船体强度和结构设计
船体强度与结构设计-型材剖面设计

cr
7(6 100t )2[1 h
0.95(1
β)2.33](N/mm2 )
一个翼板拉应力
另一个翼板压应力
(2)如果弯曲正应力等于零,则 临界剪切应力为
cr
102100t h
2 剖面内材料利用率的指标:剖面利用系数和比面积。
W1
I Z
z 2 dF
F
Z
z2 ( ) dF
Z
max F Z
max
max
max
理想剖面:两个离中和轴距离相等、面积各为0.5 F的翼板组成的剖面称为 理想剖面。
理想剖面的剖面模数为
W0
1 2
hF
h
理想剖面形式
实际型材的最小剖面模数,小于理想剖面的剖面模数,即
m=70~100。
5.3.2 型材整体的稳定性 1、型材总稳定性问题的提出
仓壁扶强材等一类构件承受水压力,在压力较小时,构件的弯曲在腹板的平面内发生,当 压力载荷增加到超过一定数值时,构件向腹板平面外发生弯曲,即侧向弯曲,也称为侧向 失稳。侧向失稳属于型材总稳定性问题,如果型材总稳定性不足,则会导致结构的整体破 坏,例如整个仓壁发生破坏。
q0,cr
EI*
1*
1 , 2
表示单位宽度舱壁 板对于扶强材的抗 转约束
图 扶强材剖面及约束
图 临界压力集度系数表
3、型材总稳定性的初次校核 影响型材总稳定性的因素有:腹板高度、型材跨度、小翼板宽度等。增
加小翼板宽度,可提高型材总稳定性。 初次设计校核总稳定性可按下式
y -材料的屈服极限; b1-小翼板半宽。
船体强度和结构设计

船体强度和结构设计
船体强度和结构设计是船舶设计中最重要的部分之一。
船体强度和结构设计的目的是确保船舶在航行中能够承受各种外部力量和内部压力,保证船舶的安全性和可靠性。
船体强度设计主要包括船体的强度计算和结构设计。
船体的强度计算是指通过计算船体的各个部位的受力情况,确定船体的强度要求。
船体的结构设计是指根据船体的强度要求,设计船体的结构形式和材料,以满足船体的强度要求。
船体强度设计的主要考虑因素包括船舶的航行条件、船舶的载重量、船舶的航速、船舶的航线、船舶的使用寿命等。
在设计船体强度时,需要考虑船舶在不同的航行条件下的受力情况,如波浪、风力、水流等。
同时,还需要考虑船舶的载重量和航速,以确定船体的强度要求。
此外,船舶的航线和使用寿命也是船体强度设计的重要考虑因素。
船体结构设计的主要考虑因素包括船体的结构形式、材料和连接方式。
船体的结构形式包括船体的外形和内部结构,如船体的船首、船尾、船体侧壁、船底等。
船体的材料包括船体的钢材、铝合金、复合材料等。
船体的连接方式包括焊接、螺栓连接等。
船体强度和结构设计的重要性不言而喻。
只有通过科学的设计和计算,才能确保船舶在航行中的安全性和可靠性。
因此,在船舶设计
中,船体强度和结构设计是必不可少的一部分。
船体强度与结构设计=船体结构规范设计

(3)构件布置考虑的主要原则 ●结构布置要形成横向和纵向框架结构
有利于载荷的有效传递。 ●结构布置的连续性原则
构件布置不允许突然中断,或者尺寸突然变化,避免结构的应力集中。 ●等间距性原则
横向构件间距尽量一致,纵向构件间距也尽量相同,这样构件的强度 要求相同,可减少构件品种和规格,便于制造和订货。 ●节点刚性连接原则
(2)平板龙骨:受到 较大总弯曲力矩作用, 此外船舶搁浅或进船坞 修理过程,受到坞墩反 作用力,平板龙骨需要 加厚。
舷 侧 顶 列 板
平板龙骨
3、板的局部加强
机舱开口、人孔、主机座下的力甲板
定义:纵向船中0.4L区保持连续且有效参与总弯曲的上层甲板。
设计原则:强力边板与舷顶列板连接,起着防止船体止裂 的作用,强力边板需要加厚。此外边板的宽度必须满足
(2)三种骨架型式的强度特性 ●横骨架式:横向强度较好,总纵强度较弱,不利于总纵强度,不利 于板格的稳定性 ●纵骨架式:有利于总纵强度,板格的稳定性好。总弯曲力矩大的船 舶,宜采用纵骨架式结构。 ●混合骨架式:满足结构不同部位和区域载荷特点和强度要求。
