 2-2x +a 应取到所有正数.所以a 应满足⎩⎨⎧a a -1a ≤0,解得0<a ≤1. 综上所述,0≤a ≤1.题多解例 解不等式:lg x -1≤3-lg x . 解 方法一 lg x -1≤3-lg x⇔{ lg x -1≥-lg x ≥x -1≤(3-lg x )2 ⇔{ 1≤lg x ≤2x -7lg x +10≥0 ⇔{ 1≤lg x ≤x ≤2或lg x ≥5 ⇔1≤lg x ≤2⇔10≤x ≤100. 方法二 设lg x -1=t , 则lg x =t 2+1 (t ≥0).∴lg x -1≤3-lg x⇔{ t ≥t ≤2-t 2⇔0≤t ≤1⇔0≤lg x -1≤1 ⇔1≤lg x ≤2 ⇔10≤x ≤100.方法三 解方程lg x -1=3-lg x , 解得:x =100. 令f (x )=lg x -1,易知f (x )在[10,+∞)为增函数,g (x )=3-lg x 在[10,+∞)为减函数. 且f (100)=g (100)=1.为使f (x )≤g (x ), 则10≤x ≤100.方法四 令lg x =t ,f (t )=t -1,g (t )=3-t .在同一坐标系中画出它们的图象如图所示: 易知交点为(2,1).当1≤t ≤2时,f (t )≤g (t ). 即lg x -1≤3-lg x 成立. 由1≤t ≤2,即1≤lg x ≤2, 解得:10≤x ≤100.题赏析1.(2009·江西)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.解析 令y 1=9-x 2,y 2=k (x +2)-2,在同一个坐标系中作出其图象,因9-x 2≤k (x +2)-2的解集为[a ,b ]且b -a =2.结合图象知b =3,a =1,即直线与圆的交点坐标为(1,22).∴k =22+21+2= 2.答案 2赏析 本题主要考查解不等式、直线过定点问题以及数形结合的数学方法. 2.(2009·天津)设0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析 (x -b )2>(ax )2,(a 2-1)x 2+2bx -b 2<0,要使x 的解集中恰有3个整数,必须有a 2-1>0.又a +1>0,∴a >1.不等式变形为[(a -1)x +b ][(a +1)x -b ]<0.∵a >1,b >0,∴b a -1>0,0<ba +1<1,∴b 1-a <x <b a +1, 其中含三个整数,∴-3≤b 1-a <-2,2<ba -1≤3.∴2a -2<b ≤3a -3.∴{ 3a -3≥b >0,a -2<b <a +1,∴{ a >1,a <3,∴1<a <3. 答案 C赏析 本题考查了一元二次不等式知识灵活地运用.。
3.2 第一课时 一元二次不等式及其解法
Δ =b2-4ac
Δ >0
Δ =0
Δ <0
y=ax2+bx+c(a>0)的图象
ax2+bx+c=0(a>0) 的解
ax2+bx+c>0(a>0) 的解集 ax2+bx+c<0(a>0) 的解集
有两个相异实根 x1,2=
b b2 4ac (x1<x2) 2a
{x|x<x1 或 x>x2}(即 “大于取两边”) {x|x1<x<x2}(即“小于 取中间”)
答案:(3)(-∞,-3)∪(-3,1)∪(2,+∞)
点击进入 课时作业
即时训练 3-1:(1)不等式 x 1 ≤3 的解集是
;
x
解析:(1)原不等式等价于 x 1 -3≤0⇔ 1 2x ≤0⇔ 2x 1 ≥0⇔x(2x-1)≥0,且 x
x
x
x
≠0,解得 x≥ 1 或 x<0. 2
答案:(1){x|x≥ 1 或 x<0} 2
(2)不等式 2x 1 >1 的解集是
3.2 一元二次不等式及其解法 第一课时 一元二次不等式及其解法
课标要求:1.理解一元二次方程、一元二次不等式与二次函数的关系.2.掌 握图象法解一元二次不等式.3.会用分类讨论法解含参数的一元二次不等 式.4.会解可化为一元二次不等式(组)的简单分式不等式.
自主学习
知识探究
1.一元二次不等式的相关概念 只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不 等式.一元二次不等式的一般形式是ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0), 其中a≠0,且a,b,c为常数. 使某个一元二次不等式成立的x的值叫这个一元二次不等式的 解 ,一元二次 不等式的所有解组成的集合,叫做这个一元二次不等式的 解集 .
高中数学必修5第三章3.2一元二次不等式式及其解法
≤
3 2
或x
≥1
1 x 3
因此1≤x<3,所求函数的定义域是[1,3).
