八年级数学上11.2三角形全等的判定(3)教案
8上11.2《三角形全等的判定》课堂教学实录

课案(学生用)第二课 全等三角形的判定1(新授课)【教学目标】1.知识技能(1)掌握边边边条件的内容(2)能初步应用边边边条件判定两个三角形全等2.数学思考:经历探索三角形全等条件的过程,体会用操作,归纳得出数量结论的过程。
3.解决问题:会运用边边边条件证明两个三角全等4.情感态度:通过探索三角形全等的条件的活动,培养我们交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力。
【教学重难点】1.重点:指导我们分析问题,寻找判定三角形全等的条件2.难点:探究三角形全等的条件课前延伸1.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.2.全等三角形是( )A .三个角对应相等的三角形B .周长相等的两个三角形C .面积相等的两个三角形D .三边对应相等的两个三角形课内探究一、导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm②三角形两内角分别为30°和50°.③三角形两条边分别为4 cm 、6 cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB =6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,A´C´CB•两弧交点记作C ,连结线段AC 、BC ,就可以得到△ABC ,使得它们的边长分别为 AB =6cm ,AC =8cm ,BC =10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个△ABC ,根据前面作法,同样可以作出一个△A′B′C ′,使AB=A′B′、AC=A′C′、BC=B′C ′.将△A′B′C ′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .2.已知∠AOB ,求作:∠A’O’B’,使∠A’O’B ’=∠AOB随堂练习1.已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC =FE ,BC =DE 以外,还应该有什么条件?怎样才能得到这个条件?2.课本练习。
人教版数学八年级上册11.2《三角形全等的判定》教案1

人教版数学八年级上册11.2《三角形全等的判定》教案1一. 教材分析《三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要让学生掌握三角形全等的判定方法,培养学生的逻辑思维能力和空间想象能力。
本节课的内容是初中的重要知识,也是高中数学的基础。
通过本节课的学习,学生将对三角形全等有更深入的理解,为后续学习其他几何知识打下基础。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念、性质和三角形的相似。
他们具备了一定的几何知识基础,但对于三角形全等的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步探索三角形全等的判定方法。
三. 教学目标1.让学生掌握三角形全等的判定方法。
2.培养学生的逻辑思维能力和空间想象能力。
3.提高学生运用几何知识解决实际问题的能力。
四. 教学重难点1.教学重点:三角形全等的判定方法。
2.教学难点:三角形全等判定方法的推导和应用。
五. 教学方法1.启发式教学:教师通过提问、引导学生思考,激发学生的学习兴趣和思考能力。
2.小组合作学习:学生分组讨论,共同探索三角形全等的判定方法。
3.案例分析:教师通过列举实例,让学生理解和掌握三角形全等的判定方法。
六. 教学准备1.教案:教师事先准备详细的教学方案。
2.课件:教师制作精美的课件,辅助教学。
3.实例:教师准备一些三角形实例,用于讲解和分析。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念、性质和相似三角形的内容,为新课的学习做好铺垫。
2.呈现(15分钟)教师展示三角形全等的判定方法,引导学生观察、思考,让学生初步了解三角形全等的判定方法。
3.操练(20分钟)教师给出一些实例,让学生运用三角形全等的判定方法进行判断。
学生在教师的引导下,逐步掌握三角形全等的判定方法。
4.巩固(10分钟)教师设计一些练习题,让学生独立完成,巩固所学知识。
教师针对学生的答题情况进行讲解和指导。
全等三角形的学案11.2和11.3

11.2三角形全等的条件(1)班级 姓名 学号教学目标1.掌握“边边边”条件的内容2、能初步应用“边边边”条件判定两个三角形全等 教学重点“边边边”的条件。
教学难点探究三角形全等的条件。
. 教学过程一.创设情境,引入新课什么叫全等三角形?△ABC ≌△DEF,说出对应边及对应角全等三角形的性质: 二、实践与探索三组对应角、对应边分别相等的两个三角形全等。
满足这六个条件的一部分两个三角形能否全等呢?1.如果两个三角形有一条边相等,作出的两个三角形一定全等吗?2.如果两个三角形有两条边相等,作出的两个三角形一定全等吗?3.如果两个三角形有三条边相等,那么作出的三角形一定全等吗?全班同学都画一个三边为4cm 、5cm 、2cm 的三角形,这些三角形全等吗?你能得到什么规律? 三、归纳总结全等三角形的条件: 四、【应用新知】例题 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .【小试牛刀】练习1、如图, C 是BF 的中点,AB = DC ,AC=DF.求证: △ABC ≌ △DCFA BC FE D BC A DFAB CD【变式练习】练习2、已知: 如图,点B 、E 、C 、F 。
在同一直线上 ,AB = DE ,AC = DF , BE = CF .求证:(1)△ABC ≌△DEF(2)【夯实基础 】练习3、已知: 如图,AC=EF,BC=BF ,BA=BE 。
求证:△ABC ≌ △EBF【能力提高】已知: 如图, AB = DE ,AC = DF , 点B 、E 、C 、F 在同一直线上,BE = CF .求证: △ABC ≌△DEF五.课时小结本节课你有什么收获?B CA E F D A C BE F ∠A=∠DB CA EFDO DCBAE DCBA 11.2 全等三角形的判定(2)学习目标1.掌握边角边条件的内容2.能初步应用边角边条件判定两个三角形全等 探究:先任意画出一个ABC ∆,再画出一个///C B A ∆,使AB B A =//,AC C A =//,A A ∠=∠/(即使两边和它们的夹角对应相等)。
三角形全等判定(ASA)教学设计