(3)构件布置考虑的主要原则 ●横骨架式:横向强度较好,总纵强度较弱,不利于总纵强度,不利于板格的稳定性 ●纵骨架式:有利于总纵强度,板格的稳定性好。总弯曲力矩大的船舶,宜采用纵骨架式 结构。 ●混合骨架式:满足结构不同部位和区域载荷特点和强度要求。
船舶强度与结构设计

2.船体强度计算内容和方法
(1)确定作用在船体及各个结构上的外力。 (2)确定船体结构在外载作用的响应:结构 剖面中的应力与变形 ;结构的极限状态分 析。即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 这三部分内容是一个综合的整体,通常 被
分散到船舶静力学、船船结构力学等几门课 程中讨论。
局部强度─局部构件(纵桁、横梁、肋骨等)、节 点(肘板等)、局部结构(舱壁、甲板、船底板、 舷侧板等)的强度。
5
§2 作用在船 体结构上的 载荷
6
作用于船体上的载荷可按其响应和随时间变化进行 分类。
1.按结构响应分类:总体性载荷和局性载荷。 总体性载荷─引起整个船体变形或破坏的载荷和 载荷效应。如总纵弯曲的力矩、剪力、应力及纵 向扭矩等。
14
§4 评价结构 设计的质 量指标
15
为得到一个优秀的结构设汁,应考虑以下问 题:
1.安全性
即结构要能承受正常使用时各种可能的 载荷作用,并在偶然事件发生时及发生后, 仍能保持必需的整体稳定性(即仅产生局部 损坏而不发生整体的破坏)。
2.船舶的整体配合性
船舶是一个整体,在船舶设计时,结构 设计必须同总体、轮机、设备电气及通风等 其它方面的设计互相配合,以保证船舶在各 方面都具有良好的工作性能。
船体强度是研究船体结构安全性的科学。
1.结构的安全性
结构的安全性包括: (1)结构能承受在正常施工和正常使用时可 能出现的各种载荷,并在偶然事件发生时及发 生后仍能保持必需的整体稳定性。 (2)结构在正常使用时,对于民船必须适合 营运的要求,和具有足够的耐久性;对于军船 还必须满足在规定海况下,具有良好的战斗性 能和生命力。
局部性载荷─指引起局部结构、构件变形或破坏的 载荷,如水密试验时的水压力,机器的不平衡所 造成的惯性力、局部振动,海损时的水压力等。
《船体强度与结构设计》课程标准

《船体强度与结构设计》课程标准课程名称:船体强度与结构设计课程标准适用专业:船舶工程技术专业1.课程的性质船体强度与结构设计是船舶工程技术专业的一门专业课程,也是学生基本职业岗位专业能力的拓展课程。
其功能与教学目的是使学生对船体强度计算及船体结构设计有深的认识与理解,使学生具备参与船舶设计的专业技能,它要以高等数学、机械工程基础、船体识图与制图、船舶性能计算、船舶总体设计等课程的学习为基础。
2.课程的设计思路1、本课程是以“船舶工程技术专业工作任务与职业能力分析表”中的“船舶质量管理及生产组织、现场管理”工作项目设置的。
其总体设计思路是,根据对船舶工程技术专业所对应的岗位群进行任务和职业能力分析,以船舶设计工作过程所需要的岗位职业能力为依据,以船舶结构设计实际工作过程为导向,以船体强度计算与结构设计的专业知识学习领域工作任务为课程主线进行课程设计。
教学内容以应用为目标、以能力为中心来设计。
根据学生的认知规律与技能特点,打破以知识传授为主要特征的传统学科课程模式,转变为以工作任务为中心组织课程内容,采用典型案例来展现教学内容,通过学习领域、知识点、技能点典型案例分析与讲解等工作项目来组织教学,让学生在完成具体项目过程中学会完成相应工作任务,并构建相关理论知识,发展职业能力。
课程内容设计则突出对学生职业能力的训练,理论知识的选取紧紧围绕工作任务完成的需要来进行,同时又充分考虑了高等职业教育对理论知识学习的需要,坚持以能力为中心、以学生为主体的原则来设计课堂教学,将能力培养贯穿于课程教学之中。
课程建设坚持以专业知识学习领域工作任务为主线,坚持实践为重、理论够用的原则;课程教学中首先坚持理论来自于实践的原则,教学实例来自工程实践,实例项目设计以实际的船体强度计算与结构设计任务为载体来进行,以增强知识点的实践性,激发学生的学习兴趣。
教学过程中充分开发学习资源,给学生提供丰富的实践机会。
教学效果评价采取过程评价与结果评价相结合的方式,通过理论与实践相结合,重点评价学生的职业能力。
船体强度与结构设计说明书

目录1.概述 (4)2.基本资料 (5)2.1 主要尺寸 (5)2.2 主尺度比 (5)3.船体主要构件尺寸计算 (6)3.1 外板及内底板 (6)3.1.1船中部船底板厚度 (6)3.1.2 平板龙骨 (7)3.1.3 舭列板 (7)3.1.4 舷侧外板 (7)3.1.5 内舷板(纵舱壁) (7)3.1.6 首尾封板 (8)3.1.7 内底板 (8)3.1.8 局部加强 (9)3.2 甲板 (9)3.2.1 强力甲板 (9)3.2.2 非强力甲板 (11)3.3 单底骨架 (11)3.3.1 艉 (11)3.3.2 机舱实肋板 (12)3.3.3船底纵骨 (12)3.3.4 艏 (13)3.3.5船底纵骨 (14)3.4 双底骨架(货舱区域) (15)3.4.1 实肋板 (15)3.4.2 水密实肋板 (15)3.4.3 中桁材 (16)3.4.4 旁桁材 (16)3.4.5 内底纵骨 (16)3.4.6 船底纵骨 (16)3.4.7 肘板 (17)3.5 舷侧骨架 (18)3.5.1 舷侧肋骨(货舱内、外舷) (18)3.5.2 船艏结构 (19)3.5.3 船艉结构 (20)3.5.4 舱底纵骨 (21)3.5.5 舱底实肋板 (21)3.5.6 舭肘板 (22)3.5.7 梁肘板 (22)3.6 甲板骨架 (22)3.6.1甲板横梁 (22)3.6.2 甲板纵桁 (23)3.6.3 强横梁 (25)3.6.4舱口端横梁 (25)3.6.5甲板纵骨 (26)3.7 支柱 (26)3.7.1 支柱负荷的确定 (26)3.7.2 全部选用管型支柱 (27)3.8 舱壁 (28)3.8.1 水密舱壁 (28)3.8.2 水平桁 (30)3.8.3 非水密舱壁 (31)3.9 艏艉结构及艉轴架 (31)3.9.1 首柱 (31)3.9.2 首尖舱骨架 (31)3.9.3 尾柱 (32)3.9.4 尾轴架 (32)3.10 主机基座、轴隧及机舱骨架 (33)3.10.1 主机基座 (33)3.10.2 轴隧 (33)3.10.3 机舱骨架 (34)3.11 舱口 (34)3.11.2 舱口活动横梁 (35)3.12 上层建筑及甲板室 (36)3.12.1 上层建筑 (36)3.12.2 围壁扶强材 (36)3.12.3 压筋板 (37)3.12.4 机舱棚、货舱棚 (37)3.13 舷墙、栏杆及护舷材 (37)3.13.1 一般要求 (37)3.13.2 舷墙 (38)3.13.3 栏杆 (38)3.13.4 护舷材 (38)4.思考题 (38)1.概述本船主要要素为:总长106.40m,水线长105.50m,垂线间长105.00m,型17.60m,型深7.40m,设计吃水6.20m,主机功率2×700KW,主要运输件杂货或集装箱,航行于长江A、B级航区。
船体强度与结构设计-船体静置在波浪上的外力计算
使船尾倾力矩为: BH 0 sin
H 0 -纵稳性高
R H0 GC H0 MG
于是得
BR sin
R H0
R:纵稳心半径
船舶纵摇平衡时
W (xg xb ) BRsin
xg xb
R
为小量。
da
dm
( L /
2
xf
) xg
xb R
,
由da和df在邦戎曲线上作出水线,
df
dm ( L / 2 xf
) xg xb R
邦戎曲线
计算排水体积和浮心得纵向位置,得到
xb1
V1
比较排水体积和V0 ,比较 浮心纵向位置 xb1 和重心的纵向位置 xg ,
V1 V0 0.5%V0
xg xb1 0.1%L
当上述条件不满足时,说明船舶仍未达到受力和力矩的平衡,继续改 变首尾吃水,进行调整。 (4)第二次调整首尾吃水
分配到各站间重量叠加,得到各个站间的总重量,如下图所示: 图 船体站间重量分布结果
10 首部锚2只101#~106#
20
5.1
102.0
0.0
0.0 -27.6 -552.0
11 固定压载32#~48#
36
0.5
18.
8.4 302.4 10.8 388.8
空船重量重心合计
1165.92 2.253 2627.32 -0.005 -6.08 1.750 2040
1.965 1.965 1.965 5.1
1973.6
39.82 12.18 26.0
88.43
88.43 88.43 88.43 102.0
-0.3
-265.5
-9.29 -5.571 -6.0
船体强度与结构设计
船体强度与结构设计船体强度与结构设计1. 船体梁抵抗总纵弯曲的能⼒,成为总纵强度(简称纵强度)。
2. 重量的分类:(1)按变动情况来分○1不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。
○2变动重量,即装载重量,包括:货物、燃油、淡⽔、粮⾷、旅客、压载等各项可变重量。
(2)按分布情况分○1总体性重量,即沿船体梁全场分布的重量,通常包括:主体结构、油漆、索具等各项重量,对于内河⼤型客船,还包括:纵通的上层建筑及旅客等各项重量。
○2局部性重量:即沿船长某⼀区段分布的重量,通常包括:货物、燃油、淡⽔、粮⾷、机电设备、舾装设备等各项重量。
3.重量分布原则:对于各项重量按近似的和理想化的分布规律处理时,必须遵循静⼒等效原则1)保持重量的⼤⼩不变,这就是说要使近似分布曲线所围的⾯积等于该项实际重量2)保持重量重⼼的纵坐标不变,即要使近似分布曲线所围的⾯积⾏⼼纵坐标与该项重量的重⼼纵坐标相等3)近似分布的曲线的范围与该项重量的实际分布范围相同或⼤体相同3.描述浮⼒沿船长分布状况的曲线称为浮⼒曲线。
4.计算状态:通常是指,在总纵强度计算中为确定最⼤弯矩所选取的船舶典型装载状态,⼀般包括满载、压装、空载等和按装载⽅案可能出现的最不利以及其它正常营运时可能出现的更为不利的装载状态。
4.静波浪弯矩与船型、波浪要素以及船舶与波浪的相对位置有关,波浪要素包括波形、波长和波⾼,⽬前得到最⼴泛应⽤的坦⾕波理论,根据这⼀理论,⼆维波的剖⾯是坦⾕曲线形状。
坦⾕波曲线形状的特点是:波峰陡峭,波⾕平坦,波浪轴线上下的剖⾯积不相等,故谓坦⾕波。
4.传统的标准计算⽅法:(1)将船舶置于波浪上,即假想船舶以波速在波浪的船舶⽅向上航⾏,船舶与波浪处于相对静⽌状态。
(2)以⼆维坦⾕波作为标准波形,计算波长等于船长(内河船舶斜置于⼀个波长上),计算波⾼按有关规范或强度标准选取。
(3)取波峰位于船中及波⾕位于船中两种状态分别进⾏计算。
船体强度与结构设计复习材料
船体强度与结构设计复习材料绪论1。
船体强度:是研究船体结构安全性的科学.2。
结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能.3。
全船设计过程:分为初步设计、详细设计、生产设计三个阶段。
4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。
5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态.第一章引起船体梁总纵弯曲的外力计算1.船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。
2.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。
3.总纵强度:船体梁抵抗总纵弯曲的能力。
4.引起船体梁总纵弯曲的主要外力:重力与浮力。
5.船体梁所受到的剪力和弯矩的计算步骤:①计算重量分布曲线平p(x);②计算静水浮力曲线bs(x);③计算静水载荷曲线qs(x)=p(x)-bs(x);④计算静水剪力及弯矩:对③积分、二重积分;⑤计算静波浪剪力及弯矩:⑥计算总纵剪力及弯矩:④+⑤。
6.重量的分类:①按变动情况来分:不变重量(空船重量)、变动重量(装载重量);②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。
7.静力等效原则:①保持重量的大小不变;②保持重心的纵向坐标不变;③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。
8.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线.9.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。
10.载荷、剪力和弯矩之间的关系:①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应;②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值;③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。
船舶强度与结构设计复习
第2章 船体外载荷
• 波谷在船中:船舶下沉,增加排水量,真实波面 应该位于参考波面以上。
• 真实波面C-C就是待求的。
第2章 船体外载荷
第1章 船体结构基础
第1章 船体结构基础
• 船体结构各构件的作用 ②总纵强度
表示船体梁抵抗弯曲、剪切和扭转变形的能力。 在抵抗总纵弯曲时,所有的纵向构件都是有效的, 包括船底板、舷侧板、甲板板、纵舱壁以及纵骨。横 向构件如横舱壁以及其上的加强筋,肋板,肋骨,甲 板横梁等横向构件是不参与抵抗总纵弯曲的。 ③横向强度 狭义上:横向强度是表示抵抗横向变形的能力; 广义上:在研究横向变形能力时,考虑力的传递 机理以及相应的结构变形。
长上的差值产生分布载荷。
每单位船长上的差额就构成作用在船体梁上的 分布载荷。船体梁在这个载荷作用下将发生总纵弯 曲变形,并在船体梁断面上产生剪力和弯矩。
第2章 船体外载荷
N
x
x
0
q(
x)dx
剪力载荷曲线的一次积分
M
x
x
0
N
(
x)dx
x
0
x
0
qxdxdx
弯矩载荷曲线的二次积分
应。 • 弯矩曲线在两端的斜率为零,弯矩曲线在两端与x
轴相切。
第2章 船体外载荷
精度要求:
第2章 船体外载荷
• 对于端点不封闭的情况,线性内插修正实际上就 是按线性比例修正。
• 各用一条直线把剪力曲线和弯矩曲线封闭起来, 也就是用此直线作为 x 轴,则在右端点处分别有
N(L) =0,M(L) =0。
第2章 船体外载荷
4、载荷曲线 ①载荷曲线性质 ②载荷曲线与剪力、弯矩曲线的关系※ 5、调整平衡位置的方法 ①逐步近似法 ②直接法 6、规范波浪弯矩、剪力计算公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船体强度和结构设计
随着现代技术的不断发展,船只的生产和运营已经成为了一个高度专业化、技术含量极高的行业。
在船只的制造和使用过程中,船体的强度和结构设计对于整个船体的安全性和使用寿命有着至关重要的作用。
船体强度的设计是指,在各种环境和使用条件下,船体能够承受的最大力量和刚度。
为了保证船只的强度和安全性,船体的设计需要遵循一定的规范和标准,如国际海事组织(IMO)的规定、船级社的认证要求等。
一般来说,船体强度的设计包括了以下几个步骤:
第一步:确定载荷
船只的使用环境和任务不同,需要承受的载荷也不一样。
因此在进行船体强度设计前,需要确定船只承受的载荷类型和强度。
例如,对于运输散货的散货船,需要考虑到船体承受的自由液面荷载、海浪力、风力等多种载荷。
第二步:计算刚度和弯曲
在船体强度设计中,需要对船体的刚度和弯曲进行计算和分析。
这是因为船只在航行中会受到各种冲击和力量的作用,比如海浪、风力等。
如果船体刚度不够或弯曲过大,就会导致整个船体的变形或损坏,从而影响船只的安全操作。
第三步:确定材料和结构
根据船只承受的载荷类型和强度,以及对船体刚度和弯曲的计算,可以确定所需的船体材料和结构。
船体结构的设计通常分为纵向结构和横向结构两个方面。
纵向结构用于支撑船体的长度,包括船首、船尾、船面等。
而横向结构则用于支撑船体的宽度,包括船甲板、船壳等。
第四步:进行强度校核和验证
一旦确定了船体的材料和结构,就需要进行强度校核和验证。
这
个过程通常涉及到各种力学和材料学知识,包括疲劳寿命、断裂韧性、弯曲应力等。
校核和验证的目的是通过模拟船只在各种载荷情况下的
应力和变形情况,来确保船体的强度和结构是安全的。
总之,船体强度和结构设计是保证船只安全和长期使用的重要环节。
只有在严谨的设计和校核过程中,才能保证船体设计符合规范,
安全可靠。