思考题1
已知ax2 +2x
+c
>
0的解集为 禳镲睚x
-
1
<
x
<
1
,
镲铪 3 2
试求a, c的值,并解不等式 - cx2 +2x - a > 0。
解:对于任意实数x,
x2-2x+3=(x-1)2+2>0,
因此不等式(1)的解集为
实数集R,
y
3
不等式(2)无解,或说它 2
的解集为空集.
1
x
-1 O 1 2 3 -1
练习2.解不等式1-x-4x2>0.
解:原不等式可化为4x2+x-1<0,
因为△=12-4×4×(-1)>0,
方程4x2+x-1=0的根是
一元二次不等式及其解法
定义:只含有一个未知数,并且未知数的最高次 数是2的不等式,叫一元二次不等式。
一元二次不等式的一般表达式为 ax2+bx+c>0 (a≠0),或ax2+bx+c<0 (a≠0)
其中a,b,c均为常数。
一元二次不等式一般表达式的左边,恰 是关于自变量x的二次函数f(x)的解析式,
2a
韦达定理
x1
x2
b a
,
x1x2
c a
(2)二次函数
y ax2 bx c(a 0)
开口方向;
b 对称轴 x
3.2《一元二次不等式及其解法》(人教版必修5)好
ax2+bx+c>0 或 (a>0)的解集 {x|x<x1,或 x>x2} 的解集 ax2+bx+c<0 (a>0)的解集 {x|x1< x <x2 } 的解集
b {x|x≠ − } 2a
R Φ
ks5u精品课件
Φ
求解一元 二次不等式 ax2+bx+c>0 (a>0)的程序 的程序 框图: 框图
△≥0
b x≠− 2a
ks5u精品课件
x< x1或x> x2
题2:解不等式4x2-4x +1>0 解不等式4
因为△ 解: 因为△= 16 -16 =0 方程 4 x2 - 4x +1=0 的解是 x1=x2=1/2 故原不等式的解集为{ 故原不等式的解集为 x| x ≠ 1/2 } 另解:由于4 另解:由于4x2-4x+1 =(2x-1)2≥0
2
{
{
x
x
2
− 16 > 0
x2 − 4x + 3 > 0
2
或
− 16 < 0 x2 − 4x + 3 < 0
返回
ks5u精品课件
习题3.2
A组 第2题 B组 第2题
ks5u精品课件
返回
ks5u精品课件
解 于 等 x − ax − 2a < 0. 关 x不 式
2 2
方程x 2 − ax − 2a 2 = 0.的判别式∆ = a 2 + 8a 2 = 9a 2 ≥ 0
得方程的两根为x1 = 2a, x2 = − a. (1)若a > 0, 则 − a < x < 2a
3.2一元二次不等式及其解法
由右边的图象填空: 边的图象填空:
⑴当 x=0 或 5 时,
⑵当 0<x<5 时,
= 0, 即 x 2 − 5 x = 0; y
y < 0, 即 x − 5 x < 0;
2
> 0, 即 x 2 − 5x > 0. ⑶当 x<0 或 x>5 时, y
∴可知 x 2 − 5 x < 0 的解集为 { x 0 < x < 5}
一元二次不等式也可用图象法求解
5
问:y= ax2+bx+c(a>0)的图象与 轴的交 + ( > )的图象与x轴的交 点情况有哪几种? 点情况有哪几种?
一元二次方程的解即一元二次函数图象与x轴 一元二次方程的解即一元二次函数图象与 轴 方程的解即一元二次函数图象与 交点的横标,一元二次不等式的解集即一元二次 交点的横标,一元二次不等式的解集即一元二次 函数图象在x轴下方或上方图象所对应 的范围。 轴下方或上方图象所对应x的范围 函数图象在 轴下方或上方图象所对应 的范围。 利用二次函数图象能解一元二次不等式! 二次函数图象能解一元二次不等式 利用二次函数图象能解一元二次不等式!
解:∆ =(a + 1) 2 − 4a = (a − 1) 2
(1)当 a = 1时, ∆ = 0,原不等式即为 x 2 − 2x + 1 > 0,其解集为 {x x ≠ 1}
分类讨论! 分类讨论!