11.2.3 三角形全等判定(ASA)教学设计一、教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.二、教材地位分析三角形全等的判定是初中数学的一个重要内容。
本课是学生已学了SSS与SAS的基础上进行的。
学生已经有了一定的理论基础和认知模式。
通过本课,学生能进一步提高合情推理的能力和感受转化的数学思想,为今后研究几何问题建立了一定的模式。
三、设计思想本节课通过创设一个学生熟悉的问题情境,让学生感受数学源于生活,用于生活。
通过画图,验证自己的猜想,合作交流得到“角边角”定理。
再通过层层铺垫引出其推论。
通过改编例题为开放题,训练学生的发散思维,这就是本课的创新之处。
在教学过程中,笔者注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生合作交流、团结互助的精神和主动探索、善于发现的科学精神。
同时,在合作交流、探索的过程中,学会用类比的方法发现结论,采用启发、诱导的方法来指导学生“会学”,引导学生反思、小结数学的思想方法,知识的获取,指导学生“善学”,让学生看到自我的价值,增强学习的乐趣和信心。
四、教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定方法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展数学思维,感悟全等三角形的应用价值.五、教学重点、难点、关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.六、教学准备投影仪、直尺、圆规.七、教学方法采用“问题教学法”,在问题情境中,激发学生的求知欲.八、教学过程(一)、创设情境一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?【说明】:对于学生的回答,教师可及时鼓励,但不作评价,留下悬念,引人课题。
人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计

人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。
教材通过引入“HL”、“SAS”、“ASA”三种判定方法,引导学生探索并证明直角三角形全等的条件。
同时,教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析学生在七年级已经学习了三角形全等的判定方法,对全等三角形的概念有了初步的认识。
但针对直角三角形全等的特殊性,学生还需要进一步理解并掌握。
此外,学生对于证明过程的书写和逻辑推理能力还需加强。
三. 教学目标1.知识与技能:使学生掌握直角三角形全等的判定方法(HL、SAS、ASA),能够运用这些方法判断直角三角形是否全等。
2.过程与方法:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:直角三角形全等的判定方法(HL、SAS、ASA)。
2.难点:判定方法的灵活运用和证明过程的书写。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的条件。
2.运用分组讨论法,培养学生的团队合作能力和交流能力。
3.利用多媒体辅助教学,增强学生对知识的理解和记忆。
4.采用案例分析法,让学生学会将所学知识应用于解决实际问题。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备直角三角形的模型或挂图。
3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)利用直角三角形的模型或挂图,引导学生回顾三角形全等的判定方法。
提出问题:“如何判断两个直角三角形是否全等?”2.呈现(10分钟)呈现教材中的三种直角三角形全等的判定方法(HL、SAS、ASA),引导学生观察并分析判定方法的条件。
3.操练(10分钟)学生分组讨论,每组选择一种判定方法,运用判定方法判断给出的直角三角形是否全等。
人教版数学八年级上册11.2《三角形全等的判定》教学设计

人教版数学八年级上册11.2《三角形全等的判定》教学设计一. 教材分析《三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要学习了SSS、SAS、ASA、AAS四种三角形全等的判定方法,以及全等三角形的性质。
学生在学习本节课之前,已经掌握了三角形的基本概念、性质以及边的相关运算,为本节课的学习奠定了基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对数学概念和定理的学习逐渐从直观形象向抽象逻辑转变。
但学生在学习过程中,对理论知识的理解和应用能力仍有待提高,因此,在教学过程中,需要注重引导学生通过实际操作、合作交流等方式,深化对知识的理解和运用。
三. 教学目标1.知识与技能目标:使学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法,能够运用这些方法判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队合作意识,使学生在解决问题的过程中,体验到数学的乐趣。
四. 教学重难点1.重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。
2.难点:如何灵活运用这些判定方法判断两个三角形是否全等。
五. 教学方法1.情境教学法:通过生活实例引入三角形全等的概念,激发学生的学习兴趣。
2.启发式教学法:在教学过程中,引导学生主动思考、探索,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论和实践操作,提高学生的团队合作意识和交流能力。
4.反馈评价法:及时给予学生反馈,帮助学生发现问题、解决问题,提高学生的学习效果。
六. 教学准备1.教学课件:制作课件,展示三角形全等的判定方法及实例。
2.教学素材:准备一些三角形图形,用于引导学生进行观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例,如:拼图、制作风筝等,引导学生思考三角形全等的概念,激发学生的学习兴趣。
全等三角形的判定3 教案

11.2全等三角形的判定【课题】:全等三角形的判定3:角边角(平行班)【设计与执教者】:增城市福和中学赖房泊netlai@【教学时间】:45分钟【学生分析】:学生学习了“边边边”、“边角边”,已理解证明的基本过程,掌握了用综合法证明的格式。
对于定理内容的掌握和证明,只要稍加引导,学生应该就能较顺利的进行探索解决。
但学习的内容多了,要注意加于区别。
【教学目标】:1 知识技能探究掌握“角边角”定理内容并应用条件判定两个三角形全等。
2 数学思考学生通过画图、实验、思考,形成正确的结论。
3 解决问题能熟练应用边角边条件证明两个三角形全等。
4 情感态度通过实验探讨并形成结论等活动,让学生感受数学活动的乐趣,培养学生全面、严谨的数学思想。
【教学重点】:角边角的条件和应用【教学难点】:角边角判定三角形全等的条件【教学突破点】:模仿前面几个探究活动的方法,通过画图验证。
【教法、学法设计】:学生为主,互相交流探讨,形成结论。
【教学过程设计】:教学过程设计意图教学环节1.复习引入1、如图,AB ∥CD,且AB =CD,AE=DF,则△ABF 和△DCE ( B )A 、不可能全等B 、全等C 、有可能全等 D 、可能全等,也可能不全等2、如图1,AB=AC,BD=CD.△ABD 与△ACD全等吗?为什么?[全等,AB=AC,BD=CD ,AD=AD 公共边] 图1 图23、如图2,△ABC 中,AB=AC,AD 为角平分线。
△ABD ≌△ACD 吗?[全等,AB=AC,∠BAD =∠CAD ,AD=AD (公共边)]让学生经历运用已知知识(如SSS 、SAS )探究解决问题的思路,并形成对问题的合理解释。
同时了解学习效果,调整教学。
2、问题与探究1、先任意画出一个△ABC,再画出一个△A'B'C',使A’B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等)。
把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?(本探究可以采取和前面的探究活动相同的方法,可先介绍已知两角和它们的夹边画三角形的方法,再让学生画图和实验。
全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C A B
F E 11.2三角形全等的判定(3)
一、学习目标
1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题
2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 3、积极投入,激情展示,体验成功的快乐。
二、重点难点
教学重点:已知两角一边的三角形全等探究. 教学难点:灵活运用三角形全等条件证明. 三、合作探究 1、复习思考 (1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? (2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢? 2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?
(1)动手试一试。
已知:△ABC
求作:△'''A B C ,使'B ∠=∠B, 'C ∠=∠C ,''B C =BC ,(不写作法,保留作图痕迹)
(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合? (3)归纳:由上面的画图和实验可以得出全等三角形判定(三):
两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(三) 在△ABC 和'''A B C ∆中,
∵'B B BC C ∠=∠⎧⎪
=⎨⎪∠=⎩
∴△ABC ≌ 3、探究二。
两角和其中一角的对边对应相等的两三角形是否全等
(1)如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用前面学过的判定方法来证明你的结论吗?
(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”) (3)用数学语言表述全等三角形判定(四)
C '
B 'A '
C B A
E
O
D
C
B
A
在△ABC 和'''A B C ∆中,
∵'A A B BC ∠=∠⎧⎪
∠=⎨⎪=⎩
∴△ABC ≌
四、精讲精练 1、精讲
例1、如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C . 求证:AD=AE .
例2、已知:点D 在AB 上,点E 在AC 上,∠BAO=∠CAO ,BE ⊥AC, CD ⊥AB,相交于点O ,AB=AC , 求证:BD=CE
2、精练
1、课本第13页第1题
2、如图,在△ABC 中,∠C=2∠B 、,AD 是△ABC 的角 平分线,∠1=∠B,求证AB=AC+CD
五、课堂小结
SSS 、SAS 、ASA 、AAS
会根据已知两角及一边画三角形
六、作业:第15页习题11.2 5-6 第16页第11-12题
D C
A
B
E C '
B '
A '
C B A
A B
C
D
1 2。