变形1 解关于x 变形1:解关于x的不等式 x2-ax - (a+1) >0 (a≠0) 引申1 解关于x 引申1:解关于x的不等式 ax2-(a+1)x+1>0 (a≠0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)x2+x-1>0 解:x2+x-1=0
-1± 5 x1 、 2 = 2
x2+x-1>0 -1- 5 -1+ 5 x< 或x> 2 2 -1- 5 -1+ 5 原不等式的解集为{x|x< 或x> } 2 2
(3)9x +6x+1>0
解:
2
9x2+6x+1>0
2 1 (3x+1)2>0 (x+ ) >0 3
1 x<-2或x> 3
小结:本节课学习了以下3个内容:
1、一元二次不等式的定义及一般形式;
2、三个“二次”的联系;
3、一元二次不等式的解法。
练习:P80
作业:P81[B组]:1、(1)、(2)、(3)、(4)
b c ax bx c a( x x ) a[ x 2 ( x1 x2 ) x x1 x2 ] a a
a( x x1 )(x x2 )
ax bx c 0 a( x x1 )(x x2 ) 0
2
( x x1 )(x x2 ) 0 x x1或x x2
ax bx c 0 a( x x1 )(x x2 ) 0
2
( x x1 )(x x2 ) 0 x1 x x2
例:解下列不等式
(1)2x2-x-6<0
解:2x2-x-6<0
(x-2)(2x+3)<0
3 - <x<2 2
3 原不等式的解集为{x|- <x<2} 2
当 =b2-4ac>0时
设ax2+bx+c=0(a>0)的两根 分别为x1、x2, 且x1<x2,则
ax2+bx+c>0 x<x1或x>x2
ax2+bx+c<0 x1<x<x2
b c x1 x2 , x1 x2 (a 0) a a
2 2
注:当 0时, ( x1 x2 )
J
x2-5x≤0
0≤x≤5
2、三个“二次”的联系 设 =b2-4ac 则y=ax2+bx+c、ax2+bx+c=0 与ax2+bx+c>0 或ax2+bx+c<0的联系如下表:
b 2 4ac
二次函数
0
y
x1
0
y
x
y
0
0
无实根
y ax2 bx c(a 0)
A公司收取的费用为: 1.5x
B公司收取的费用为: 1.7+1.6+1.5∙∙∙+(1.8-0.1x)
依题意得: 整理得:
x(35-x) = 20 x(35-x) 1.5x≤ 20 x2-5x≤0
二、推进新课
1、一元二次不等式的定义及一般形式
(1)定义:含有一个未知数,且未知数的最高次数是2的 不等式称为一元二次不等式。
的图象
0
x2
0 x1 = x 2 x
有两个相等实根
x
一元二次方程
ax2 bx c 0(a 0)
的根
b b 2 4ac x1 2a x2 b b 4ac 2a
2
b x1 x 2 2a
b x | x 2a
ax2 bx c 0(a 0)
x -x-6<0
2
2
(x+2)(x+3)<0 -2<x<3
故原不等式的解集为{x|-2<x<3}
(6)3x +2x>2-3x
解:
3x2+2x>2-3x
2
3x2+5x-2>0
(x+2)(3x-1)>0 1 (x+2)(x- )>0 3
1 故原不等式的解集为{x|x<-2或x> } 3
b {x|x<- } a
b {x|x>- } a
探究三个“二次”的关系
先考察x2-5x=0、y=x2-5x与x2-5x≤0的关系
x -5x=0x1=0或x2=5
2
y
由y=x2-5x图象知:
当x<0或x>5时,y>0,即:
O
xቤተ መጻሕፍቲ ባይዱ
图象.gsp
x2-5x>0 当0<x<5时,y<0,即: x2-5x<0
(2)一般形式
ax2+bx+c>0 或 ax2+bx+c<0
(a≠0)
回顾一元一次方程、一次函数、一元一次不等式间的关系
a>0
y
a<0
y
y=ax+b(a≠0) 的图象
ax+b=0的解集 ax+b>0的解集
ax+b<0的解集
b a
O
x
O
b a
x
b {x|x=- } a b {x|x>- } a
b {x|x=- } a b {x|x<- } a
3.2一元二次不等式及其解法
学习目标: (1)通过实例抽象出一元二次不等式的概念
(2)类比三个“一次”间的关系,得出三个 “二次”间的关系
(3)掌握一元二次不等式的解法
学习重点:当 >0时,一元二次不等式的解法 学习难点 :当 ≤0时,一元二次不等式的解法
一、导学
探究课本P76问题: 设一次上网x小时,则
y=9x2+6x+1
x 1
1 故原不等式的解集为{x|x≠- } 3
3
(4)x -4x+5<0
解:
=(-4)2-4× 5=-4<0
2
方程x2-4x+5=0没有实根
x
方程x2-4x+5<0的解为空集
(5)-x +x+6>0 (6)3x +2x>2-3x
2
2
(5)-x2+x+6>0
解:
-x +x+6>0
的解集
x | x x1或x x2
xR
ax2 bx c 0(a 0)
的解集
x | x1 x x2
3、一元二次不等式的解法 由三个“二次”的联立,可得解一元二次不等式的程序
一元二次不等式(a<0)
化成a>0的形式
解相应方程 画出相应函数图象
写出解集
重点情形特写: